// SPDX-License-Identifier: GPL-2.0 /* * Kernel internal timers * * Copyright (C) 1991, 1992 Linus Torvalds * * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. * * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 * "A Kernel Model for Precision Timekeeping" by Dave Mills * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to * serialize accesses to xtime/lost_ticks). * Copyright (C) 1998 Andrea Arcangeli * 1999-03-10 Improved NTP compatibility by Ulrich Windl * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love * 2000-10-05 Implemented scalable SMP per-CPU timer handling. * Copyright (C) 2000, 2001, 2002 Ingo Molnar * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "tick-internal.h" #define CREATE_TRACE_POINTS #include __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; EXPORT_SYMBOL(jiffies_64); /* * The timer wheel has LVL_DEPTH array levels. Each level provides an array of * LVL_SIZE buckets. Each level is driven by its own clock and therefor each * level has a different granularity. * * The level granularity is: LVL_CLK_DIV ^ lvl * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level) * * The array level of a newly armed timer depends on the relative expiry * time. The farther the expiry time is away the higher the array level and * therefor the granularity becomes. * * Contrary to the original timer wheel implementation, which aims for 'exact' * expiry of the timers, this implementation removes the need for recascading * the timers into the lower array levels. The previous 'classic' timer wheel * implementation of the kernel already violated the 'exact' expiry by adding * slack to the expiry time to provide batched expiration. The granularity * levels provide implicit batching. * * This is an optimization of the original timer wheel implementation for the * majority of the timer wheel use cases: timeouts. The vast majority of * timeout timers (networking, disk I/O ...) are canceled before expiry. If * the timeout expires it indicates that normal operation is disturbed, so it * does not matter much whether the timeout comes with a slight delay. * * The only exception to this are networking timers with a small expiry * time. They rely on the granularity. Those fit into the first wheel level, * which has HZ granularity. * * We don't have cascading anymore. timers with a expiry time above the * capacity of the last wheel level are force expired at the maximum timeout * value of the last wheel level. From data sampling we know that the maximum * value observed is 5 days (network connection tracking), so this should not * be an issue. * * The currently chosen array constants values are a good compromise between * array size and granularity. * * This results in the following granularity and range levels: * * HZ 1000 steps * Level Offset Granularity Range * 0 0 1 ms 0 ms - 63 ms * 1 64 8 ms 64 ms - 511 ms * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s) * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s) * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m) * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m) * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h) * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d) * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d) * * HZ 300 * Level Offset Granularity Range * 0 0 3 ms 0 ms - 210 ms * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s) * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s) * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m) * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m) * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h) * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h) * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d) * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d) * * HZ 250 * Level Offset Granularity Range * 0 0 4 ms 0 ms - 255 ms * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s) * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s) * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m) * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m) * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h) * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h) * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d) * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d) * * HZ 100 * Level Offset Granularity Range * 0 0 10 ms 0 ms - 630 ms * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s) * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s) * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m) * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m) * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h) * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d) * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d) */ /* Clock divisor for the next level */ #define LVL_CLK_SHIFT 3 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT) #define LVL_CLK_MASK (LVL_CLK_DIV - 1) #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT) #define LVL_GRAN(n) (1UL << LVL_SHIFT(n)) /* * The time start value for each level to select the bucket at enqueue * time. We start from the last possible delta of the previous level * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()). */ #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT)) /* Size of each clock level */ #define LVL_BITS 6 #define LVL_SIZE (1UL << LVL_BITS) #define LVL_MASK (LVL_SIZE - 1) #define LVL_OFFS(n) ((n) * LVL_SIZE) /* Level depth */ #if HZ > 100 # define LVL_DEPTH 9 # else # define LVL_DEPTH 8 #endif /* The cutoff (max. capacity of the wheel) */ #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH)) #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1)) /* * The resulting wheel size. If NOHZ is configured we allocate two * wheels so we have a separate storage for the deferrable timers. */ #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH) #ifdef CONFIG_NO_HZ_COMMON # define NR_BASES 2 # define BASE_STD 0 # define BASE_DEF 1 #else # define NR_BASES 1 # define BASE_STD 0 # define BASE_DEF 0 #endif struct timer_base { raw_spinlock_t lock; struct timer_list *running_timer; #ifdef CONFIG_PREEMPT_RT spinlock_t expiry_lock; atomic_t timer_waiters; #endif unsigned long clk; unsigned long next_expiry; unsigned int cpu; bool is_idle; DECLARE_BITMAP(pending_map, WHEEL_SIZE); struct hlist_head vectors[WHEEL_SIZE]; } ____cacheline_aligned; static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]); #ifdef CONFIG_NO_HZ_COMMON static DEFINE_STATIC_KEY_FALSE(timers_nohz_active); static DEFINE_MUTEX(timer_keys_mutex); static void timer_update_keys(struct work_struct *work); static DECLARE_WORK(timer_update_work, timer_update_keys); #ifdef CONFIG_SMP unsigned int sysctl_timer_migration = 1; DEFINE_STATIC_KEY_FALSE(timers_migration_enabled); static void timers_update_migration(void) { if (sysctl_timer_migration && tick_nohz_active) static_branch_enable(&timers_migration_enabled); else static_branch_disable(&timers_migration_enabled); } #else static inline void timers_update_migration(void) { } #endif /* !CONFIG_SMP */ static void timer_update_keys(struct work_struct *work) { mutex_lock(&timer_keys_mutex); timers_update_migration(); static_branch_enable(&timers_nohz_active); mutex_unlock(&timer_keys_mutex); } void timers_update_nohz(void) { schedule_work(&timer_update_work); } int timer_migration_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret; mutex_lock(&timer_keys_mutex); ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); if (!ret && write) timers_update_migration(); mutex_unlock(&timer_keys_mutex); return ret; } static inline bool is_timers_nohz_active(void) { return static_branch_unlikely(&timers_nohz_active); } #else static inline bool is_timers_nohz_active(void) { return false; } #endif /* NO_HZ_COMMON */ static unsigned long round_jiffies_common(unsigned long j, int cpu, bool force_up) { int rem; unsigned long original = j; /* * We don't want all cpus firing their timers at once hitting the * same lock or cachelines, so we skew each extra cpu with an extra * 3 jiffies. This 3 jiffies came originally from the mm/ code which * already did this. * The skew is done by adding 3*cpunr, then round, then subtract this * extra offset again. */ j += cpu * 3; rem = j % HZ; /* * If the target jiffie is just after a whole second (which can happen * due to delays of the timer irq, long irq off times etc etc) then * we should round down to the whole second, not up. Use 1/4th second * as cutoff for this rounding as an extreme upper bound for this. * But never round down if @force_up is set. */ if (rem < HZ/4 && !force_up) /* round down */ j = j - rem; else /* round up */ j = j - rem + HZ; /* now that we have rounded, subtract the extra skew again */ j -= cpu * 3; /* * Make sure j is still in the future. Otherwise return the * unmodified value. */ return time_is_after_jiffies(j) ? j : original; } /** * __round_jiffies - function to round jiffies to a full second * @j: the time in (absolute) jiffies that should be rounded * @cpu: the processor number on which the timeout will happen * * __round_jiffies() rounds an absolute time in the future (in jiffies) * up or down to (approximately) full seconds. This is useful for timers * for which the exact time they fire does not matter too much, as long as * they fire approximately every X seconds. * * By rounding these timers to whole seconds, all such timers will fire * at the same time, rather than at various times spread out. The goal * of this is to have the CPU wake up less, which saves power. * * The exact rounding is skewed for each processor to avoid all * processors firing at the exact same time, which could lead * to lock contention or spurious cache line bouncing. * * The return value is the rounded version of the @j parameter. */ unsigned long __round_jiffies(unsigned long j, int cpu) { return round_jiffies_common(j, cpu, false); } EXPORT_SYMBOL_GPL(__round_jiffies); /** * __round_jiffies_relative - function to round jiffies to a full second * @j: the time in (relative) jiffies that should be rounded * @cpu: the processor number on which the timeout will happen * * __round_jiffies_relative() rounds a time delta in the future (in jiffies) * up or down to (approximately) full seconds. This is useful for timers * for which the exact time they fire does not matter too much, as long as * they fire approximately every X seconds. * * By rounding these timers to whole seconds, all such timers will fire * at the same time, rather than at various times spread out. The goal * of this is to have the CPU wake up less, which saves power. * * The exact rounding is skewed for each processor to avoid all * processors firing at the exact same time, which could lead * to lock contention or spurious cache line bouncing. * * The return value is the rounded version of the @j parameter. */ unsigned long __round_jiffies_relative(unsigned long j, int cpu) { unsigned long j0 = jiffies; /* Use j0 because jiffies might change while we run */ return round_jiffies_common(j + j0, cpu, false) - j0; } EXPORT_SYMBOL_GPL(__round_jiffies_relative); /** * round_jiffies - function to round jiffies to a full second * @j: the time in (absolute) jiffies that should be rounded * * round_jiffies() rounds an absolute time in the future (in jiffies) * up or down to (approximately) full seconds. This is useful for timers * for which the exact time they fire does not matter too much, as long as * they fire approximately every X seconds. * * By rounding these timers to whole seconds, all such timers will fire * at the same time, rather than at various times spread out. The goal * of this is to have the CPU wake up less, which saves power. * * The return value is the rounded version of the @j parameter. */ unsigned long round_jiffies(unsigned long j) { return round_jiffies_common(j, raw_smp_processor_id(), false); } EXPORT_SYMBOL_GPL(round_jiffies); /** * round_jiffies_relative - function to round jiffies to a full second * @j: the time in (relative) jiffies that should be rounded * * round_jiffies_relative() rounds a time delta in the future (in jiffies) * up or down to (approximately) full seconds. This is useful for timers * for which the exact time they fire does not matter too much, as long as * they fire approximately every X seconds. * * By rounding these timers to whole seconds, all such timers will fire * at the same time, rather than at various times spread out. The goal * of this is to have the CPU wake up less, which saves power. * * The return value is the rounded version of the @j parameter. */ unsigned long round_jiffies_relative(unsigned long j) { return __round_jiffies_relative(j, raw_smp_processor_id()); } EXPORT_SYMBOL_GPL(round_jiffies_relative); /** * __round_jiffies_up - function to round jiffies up to a full second * @j: the time in (absolute) jiffies that should be rounded * @cpu: the processor number on which the timeout will happen * * This is the same as __round_jiffies() except that it will never * round down. This is useful for timeouts for which the exact time * of firing does not matter too much, as long as they don't fire too * early. */ unsigned long __round_jiffies_up(unsigned long j, int cpu) { return round_jiffies_common(j, cpu, true); } EXPORT_SYMBOL_GPL(__round_jiffies_up); /** * __round_jiffies_up_relative - function to round jiffies up to a full second * @j: the time in (relative) jiffies that should be rounded * @cpu: the processor number on which the timeout will happen * * This is the same as __round_jiffies_relative() except that it will never * round down. This is useful for timeouts for which the exact time * of firing does not matter too much, as long as they don't fire too * early. */ unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) { unsigned long j0 = jiffies; /* Use j0 because jiffies might change while we run */ return round_jiffies_common(j + j0, cpu, true) - j0; } EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); /** * round_jiffies_up - function to round jiffies up to a full second * @j: the time in (absolute) jiffies that should be rounded * * This is the same as round_jiffies() except that it will never * round down. This is useful for timeouts for which the exact time * of firing does not matter too much, as long as they don't fire too * early. */ unsigned long round_jiffies_up(unsigned long j) { return round_jiffies_common(j, raw_smp_processor_id(), true); } EXPORT_SYMBOL_GPL(round_jiffies_up); /** * round_jiffies_up_relative - function to round jiffies up to a full second * @j: the time in (relative) jiffies that should be rounded * * This is the same as round_jiffies_relative() except that it will never * round down. This is useful for timeouts for which the exact time * of firing does not matter too much, as long as they don't fire too * early. */ unsigned long round_jiffies_up_relative(unsigned long j) { return __round_jiffies_up_relative(j, raw_smp_processor_id()); } EXPORT_SYMBOL_GPL(round_jiffies_up_relative); static inline unsigned int timer_get_idx(struct timer_list *timer) { return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT; } static inline void timer_set_idx(struct timer_list *timer, unsigned int idx) { timer->flags = (timer->flags & ~TIMER_ARRAYMASK) | idx << TIMER_ARRAYSHIFT; } /* * Helper function to calculate the array index for a given expiry * time. */ static inline unsigned calc_index(unsigned long expires, unsigned lvl, unsigned long *bucket_expiry) { /* * The timer wheel has to guarantee that a timer does not fire * early. Early expiry can happen due to: * - Timer is armed at the edge of a tick * - Truncation of the expiry time in the outer wheel levels * * Round up with level granularity to prevent this. */ expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl); *bucket_expiry = expires << LVL_SHIFT(lvl); return LVL_OFFS(lvl) + (expires & LVL_MASK); } static int calc_wheel_index(unsigned long expires, unsigned long clk, unsigned long *bucket_expiry) { unsigned long delta = expires - clk; unsigned int idx; if (delta < LVL_START(1)) { idx = calc_index(expires, 0, bucket_expiry); } else if (delta < LVL_START(2)) { idx = calc_index(expires, 1, bucket_expiry); } else if (delta < LVL_START(3)) { idx = calc_index(expires, 2, bucket_expiry); } else if (delta < LVL_START(4)) { idx = calc_index(expires, 3, bucket_expiry); } else if (delta < LVL_START(5)) { idx = calc_index(expires, 4, bucket_expiry); } else if (delta < LVL_START(6)) { idx = calc_index(expires, 5, bucket_expiry); } else if (delta < LVL_START(7)) { idx = calc_index(expires, 6, bucket_expiry); } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) { idx = calc_index(expires, 7, bucket_expiry); } else if ((long) delta < 0) { idx = clk & LVL_MASK; *bucket_expiry = clk; } else { /* * Force expire obscene large timeouts to expire at the * capacity limit of the wheel. */ if (delta >= WHEEL_TIMEOUT_CUTOFF) expires = clk + WHEEL_TIMEOUT_MAX; idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry); } return idx; } static void trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer) { if (!is_timers_nohz_active()) return; /* * TODO: This wants some optimizing similar to the code below, but we * will do that when we switch from push to pull for deferrable timers. */ if (timer->flags & TIMER_DEFERRABLE) { if (tick_nohz_full_cpu(base->cpu)) wake_up_nohz_cpu(base->cpu); return; } /* * We might have to IPI the remote CPU if the base is idle and the * timer is not deferrable. If the other CPU is on the way to idle * then it can't set base->is_idle as we hold the base lock: */ if (base->is_idle) wake_up_nohz_cpu(base->cpu); } /* * Enqueue the timer into the hash bucket, mark it pending in * the bitmap, store the index in the timer flags then wake up * the target CPU if needed. */ static void enqueue_timer(struct timer_base *base, struct timer_list *timer, unsigned int idx, unsigned long bucket_expiry) { hlist_add_head(&timer->entry, base->vectors + idx); __set_bit(idx, base->pending_map); timer_set_idx(timer, idx); trace_timer_start(timer, timer->expires, timer->flags); /* * Check whether this is the new first expiring timer. The * effective expiry time of the timer is required here * (bucket_expiry) instead of timer->expires. */ if (time_before(bucket_expiry, base->next_expiry)) { /* * Set the next expiry time and kick the CPU so it * can reevaluate the wheel: */ base->next_expiry = bucket_expiry; trigger_dyntick_cpu(base, timer); } } static void internal_add_timer(struct timer_base *base, struct timer_list *timer) { unsigned long bucket_expiry; unsigned int idx; idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry); enqueue_timer(base, timer, idx, bucket_expiry); } #ifdef CONFIG_DEBUG_OBJECTS_TIMERS static struct debug_obj_descr timer_debug_descr; static void *timer_debug_hint(void *addr) { return ((struct timer_list *) addr)->function; } static bool timer_is_static_object(void *addr) { struct timer_list *timer = addr; return (timer->entry.pprev == NULL && timer->entry.next == TIMER_ENTRY_STATIC); } /* * fixup_init is called when: * - an active object is initialized */ static bool timer_fixup_init(void *addr, enum debug_obj_state state) { struct timer_list *timer = addr; switch (state) { case ODEBUG_STATE_ACTIVE: del_timer_sync(timer); debug_object_init(timer, &timer_debug_descr); return true; default: return false; } } /* Stub timer callback for improperly used timers. */ static void stub_timer(struct timer_list *unused) { WARN_ON(1); } /* * fixup_activate is called when: * - an active object is activated * - an unknown non-static object is activated */ static bool timer_fixup_activate(void *addr, enum debug_obj_state state) { struct timer_list *timer = addr; switch (state) { case ODEBUG_STATE_NOTAVAILABLE: timer_setup(timer, stub_timer, 0); return true; case ODEBUG_STATE_ACTIVE: WARN_ON(1); /* fall through */ default: return false; } } /* * fixup_free is called when: * - an active object is freed */ static bool timer_fixup_free(void *addr, enum debug_obj_state state) { struct timer_list *timer = addr; switch (state) { case ODEBUG_STATE_ACTIVE: del_timer_sync(timer); debug_object_free(timer, &timer_debug_descr); return true; default: return false; } } /* * fixup_assert_init is called when: * - an untracked/uninit-ed object is found */ static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state) { struct timer_list *timer = addr; switch (state) { case ODEBUG_STATE_NOTAVAILABLE: timer_setup(timer, stub_timer, 0); return true; default: return false; } } static struct debug_obj_descr timer_debug_descr = { .name = "timer_list", .debug_hint = timer_debug_hint, .is_static_object = timer_is_static_object, .fixup_init = timer_fixup_init, .fixup_activate = timer_fixup_activate, .fixup_free = timer_fixup_free, .fixup_assert_init = timer_fixup_assert_init, }; static inline void debug_timer_init(struct timer_list *timer) { debug_object_init(timer, &timer_debug_descr); } static inline void debug_timer_activate(struct timer_list *timer) { debug_object_activate(timer, &timer_debug_descr); } static inline void debug_timer_deactivate(struct timer_list *timer) { debug_object_deactivate(timer, &timer_debug_descr); } static inline void debug_timer_free(struct timer_list *timer) { debug_object_free(timer, &timer_debug_descr); } static inline void debug_timer_assert_init(struct timer_list *timer) { debug_object_assert_init(timer, &timer_debug_descr); } static void do_init_timer(struct timer_list *timer, void (*func)(struct timer_list *), unsigned int flags, const char *name, struct lock_class_key *key); void init_timer_on_stack_key(struct timer_list *timer, void (*func)(struct timer_list *), unsigned int flags, const char *name, struct lock_class_key *key) { debug_object_init_on_stack(timer, &timer_debug_descr); do_init_timer(timer, func, flags, name, key); } EXPORT_SYMBOL_GPL(init_timer_on_stack_key); void destroy_timer_on_stack(struct timer_list *timer) { debug_object_free(timer, &timer_debug_descr); } EXPORT_SYMBOL_GPL(destroy_timer_on_stack); #else static inline void debug_timer_init(struct timer_list *timer) { } static inline void debug_timer_activate(struct timer_list *timer) { } static inline void debug_timer_deactivate(struct timer_list *timer) { } static inline void debug_timer_assert_init(struct timer_list *timer) { } #endif static inline void debug_init(struct timer_list *timer) { debug_timer_init(timer); trace_timer_init(timer); } static inline void debug_deactivate(struct timer_list *timer) { debug_timer_deactivate(timer); trace_timer_cancel(timer); } static inline void debug_assert_init(struct timer_list *timer) { debug_timer_assert_init(timer); } static void do_init_timer(struct timer_list *timer, void (*func)(struct timer_list *), unsigned int flags, const char *name, struct lock_class_key *key) { timer->entry.pprev = NULL; timer->function = func; timer->flags = flags | raw_smp_processor_id(); lockdep_init_map(&timer->lockdep_map, name, key, 0); } /** * init_timer_key - initialize a timer * @timer: the timer to be initialized * @func: timer callback function * @flags: timer flags * @name: name of the timer * @key: lockdep class key of the fake lock used for tracking timer * sync lock dependencies * * init_timer_key() must be done to a timer prior calling *any* of the * other timer functions. */ void init_timer_key(struct timer_list *timer, void (*func)(struct timer_list *), unsigned int flags, const char *name, struct lock_class_key *key) { debug_init(timer); do_init_timer(timer, func, flags, name, key); } EXPORT_SYMBOL(init_timer_key); static inline void detach_timer(struct timer_list *timer, bool clear_pending) { struct hlist_node *entry = &timer->entry; debug_deactivate(timer); __hlist_del(entry); if (clear_pending) entry->pprev = NULL; entry->next = LIST_POISON2; } static int detach_if_pending(struct timer_list *timer, struct timer_base *base, bool clear_pending) { unsigned idx = timer_get_idx(timer); if (!timer_pending(timer)) return 0; if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) __clear_bit(idx, base->pending_map); detach_timer(timer, clear_pending); return 1; } static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu) { struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu); /* * If the timer is deferrable and NO_HZ_COMMON is set then we need * to use the deferrable base. */ if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu); return base; } static inline struct timer_base *get_timer_this_cpu_base(u32 tflags) { struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); /* * If the timer is deferrable and NO_HZ_COMMON is set then we need * to use the deferrable base. */ if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) base = this_cpu_ptr(&timer_bases[BASE_DEF]); return base; } static inline struct timer_base *get_timer_base(u32 tflags) { return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK); } static inline struct timer_base * get_target_base(struct timer_base *base, unsigned tflags) { #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) if (static_branch_likely(&timers_migration_enabled) && !(tflags & TIMER_PINNED)) return get_timer_cpu_base(tflags, get_nohz_timer_target()); #endif return get_timer_this_cpu_base(tflags); } static inline void forward_timer_base(struct timer_base *base) { unsigned long jnow = READ_ONCE(jiffies); /* * No need to forward if we are close enough below jiffies. * Also while executing timers, base->clk is 1 offset ahead * of jiffies to avoid endless requeuing to current jffies. */ if ((long)(jnow - base->clk) < 1) return; /* * If the next expiry value is > jiffies, then we fast forward to * jiffies otherwise we forward to the next expiry value. */ if (time_after(base->next_expiry, jnow)) { base->clk = jnow; } else { if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk))) return; base->clk = base->next_expiry; } } /* * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means * that all timers which are tied to this base are locked, and the base itself * is locked too. * * So __run_timers/migrate_timers can safely modify all timers which could * be found in the base->vectors array. * * When a timer is migrating then the TIMER_MIGRATING flag is set and we need * to wait until the migration is done. */ static struct timer_base *lock_timer_base(struct timer_list *timer, unsigned long *flags) __acquires(timer->base->lock) { for (;;) { struct timer_base *base; u32 tf; /* * We need to use READ_ONCE() here, otherwise the compiler * might re-read @tf between the check for TIMER_MIGRATING * and spin_lock(). */ tf = READ_ONCE(timer->flags); if (!(tf & TIMER_MIGRATING)) { base = get_timer_base(tf); raw_spin_lock_irqsave(&base->lock, *flags); if (timer->flags == tf) return base; raw_spin_unlock_irqrestore(&base->lock, *flags); } cpu_relax(); } } #define MOD_TIMER_PENDING_ONLY 0x01 #define MOD_TIMER_REDUCE 0x02 #define MOD_TIMER_NOTPENDING 0x04 static inline int __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options) { unsigned long clk = 0, flags, bucket_expiry; struct timer_base *base, *new_base; unsigned int idx = UINT_MAX; int ret = 0; BUG_ON(!timer->function); /* * This is a common optimization triggered by the networking code - if * the timer is re-modified to have the same timeout or ends up in the * same array bucket then just return: */ if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) { /* * The downside of this optimization is that it can result in * larger granularity than you would get from adding a new * timer with this expiry. */ long diff = timer->expires - expires; if (!diff) return 1; if (options & MOD_TIMER_REDUCE && diff <= 0) return 1; /* * We lock timer base and calculate the bucket index right * here. If the timer ends up in the same bucket, then we * just update the expiry time and avoid the whole * dequeue/enqueue dance. */ base = lock_timer_base(timer, &flags); forward_timer_base(base); if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) && time_before_eq(timer->expires, expires)) { ret = 1; goto out_unlock; } clk = base->clk; idx = calc_wheel_index(expires, clk, &bucket_expiry); /* * Retrieve and compare the array index of the pending * timer. If it matches set the expiry to the new value so a * subsequent call will exit in the expires check above. */ if (idx == timer_get_idx(timer)) { if (!(options & MOD_TIMER_REDUCE)) timer->expires = expires; else if (time_after(timer->expires, expires)) timer->expires = expires; ret = 1; goto out_unlock; } } else { base = lock_timer_base(timer, &flags); forward_timer_base(base); } ret = detach_if_pending(timer, base, false); if (!ret && (options & MOD_TIMER_PENDING_ONLY)) goto out_unlock; new_base = get_target_base(base, timer->flags); if (base != new_base) { /* * We are trying to schedule the timer on the new base. * However we can't change timer's base while it is running, * otherwise del_timer_sync() can't detect that the timer's * handler yet has not finished. This also guarantees that the * timer is serialized wrt itself. */ if (likely(base->running_timer != timer)) { /* See the comment in lock_timer_base() */ timer->flags |= TIMER_MIGRATING; raw_spin_unlock(&base->lock); base = new_base; raw_spin_lock(&base->lock); WRITE_ONCE(timer->flags, (timer->flags & ~TIMER_BASEMASK) | base->cpu); forward_timer_base(base); } } debug_timer_activate(timer); timer->expires = expires; /* * If 'idx' was calculated above and the base time did not advance * between calculating 'idx' and possibly switching the base, only * enqueue_timer() is required. Otherwise we need to (re)calculate * the wheel index via internal_add_timer(). */ if (idx != UINT_MAX && clk == base->clk) enqueue_timer(base, timer, idx, bucket_expiry); else internal_add_timer(base, timer); out_unlock: raw_spin_unlock_irqrestore(&base->lock, flags); return ret; } /** * mod_timer_pending - modify a pending timer's timeout * @timer: the pending timer to be modified * @expires: new timeout in jiffies * * mod_timer_pending() is the same for pending timers as mod_timer(), * but will not re-activate and modify already deleted timers. * * It is useful for unserialized use of timers. */ int mod_timer_pending(struct timer_list *timer, unsigned long expires) { return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY); } EXPORT_SYMBOL(mod_timer_pending); /** * mod_timer - modify a timer's timeout * @timer: the timer to be modified * @expires: new timeout in jiffies * * mod_timer() is a more efficient way to update the expire field of an * active timer (if the timer is inactive it will be activated) * * mod_timer(timer, expires) is equivalent to: * * del_timer(timer); timer->expires = expires; add_timer(timer); * * Note that if there are multiple unserialized concurrent users of the * same timer, then mod_timer() is the only safe way to modify the timeout, * since add_timer() cannot modify an already running timer. * * The function returns whether it has modified a pending timer or not. * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an * active timer returns 1.) */ int mod_timer(struct timer_list *timer, unsigned long expires) { return __mod_timer(timer, expires, 0); } EXPORT_SYMBOL(mod_timer); /** * timer_reduce - Modify a timer's timeout if it would reduce the timeout * @timer: The timer to be modified * @expires: New timeout in jiffies * * timer_reduce() is very similar to mod_timer(), except that it will only * modify a running timer if that would reduce the expiration time (it will * start a timer that isn't running). */ int timer_reduce(struct timer_list *timer, unsigned long expires) { return __mod_timer(timer, expires, MOD_TIMER_REDUCE); } EXPORT_SYMBOL(timer_reduce); /** * add_timer - start a timer * @timer: the timer to be added * * The kernel will do a ->function(@timer) callback from the * timer interrupt at the ->expires point in the future. The * current time is 'jiffies'. * * The timer's ->expires, ->function fields must be set prior calling this * function. * * Timers with an ->expires field in the past will be executed in the next * timer tick. */ void add_timer(struct timer_list *timer) { BUG_ON(timer_pending(timer)); __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING); } EXPORT_SYMBOL(add_timer); /** * add_timer_on - start a timer on a particular CPU * @timer: the timer to be added * @cpu: the CPU to start it on * * This is not very scalable on SMP. Double adds are not possible. */ void add_timer_on(struct timer_list *timer, int cpu) { struct timer_base *new_base, *base; unsigned long flags; BUG_ON(timer_pending(timer) || !timer->function); new_base = get_timer_cpu_base(timer->flags, cpu); /* * If @timer was on a different CPU, it should be migrated with the * old base locked to prevent other operations proceeding with the * wrong base locked. See lock_timer_base(). */ base = lock_timer_base(timer, &flags); if (base != new_base) { timer->flags |= TIMER_MIGRATING; raw_spin_unlock(&base->lock); base = new_base; raw_spin_lock(&base->lock); WRITE_ONCE(timer->flags, (timer->flags & ~TIMER_BASEMASK) | cpu); } forward_timer_base(base); debug_timer_activate(timer); internal_add_timer(base, timer); raw_spin_unlock_irqrestore(&base->lock, flags); } EXPORT_SYMBOL_GPL(add_timer_on); /** * del_timer - deactivate a timer. * @timer: the timer to be deactivated * * del_timer() deactivates a timer - this works on both active and inactive * timers. * * The function returns whether it has deactivated a pending timer or not. * (ie. del_timer() of an inactive timer returns 0, del_timer() of an * active timer returns 1.) */ int del_timer(struct timer_list *timer) { struct timer_base *base; unsigned long flags; int ret = 0; debug_assert_init(timer); if (timer_pending(timer)) { base = lock_timer_base(timer, &flags); ret = detach_if_pending(timer, base, true); raw_spin_unlock_irqrestore(&base->lock, flags); } return ret; } EXPORT_SYMBOL(del_timer); /** * try_to_del_timer_sync - Try to deactivate a timer * @timer: timer to delete * * This function tries to deactivate a timer. Upon successful (ret >= 0) * exit the timer is not queued and the handler is not running on any CPU. */ int try_to_del_timer_sync(struct timer_list *timer) { struct timer_base *base; unsigned long flags; int ret = -1; debug_assert_init(timer); base = lock_timer_base(timer, &flags); if (base->running_timer != timer) ret = detach_if_pending(timer, base, true); raw_spin_unlock_irqrestore(&base->lock, flags); return ret; } EXPORT_SYMBOL(try_to_del_timer_sync); #ifdef CONFIG_PREEMPT_RT static __init void timer_base_init_expiry_lock(struct timer_base *base) { spin_lock_init(&base->expiry_lock); } static inline void timer_base_lock_expiry(struct timer_base *base) { spin_lock(&base->expiry_lock); } static inline void timer_base_unlock_expiry(struct timer_base *base) { spin_unlock(&base->expiry_lock); } /* * The counterpart to del_timer_wait_running(). * * If there is a waiter for base->expiry_lock, then it was waiting for the * timer callback to finish. Drop expiry_lock and reaquire it. That allows * the waiter to acquire the lock and make progress. */ static void timer_sync_wait_running(struct timer_base *base) { if (atomic_read(&base->timer_waiters)) { spin_unlock(&base->expiry_lock); spin_lock(&base->expiry_lock); } } /* * This function is called on PREEMPT_RT kernels when the fast path * deletion of a timer failed because the timer callback function was * running. * * This prevents priority inversion, if the softirq thread on a remote CPU * got preempted, and it prevents a life lock when the task which tries to * delete a timer preempted the softirq thread running the timer callback * function. */ static void del_timer_wait_running(struct timer_list *timer) { u32 tf; tf = READ_ONCE(timer->flags); if (!(tf & TIMER_MIGRATING)) { struct timer_base *base = get_timer_base(tf); /* * Mark the base as contended and grab the expiry lock, * which is held by the softirq across the timer * callback. Drop the lock immediately so the softirq can * expire the next timer. In theory the timer could already * be running again, but that's more than unlikely and just * causes another wait loop. */ atomic_inc(&base->timer_waiters); spin_lock_bh(&base->expiry_lock); atomic_dec(&base->timer_waiters); spin_unlock_bh(&base->expiry_lock); } } #else static inline void timer_base_init_expiry_lock(struct timer_base *base) { } static inline void timer_base_lock_expiry(struct timer_base *base) { } static inline void timer_base_unlock_expiry(struct timer_base *base) { } static inline void timer_sync_wait_running(struct timer_base *base) { } static inline void del_timer_wait_running(struct timer_list *timer) { } #endif #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) /** * del_timer_sync - deactivate a timer and wait for the handler to finish. * @timer: the timer to be deactivated * * This function only differs from del_timer() on SMP: besides deactivating * the timer it also makes sure the handler has finished executing on other * CPUs. * * Synchronization rules: Callers must prevent restarting of the timer, * otherwise this function is meaningless. It must not be called from * interrupt contexts unless the timer is an irqsafe one. The caller must * not hold locks which would prevent completion of the timer's * handler. The timer's handler must not call add_timer_on(). Upon exit the * timer is not queued and the handler is not running on any CPU. * * Note: For !irqsafe timers, you must not hold locks that are held in * interrupt context while calling this function. Even if the lock has * nothing to do with the timer in question. Here's why:: * * CPU0 CPU1 * ---- ---- * * call_timer_fn(); * base->running_timer = mytimer; * spin_lock_irq(somelock); * * spin_lock(somelock); * del_timer_sync(mytimer); * while (base->running_timer == mytimer); * * Now del_timer_sync() will never return and never release somelock. * The interrupt on the other CPU is waiting to grab somelock but * it has interrupted the softirq that CPU0 is waiting to finish. * * The function returns whether it has deactivated a pending timer or not. */ int del_timer_sync(struct timer_list *timer) { int ret; #ifdef CONFIG_LOCKDEP unsigned long flags; /* * If lockdep gives a backtrace here, please reference * the synchronization rules above. */ local_irq_save(flags); lock_map_acquire(&timer->lockdep_map); lock_map_release(&timer->lockdep_map); local_irq_restore(flags); #endif /* * don't use it in hardirq context, because it * could lead to deadlock. */ WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE)); do { ret = try_to_del_timer_sync(timer); if (unlikely(ret < 0)) { del_timer_wait_running(timer); cpu_relax(); } } while (ret < 0); return ret; } EXPORT_SYMBOL(del_timer_sync); #endif static void call_timer_fn(struct timer_list *timer, void (*fn)(struct timer_list *), unsigned long baseclk) { int count = preempt_count(); #ifdef CONFIG_LOCKDEP /* * It is permissible to free the timer from inside the * function that is called from it, this we need to take into * account for lockdep too. To avoid bogus "held lock freed" * warnings as well as problems when looking into * timer->lockdep_map, make a copy and use that here. */ struct lockdep_map lockdep_map; lockdep_copy_map(&lockdep_map, &timer->lockdep_map); #endif /* * Couple the lock chain with the lock chain at * del_timer_sync() by acquiring the lock_map around the fn() * call here and in del_timer_sync(). */ lock_map_acquire(&lockdep_map); trace_timer_expire_entry(timer, baseclk); fn(timer); trace_timer_expire_exit(timer); lock_map_release(&lockdep_map); if (count != preempt_count()) { WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n", fn, count, preempt_count()); /* * Restore the preempt count. That gives us a decent * chance to survive and extract information. If the * callback kept a lock held, bad luck, but not worse * than the BUG() we had. */ preempt_count_set(count); } } static void expire_timers(struct timer_base *base, struct hlist_head *head) { /* * This value is required only for tracing. base->clk was * incremented directly before expire_timers was called. But expiry * is related to the old base->clk value. */ unsigned long baseclk = base->clk - 1; while (!hlist_empty(head)) { struct timer_list *timer; void (*fn)(struct timer_list *); timer = hlist_entry(head->first, struct timer_list, entry); base->running_timer = timer; detach_timer(timer, true); fn = timer->function; if (timer->flags & TIMER_IRQSAFE) { raw_spin_unlock(&base->lock); call_timer_fn(timer, fn, baseclk); base->running_timer = NULL; raw_spin_lock(&base->lock); } else { raw_spin_unlock_irq(&base->lock); call_timer_fn(timer, fn, baseclk); base->running_timer = NULL; timer_sync_wait_running(base); raw_spin_lock_irq(&base->lock); } } } static int collect_expired_timers(struct timer_base *base, struct hlist_head *heads) { unsigned long clk = base->clk = base->next_expiry; struct hlist_head *vec; int i, levels = 0; unsigned int idx; for (i = 0; i < LVL_DEPTH; i++) { idx = (clk & LVL_MASK) + i * LVL_SIZE; if (__test_and_clear_bit(idx, base->pending_map)) { vec = base->vectors + idx; hlist_move_list(vec, heads++); levels++; } /* Is it time to look at the next level? */ if (clk & LVL_CLK_MASK) break; /* Shift clock for the next level granularity */ clk >>= LVL_CLK_SHIFT; } return levels; } /* * Find the next pending bucket of a level. Search from level start (@offset) * + @clk upwards and if nothing there, search from start of the level * (@offset) up to @offset + clk. */ static int next_pending_bucket(struct timer_base *base, unsigned offset, unsigned clk) { unsigned pos, start = offset + clk; unsigned end = offset + LVL_SIZE; pos = find_next_bit(base->pending_map, end, start); if (pos < end) return pos - start; pos = find_next_bit(base->pending_map, start, offset); return pos < start ? pos + LVL_SIZE - start : -1; } /* * Search the first expiring timer in the various clock levels. Caller must * hold base->lock. */ static unsigned long __next_timer_interrupt(struct timer_base *base) { unsigned long clk, next, adj; unsigned lvl, offset = 0; next = base->clk + NEXT_TIMER_MAX_DELTA; clk = base->clk; for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) { int pos = next_pending_bucket(base, offset, clk & LVL_MASK); unsigned long lvl_clk = clk & LVL_CLK_MASK; if (pos >= 0) { unsigned long tmp = clk + (unsigned long) pos; tmp <<= LVL_SHIFT(lvl); if (time_before(tmp, next)) next = tmp; /* * If the next expiration happens before we reach * the next level, no need to check further. */ if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK)) break; } /* * Clock for the next level. If the current level clock lower * bits are zero, we look at the next level as is. If not we * need to advance it by one because that's going to be the * next expiring bucket in that level. base->clk is the next * expiring jiffie. So in case of: * * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 * 0 0 0 0 0 0 * * we have to look at all levels @index 0. With * * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 * 0 0 0 0 0 2 * * LVL0 has the next expiring bucket @index 2. The upper * levels have the next expiring bucket @index 1. * * In case that the propagation wraps the next level the same * rules apply: * * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 * 0 0 0 0 F 2 * * So after looking at LVL0 we get: * * LVL5 LVL4 LVL3 LVL2 LVL1 * 0 0 0 1 0 * * So no propagation from LVL1 to LVL2 because that happened * with the add already, but then we need to propagate further * from LVL2 to LVL3. * * So the simple check whether the lower bits of the current * level are 0 or not is sufficient for all cases. */ adj = lvl_clk ? 1 : 0; clk >>= LVL_CLK_SHIFT; clk += adj; } return next; } #ifdef CONFIG_NO_HZ_COMMON /* * Check, if the next hrtimer event is before the next timer wheel * event: */ static u64 cmp_next_hrtimer_event(u64 basem, u64 expires) { u64 nextevt = hrtimer_get_next_event(); /* * If high resolution timers are enabled * hrtimer_get_next_event() returns KTIME_MAX. */ if (expires <= nextevt) return expires; /* * If the next timer is already expired, return the tick base * time so the tick is fired immediately. */ if (nextevt <= basem) return basem; /* * Round up to the next jiffie. High resolution timers are * off, so the hrtimers are expired in the tick and we need to * make sure that this tick really expires the timer to avoid * a ping pong of the nohz stop code. * * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3 */ return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC; } /** * get_next_timer_interrupt - return the time (clock mono) of the next timer * @basej: base time jiffies * @basem: base time clock monotonic * * Returns the tick aligned clock monotonic time of the next pending * timer or KTIME_MAX if no timer is pending. */ u64 get_next_timer_interrupt(unsigned long basej, u64 basem) { struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); u64 expires = KTIME_MAX; unsigned long nextevt; bool is_max_delta; /* * Pretend that there is no timer pending if the cpu is offline. * Possible pending timers will be migrated later to an active cpu. */ if (cpu_is_offline(smp_processor_id())) return expires; raw_spin_lock(&base->lock); nextevt = __next_timer_interrupt(base); is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA); base->next_expiry = nextevt; /* * We have a fresh next event. Check whether we can forward the * base. We can only do that when @basej is past base->clk * otherwise we might rewind base->clk. */ if (time_after(basej, base->clk)) { if (time_after(nextevt, basej)) base->clk = basej; else if (time_after(nextevt, base->clk)) base->clk = nextevt; } if (time_before_eq(nextevt, basej)) { expires = basem; base->is_idle = false; } else { if (!is_max_delta) expires = basem + (u64)(nextevt - basej) * TICK_NSEC; /* * If we expect to sleep more than a tick, mark the base idle. * Also the tick is stopped so any added timer must forward * the base clk itself to keep granularity small. This idle * logic is only maintained for the BASE_STD base, deferrable * timers may still see large granularity skew (by design). */ if ((expires - basem) > TICK_NSEC) base->is_idle = true; } raw_spin_unlock(&base->lock); return cmp_next_hrtimer_event(basem, expires); } /** * timer_clear_idle - Clear the idle state of the timer base * * Called with interrupts disabled */ void timer_clear_idle(void) { struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); /* * We do this unlocked. The worst outcome is a remote enqueue sending * a pointless IPI, but taking the lock would just make the window for * sending the IPI a few instructions smaller for the cost of taking * the lock in the exit from idle path. */ base->is_idle = false; } #endif /* * Called from the timer interrupt handler to charge one tick to the current * process. user_tick is 1 if the tick is user time, 0 for system. */ void update_process_times(int user_tick) { struct task_struct *p = current; /* Note: this timer irq context must be accounted for as well. */ account_process_tick(p, user_tick); run_local_timers(); rcu_sched_clock_irq(user_tick); #ifdef CONFIG_IRQ_WORK if (in_irq()) irq_work_tick(); #endif scheduler_tick(); if (IS_ENABLED(CONFIG_POSIX_TIMERS)) run_posix_cpu_timers(); } /** * __run_timers - run all expired timers (if any) on this CPU. * @base: the timer vector to be processed. */ static inline void __run_timers(struct timer_base *base) { struct hlist_head heads[LVL_DEPTH]; int levels; if (time_before(jiffies, base->next_expiry)) return; timer_base_lock_expiry(base); raw_spin_lock_irq(&base->lock); while (time_after_eq(jiffies, base->clk) && time_after_eq(jiffies, base->next_expiry)) { levels = collect_expired_timers(base, heads); base->clk++; base->next_expiry = __next_timer_interrupt(base); while (levels--) expire_timers(base, heads + levels); } raw_spin_unlock_irq(&base->lock); timer_base_unlock_expiry(base); } /* * This function runs timers and the timer-tq in bottom half context. */ static __latent_entropy void run_timer_softirq(struct softirq_action *h) { struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); __run_timers(base); if (IS_ENABLED(CONFIG_NO_HZ_COMMON)) __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF])); } /* * Called by the local, per-CPU timer interrupt on SMP. */ void run_local_timers(void) { struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); hrtimer_run_queues(); /* Raise the softirq only if required. */ if (time_before(jiffies, base->next_expiry)) { if (!IS_ENABLED(CONFIG_NO_HZ_COMMON)) return; /* CPU is awake, so check the deferrable base. */ base++; if (time_before(jiffies, base->next_expiry)) return; } raise_softirq(TIMER_SOFTIRQ); } /* * Since schedule_timeout()'s timer is defined on the stack, it must store * the target task on the stack as well. */ struct process_timer { struct timer_list timer; struct task_struct *task; }; static void process_timeout(struct timer_list *t) { struct process_timer *timeout = from_timer(timeout, t, timer); wake_up_process(timeout->task); } /** * schedule_timeout - sleep until timeout * @timeout: timeout value in jiffies * * Make the current task sleep until @timeout jiffies have elapsed. * The function behavior depends on the current task state * (see also set_current_state() description): * * %TASK_RUNNING - the scheduler is called, but the task does not sleep * at all. That happens because sched_submit_work() does nothing for * tasks in %TASK_RUNNING state. * * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to * pass before the routine returns unless the current task is explicitly * woken up, (e.g. by wake_up_process()). * * %TASK_INTERRUPTIBLE - the routine may return early if a signal is * delivered to the current task or the current task is explicitly woken * up. * * The current task state is guaranteed to be %TASK_RUNNING when this * routine returns. * * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule * the CPU away without a bound on the timeout. In this case the return * value will be %MAX_SCHEDULE_TIMEOUT. * * Returns 0 when the timer has expired otherwise the remaining time in * jiffies will be returned. In all cases the return value is guaranteed * to be non-negative. */ signed long __sched schedule_timeout(signed long timeout) { struct process_timer timer; unsigned long expire; switch (timeout) { case MAX_SCHEDULE_TIMEOUT: /* * These two special cases are useful to be comfortable * in the caller. Nothing more. We could take * MAX_SCHEDULE_TIMEOUT from one of the negative value * but I' d like to return a valid offset (>=0) to allow * the caller to do everything it want with the retval. */ schedule(); goto out; default: /* * Another bit of PARANOID. Note that the retval will be * 0 since no piece of kernel is supposed to do a check * for a negative retval of schedule_timeout() (since it * should never happens anyway). You just have the printk() * that will tell you if something is gone wrong and where. */ if (timeout < 0) { printk(KERN_ERR "schedule_timeout: wrong timeout " "value %lx\n", timeout); dump_stack(); current->state = TASK_RUNNING; goto out; } } expire = timeout + jiffies; timer.task = current; timer_setup_on_stack(&timer.timer, process_timeout, 0); __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING); schedule(); del_singleshot_timer_sync(&timer.timer); /* Remove the timer from the object tracker */ destroy_timer_on_stack(&timer.timer); timeout = expire - jiffies; out: return timeout < 0 ? 0 : timeout; } EXPORT_SYMBOL(schedule_timeout); /* * We can use __set_current_state() here because schedule_timeout() calls * schedule() unconditionally. */ signed long __sched schedule_timeout_interruptible(signed long timeout) { __set_current_state(TASK_INTERRUPTIBLE); return schedule_timeout(timeout); } EXPORT_SYMBOL(schedule_timeout_interruptible); signed long __sched schedule_timeout_killable(signed long timeout) { __set_current_state(TASK_KILLABLE); return schedule_timeout(timeout); } EXPORT_SYMBOL(schedule_timeout_killable); signed long __sched schedule_timeout_uninterruptible(signed long timeout) { __set_current_state(TASK_UNINTERRUPTIBLE); return schedule_timeout(timeout); } EXPORT_SYMBOL(schedule_timeout_uninterruptible); /* * Like schedule_timeout_uninterruptible(), except this task will not contribute * to load average. */ signed long __sched schedule_timeout_idle(signed long timeout) { __set_current_state(TASK_IDLE); return schedule_timeout(timeout); } EXPORT_SYMBOL(schedule_timeout_idle); #ifdef CONFIG_HOTPLUG_CPU static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head) { struct timer_list *timer; int cpu = new_base->cpu; while (!hlist_empty(head)) { timer = hlist_entry(head->first, struct timer_list, entry); detach_timer(timer, false); timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu; internal_add_timer(new_base, timer); } } int timers_prepare_cpu(unsigned int cpu) { struct timer_base *base; int b; for (b = 0; b < NR_BASES; b++) { base = per_cpu_ptr(&timer_bases[b], cpu); base->clk = jiffies; base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA; base->is_idle = false; } return 0; } int timers_dead_cpu(unsigned int cpu) { struct timer_base *old_base; struct timer_base *new_base; int b, i; BUG_ON(cpu_online(cpu)); for (b = 0; b < NR_BASES; b++) { old_base = per_cpu_ptr(&timer_bases[b], cpu); new_base = get_cpu_ptr(&timer_bases[b]); /* * The caller is globally serialized and nobody else * takes two locks at once, deadlock is not possible. */ raw_spin_lock_irq(&new_base->lock); raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); /* * The current CPUs base clock might be stale. Update it * before moving the timers over. */ forward_timer_base(new_base); BUG_ON(old_base->running_timer); for (i = 0; i < WHEEL_SIZE; i++) migrate_timer_list(new_base, old_base->vectors + i); raw_spin_unlock(&old_base->lock); raw_spin_unlock_irq(&new_base->lock); put_cpu_ptr(&timer_bases); } return 0; } #endif /* CONFIG_HOTPLUG_CPU */ static void __init init_timer_cpu(int cpu) { struct timer_base *base; int i; for (i = 0; i < NR_BASES; i++) { base = per_cpu_ptr(&timer_bases[i], cpu); base->cpu = cpu; raw_spin_lock_init(&base->lock); base->clk = jiffies; base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA; timer_base_init_expiry_lock(base); } } static void __init init_timer_cpus(void) { int cpu; for_each_possible_cpu(cpu) init_timer_cpu(cpu); } void __init init_timers(void) { init_timer_cpus(); open_softirq(TIMER_SOFTIRQ, run_timer_softirq); } /** * msleep - sleep safely even with waitqueue interruptions * @msecs: Time in milliseconds to sleep for */ void msleep(unsigned int msecs) { unsigned long timeout = msecs_to_jiffies(msecs) + 1; while (timeout) timeout = schedule_timeout_uninterruptible(timeout); } EXPORT_SYMBOL(msleep); /** * msleep_interruptible - sleep waiting for signals * @msecs: Time in milliseconds to sleep for */ unsigned long msleep_interruptible(unsigned int msecs) { unsigned long timeout = msecs_to_jiffies(msecs) + 1; while (timeout && !signal_pending(current)) timeout = schedule_timeout_interruptible(timeout); return jiffies_to_msecs(timeout); } EXPORT_SYMBOL(msleep_interruptible); /** * usleep_range - Sleep for an approximate time * @min: Minimum time in usecs to sleep * @max: Maximum time in usecs to sleep * * In non-atomic context where the exact wakeup time is flexible, use * usleep_range() instead of udelay(). The sleep improves responsiveness * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces * power usage by allowing hrtimers to take advantage of an already- * scheduled interrupt instead of scheduling a new one just for this sleep. */ void __sched usleep_range(unsigned long min, unsigned long max) { ktime_t exp = ktime_add_us(ktime_get(), min); u64 delta = (u64)(max - min) * NSEC_PER_USEC; for (;;) { __set_current_state(TASK_UNINTERRUPTIBLE); /* Do not return before the requested sleep time has elapsed */ if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS)) break; } } EXPORT_SYMBOL(usleep_range);