// SPDX-License-Identifier: GPL-2.0-only /* * mm/page-writeback.c * * Copyright (C) 2002, Linus Torvalds. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra * * Contains functions related to writing back dirty pages at the * address_space level. * * 10Apr2002 Andrew Morton * Initial version */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" /* * Sleep at most 200ms at a time in balance_dirty_pages(). */ #define MAX_PAUSE max(HZ/5, 1) /* * Try to keep balance_dirty_pages() call intervals higher than this many pages * by raising pause time to max_pause when falls below it. */ #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) /* * Estimate write bandwidth at 200ms intervals. */ #define BANDWIDTH_INTERVAL max(HZ/5, 1) #define RATELIMIT_CALC_SHIFT 10 /* * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited * will look to see if it needs to force writeback or throttling. */ static long ratelimit_pages = 32; /* The following parameters are exported via /proc/sys/vm */ /* * Start background writeback (via writeback threads) at this percentage */ int dirty_background_ratio = 10; /* * dirty_background_bytes starts at 0 (disabled) so that it is a function of * dirty_background_ratio * the amount of dirtyable memory */ unsigned long dirty_background_bytes; /* * free highmem will not be subtracted from the total free memory * for calculating free ratios if vm_highmem_is_dirtyable is true */ int vm_highmem_is_dirtyable; /* * The generator of dirty data starts writeback at this percentage */ int vm_dirty_ratio = 20; /* * vm_dirty_bytes starts at 0 (disabled) so that it is a function of * vm_dirty_ratio * the amount of dirtyable memory */ unsigned long vm_dirty_bytes; /* * The interval between `kupdate'-style writebacks */ unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ EXPORT_SYMBOL_GPL(dirty_writeback_interval); /* * The longest time for which data is allowed to remain dirty */ unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ /* * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: * a full sync is triggered after this time elapses without any disk activity. */ int laptop_mode; EXPORT_SYMBOL(laptop_mode); /* End of sysctl-exported parameters */ struct wb_domain global_wb_domain; /* consolidated parameters for balance_dirty_pages() and its subroutines */ struct dirty_throttle_control { #ifdef CONFIG_CGROUP_WRITEBACK struct wb_domain *dom; struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ #endif struct bdi_writeback *wb; struct fprop_local_percpu *wb_completions; unsigned long avail; /* dirtyable */ unsigned long dirty; /* file_dirty + write + nfs */ unsigned long thresh; /* dirty threshold */ unsigned long bg_thresh; /* dirty background threshold */ unsigned long wb_dirty; /* per-wb counterparts */ unsigned long wb_thresh; unsigned long wb_bg_thresh; unsigned long pos_ratio; }; /* * Length of period for aging writeout fractions of bdis. This is an * arbitrarily chosen number. The longer the period, the slower fractions will * reflect changes in current writeout rate. */ #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) #ifdef CONFIG_CGROUP_WRITEBACK #define GDTC_INIT(__wb) .wb = (__wb), \ .dom = &global_wb_domain, \ .wb_completions = &(__wb)->completions #define GDTC_INIT_NO_WB .dom = &global_wb_domain #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ .dom = mem_cgroup_wb_domain(__wb), \ .wb_completions = &(__wb)->memcg_completions, \ .gdtc = __gdtc static bool mdtc_valid(struct dirty_throttle_control *dtc) { return dtc->dom; } static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) { return dtc->dom; } static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) { return mdtc->gdtc; } static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) { return &wb->memcg_completions; } static void wb_min_max_ratio(struct bdi_writeback *wb, unsigned long *minp, unsigned long *maxp) { unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth); unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); unsigned long long min = wb->bdi->min_ratio; unsigned long long max = wb->bdi->max_ratio; /* * @wb may already be clean by the time control reaches here and * the total may not include its bw. */ if (this_bw < tot_bw) { if (min) { min *= this_bw; min = div64_ul(min, tot_bw); } if (max < 100) { max *= this_bw; max = div64_ul(max, tot_bw); } } *minp = min; *maxp = max; } #else /* CONFIG_CGROUP_WRITEBACK */ #define GDTC_INIT(__wb) .wb = (__wb), \ .wb_completions = &(__wb)->completions #define GDTC_INIT_NO_WB #define MDTC_INIT(__wb, __gdtc) static bool mdtc_valid(struct dirty_throttle_control *dtc) { return false; } static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) { return &global_wb_domain; } static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) { return NULL; } static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) { return NULL; } static void wb_min_max_ratio(struct bdi_writeback *wb, unsigned long *minp, unsigned long *maxp) { *minp = wb->bdi->min_ratio; *maxp = wb->bdi->max_ratio; } #endif /* CONFIG_CGROUP_WRITEBACK */ /* * In a memory zone, there is a certain amount of pages we consider * available for the page cache, which is essentially the number of * free and reclaimable pages, minus some zone reserves to protect * lowmem and the ability to uphold the zone's watermarks without * requiring writeback. * * This number of dirtyable pages is the base value of which the * user-configurable dirty ratio is the effective number of pages that * are allowed to be actually dirtied. Per individual zone, or * globally by using the sum of dirtyable pages over all zones. * * Because the user is allowed to specify the dirty limit globally as * absolute number of bytes, calculating the per-zone dirty limit can * require translating the configured limit into a percentage of * global dirtyable memory first. */ /** * node_dirtyable_memory - number of dirtyable pages in a node * @pgdat: the node * * Return: the node's number of pages potentially available for dirty * page cache. This is the base value for the per-node dirty limits. */ static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) { unsigned long nr_pages = 0; int z; for (z = 0; z < MAX_NR_ZONES; z++) { struct zone *zone = pgdat->node_zones + z; if (!populated_zone(zone)) continue; nr_pages += zone_page_state(zone, NR_FREE_PAGES); } /* * Pages reserved for the kernel should not be considered * dirtyable, to prevent a situation where reclaim has to * clean pages in order to balance the zones. */ nr_pages -= min(nr_pages, pgdat->totalreserve_pages); nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); return nr_pages; } static unsigned long highmem_dirtyable_memory(unsigned long total) { #ifdef CONFIG_HIGHMEM int node; unsigned long x = 0; int i; for_each_node_state(node, N_HIGH_MEMORY) { for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { struct zone *z; unsigned long nr_pages; if (!is_highmem_idx(i)) continue; z = &NODE_DATA(node)->node_zones[i]; if (!populated_zone(z)) continue; nr_pages = zone_page_state(z, NR_FREE_PAGES); /* watch for underflows */ nr_pages -= min(nr_pages, high_wmark_pages(z)); nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); x += nr_pages; } } /* * Unreclaimable memory (kernel memory or anonymous memory * without swap) can bring down the dirtyable pages below * the zone's dirty balance reserve and the above calculation * will underflow. However we still want to add in nodes * which are below threshold (negative values) to get a more * accurate calculation but make sure that the total never * underflows. */ if ((long)x < 0) x = 0; /* * Make sure that the number of highmem pages is never larger * than the number of the total dirtyable memory. This can only * occur in very strange VM situations but we want to make sure * that this does not occur. */ return min(x, total); #else return 0; #endif } /** * global_dirtyable_memory - number of globally dirtyable pages * * Return: the global number of pages potentially available for dirty * page cache. This is the base value for the global dirty limits. */ static unsigned long global_dirtyable_memory(void) { unsigned long x; x = global_zone_page_state(NR_FREE_PAGES); /* * Pages reserved for the kernel should not be considered * dirtyable, to prevent a situation where reclaim has to * clean pages in order to balance the zones. */ x -= min(x, totalreserve_pages); x += global_node_page_state(NR_INACTIVE_FILE); x += global_node_page_state(NR_ACTIVE_FILE); if (!vm_highmem_is_dirtyable) x -= highmem_dirtyable_memory(x); return x + 1; /* Ensure that we never return 0 */ } /** * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain * @dtc: dirty_throttle_control of interest * * Calculate @dtc->thresh and ->bg_thresh considering * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller * must ensure that @dtc->avail is set before calling this function. The * dirty limits will be lifted by 1/4 for real-time tasks. */ static void domain_dirty_limits(struct dirty_throttle_control *dtc) { const unsigned long available_memory = dtc->avail; struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); unsigned long bytes = vm_dirty_bytes; unsigned long bg_bytes = dirty_background_bytes; /* convert ratios to per-PAGE_SIZE for higher precision */ unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; unsigned long thresh; unsigned long bg_thresh; struct task_struct *tsk; /* gdtc is !NULL iff @dtc is for memcg domain */ if (gdtc) { unsigned long global_avail = gdtc->avail; /* * The byte settings can't be applied directly to memcg * domains. Convert them to ratios by scaling against * globally available memory. As the ratios are in * per-PAGE_SIZE, they can be obtained by dividing bytes by * number of pages. */ if (bytes) ratio = min(DIV_ROUND_UP(bytes, global_avail), PAGE_SIZE); if (bg_bytes) bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), PAGE_SIZE); bytes = bg_bytes = 0; } if (bytes) thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); else thresh = (ratio * available_memory) / PAGE_SIZE; if (bg_bytes) bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); else bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; if (bg_thresh >= thresh) bg_thresh = thresh / 2; tsk = current; if (rt_task(tsk)) { bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; } dtc->thresh = thresh; dtc->bg_thresh = bg_thresh; /* we should eventually report the domain in the TP */ if (!gdtc) trace_global_dirty_state(bg_thresh, thresh); } /** * global_dirty_limits - background-writeback and dirty-throttling thresholds * @pbackground: out parameter for bg_thresh * @pdirty: out parameter for thresh * * Calculate bg_thresh and thresh for global_wb_domain. See * domain_dirty_limits() for details. */ void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) { struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; gdtc.avail = global_dirtyable_memory(); domain_dirty_limits(&gdtc); *pbackground = gdtc.bg_thresh; *pdirty = gdtc.thresh; } /** * node_dirty_limit - maximum number of dirty pages allowed in a node * @pgdat: the node * * Return: the maximum number of dirty pages allowed in a node, based * on the node's dirtyable memory. */ static unsigned long node_dirty_limit(struct pglist_data *pgdat) { unsigned long node_memory = node_dirtyable_memory(pgdat); struct task_struct *tsk = current; unsigned long dirty; if (vm_dirty_bytes) dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * node_memory / global_dirtyable_memory(); else dirty = vm_dirty_ratio * node_memory / 100; if (rt_task(tsk)) dirty += dirty / 4; return dirty; } /** * node_dirty_ok - tells whether a node is within its dirty limits * @pgdat: the node to check * * Return: %true when the dirty pages in @pgdat are within the node's * dirty limit, %false if the limit is exceeded. */ bool node_dirty_ok(struct pglist_data *pgdat) { unsigned long limit = node_dirty_limit(pgdat); unsigned long nr_pages = 0; nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); nr_pages += node_page_state(pgdat, NR_WRITEBACK); return nr_pages <= limit; } int dirty_background_ratio_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret; ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); if (ret == 0 && write) dirty_background_bytes = 0; return ret; } int dirty_background_bytes_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret; ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); if (ret == 0 && write) dirty_background_ratio = 0; return ret; } int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int old_ratio = vm_dirty_ratio; int ret; ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); if (ret == 0 && write && vm_dirty_ratio != old_ratio) { writeback_set_ratelimit(); vm_dirty_bytes = 0; } return ret; } int dirty_bytes_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { unsigned long old_bytes = vm_dirty_bytes; int ret; ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); if (ret == 0 && write && vm_dirty_bytes != old_bytes) { writeback_set_ratelimit(); vm_dirty_ratio = 0; } return ret; } static unsigned long wp_next_time(unsigned long cur_time) { cur_time += VM_COMPLETIONS_PERIOD_LEN; /* 0 has a special meaning... */ if (!cur_time) return 1; return cur_time; } static void wb_domain_writeout_add(struct wb_domain *dom, struct fprop_local_percpu *completions, unsigned int max_prop_frac, long nr) { __fprop_add_percpu_max(&dom->completions, completions, max_prop_frac, nr); /* First event after period switching was turned off? */ if (unlikely(!dom->period_time)) { /* * We can race with other __bdi_writeout_inc calls here but * it does not cause any harm since the resulting time when * timer will fire and what is in writeout_period_time will be * roughly the same. */ dom->period_time = wp_next_time(jiffies); mod_timer(&dom->period_timer, dom->period_time); } } /* * Increment @wb's writeout completion count and the global writeout * completion count. Called from __folio_end_writeback(). */ static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr) { struct wb_domain *cgdom; wb_stat_mod(wb, WB_WRITTEN, nr); wb_domain_writeout_add(&global_wb_domain, &wb->completions, wb->bdi->max_prop_frac, nr); cgdom = mem_cgroup_wb_domain(wb); if (cgdom) wb_domain_writeout_add(cgdom, wb_memcg_completions(wb), wb->bdi->max_prop_frac, nr); } void wb_writeout_inc(struct bdi_writeback *wb) { unsigned long flags; local_irq_save(flags); __wb_writeout_add(wb, 1); local_irq_restore(flags); } EXPORT_SYMBOL_GPL(wb_writeout_inc); /* * On idle system, we can be called long after we scheduled because we use * deferred timers so count with missed periods. */ static void writeout_period(struct timer_list *t) { struct wb_domain *dom = from_timer(dom, t, period_timer); int miss_periods = (jiffies - dom->period_time) / VM_COMPLETIONS_PERIOD_LEN; if (fprop_new_period(&dom->completions, miss_periods + 1)) { dom->period_time = wp_next_time(dom->period_time + miss_periods * VM_COMPLETIONS_PERIOD_LEN); mod_timer(&dom->period_timer, dom->period_time); } else { /* * Aging has zeroed all fractions. Stop wasting CPU on period * updates. */ dom->period_time = 0; } } int wb_domain_init(struct wb_domain *dom, gfp_t gfp) { memset(dom, 0, sizeof(*dom)); spin_lock_init(&dom->lock); timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); dom->dirty_limit_tstamp = jiffies; return fprop_global_init(&dom->completions, gfp); } #ifdef CONFIG_CGROUP_WRITEBACK void wb_domain_exit(struct wb_domain *dom) { del_timer_sync(&dom->period_timer); fprop_global_destroy(&dom->completions); } #endif /* * bdi_min_ratio keeps the sum of the minimum dirty shares of all * registered backing devices, which, for obvious reasons, can not * exceed 100%. */ static unsigned int bdi_min_ratio; int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) { int ret = 0; spin_lock_bh(&bdi_lock); if (min_ratio > bdi->max_ratio) { ret = -EINVAL; } else { min_ratio -= bdi->min_ratio; if (bdi_min_ratio + min_ratio < 100) { bdi_min_ratio += min_ratio; bdi->min_ratio += min_ratio; } else { ret = -EINVAL; } } spin_unlock_bh(&bdi_lock); return ret; } int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) { int ret = 0; if (max_ratio > 100) return -EINVAL; spin_lock_bh(&bdi_lock); if (bdi->min_ratio > max_ratio) { ret = -EINVAL; } else { bdi->max_ratio = max_ratio; bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; } spin_unlock_bh(&bdi_lock); return ret; } EXPORT_SYMBOL(bdi_set_max_ratio); static unsigned long dirty_freerun_ceiling(unsigned long thresh, unsigned long bg_thresh) { return (thresh + bg_thresh) / 2; } static unsigned long hard_dirty_limit(struct wb_domain *dom, unsigned long thresh) { return max(thresh, dom->dirty_limit); } /* * Memory which can be further allocated to a memcg domain is capped by * system-wide clean memory excluding the amount being used in the domain. */ static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, unsigned long filepages, unsigned long headroom) { struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); unsigned long clean = filepages - min(filepages, mdtc->dirty); unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); unsigned long other_clean = global_clean - min(global_clean, clean); mdtc->avail = filepages + min(headroom, other_clean); } /** * __wb_calc_thresh - @wb's share of dirty throttling threshold * @dtc: dirty_throttle_context of interest * * Note that balance_dirty_pages() will only seriously take it as a hard limit * when sleeping max_pause per page is not enough to keep the dirty pages under * control. For example, when the device is completely stalled due to some error * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. * In the other normal situations, it acts more gently by throttling the tasks * more (rather than completely block them) when the wb dirty pages go high. * * It allocates high/low dirty limits to fast/slow devices, in order to prevent * - starving fast devices * - piling up dirty pages (that will take long time to sync) on slow devices * * The wb's share of dirty limit will be adapting to its throughput and * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. * * Return: @wb's dirty limit in pages. The term "dirty" in the context of * dirty balancing includes all PG_dirty and PG_writeback pages. */ static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc) { struct wb_domain *dom = dtc_dom(dtc); unsigned long thresh = dtc->thresh; u64 wb_thresh; unsigned long numerator, denominator; unsigned long wb_min_ratio, wb_max_ratio; /* * Calculate this BDI's share of the thresh ratio. */ fprop_fraction_percpu(&dom->completions, dtc->wb_completions, &numerator, &denominator); wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100; wb_thresh *= numerator; wb_thresh = div64_ul(wb_thresh, denominator); wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); wb_thresh += (thresh * wb_min_ratio) / 100; if (wb_thresh > (thresh * wb_max_ratio) / 100) wb_thresh = thresh * wb_max_ratio / 100; return wb_thresh; } unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) { struct dirty_throttle_control gdtc = { GDTC_INIT(wb), .thresh = thresh }; return __wb_calc_thresh(&gdtc); } /* * setpoint - dirty 3 * f(dirty) := 1.0 + (----------------) * limit - setpoint * * it's a 3rd order polynomial that subjects to * * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast * (2) f(setpoint) = 1.0 => the balance point * (3) f(limit) = 0 => the hard limit * (4) df/dx <= 0 => negative feedback control * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) * => fast response on large errors; small oscillation near setpoint */ static long long pos_ratio_polynom(unsigned long setpoint, unsigned long dirty, unsigned long limit) { long long pos_ratio; long x; x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, (limit - setpoint) | 1); pos_ratio = x; pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; pos_ratio += 1 << RATELIMIT_CALC_SHIFT; return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); } /* * Dirty position control. * * (o) global/bdi setpoints * * We want the dirty pages be balanced around the global/wb setpoints. * When the number of dirty pages is higher/lower than the setpoint, the * dirty position control ratio (and hence task dirty ratelimit) will be * decreased/increased to bring the dirty pages back to the setpoint. * * pos_ratio = 1 << RATELIMIT_CALC_SHIFT * * if (dirty < setpoint) scale up pos_ratio * if (dirty > setpoint) scale down pos_ratio * * if (wb_dirty < wb_setpoint) scale up pos_ratio * if (wb_dirty > wb_setpoint) scale down pos_ratio * * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT * * (o) global control line * * ^ pos_ratio * | * | |<===== global dirty control scope ======>| * 2.0 * * * * * * * * | .* * | . * * | . * * | . * * | . * * | . * * 1.0 ................................* * | . . * * | . . * * | . . * * | . . * * | . . * * 0 +------------.------------------.----------------------*-------------> * freerun^ setpoint^ limit^ dirty pages * * (o) wb control line * * ^ pos_ratio * | * | * * | * * | * * | * * | * |<=========== span ============>| * 1.0 .......................* * | . * * | . * * | . * * | . * * | . * * | . * * | . * * | . * * | . * * | . * * | . * * 1/4 ...............................................* * * * * * * * * * * * * | . . * | . . * | . . * 0 +----------------------.-------------------------------.-------------> * wb_setpoint^ x_intercept^ * * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can * be smoothly throttled down to normal if it starts high in situations like * - start writing to a slow SD card and a fast disk at the same time. The SD * card's wb_dirty may rush to many times higher than wb_setpoint. * - the wb dirty thresh drops quickly due to change of JBOD workload */ static void wb_position_ratio(struct dirty_throttle_control *dtc) { struct bdi_writeback *wb = dtc->wb; unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth); unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); unsigned long wb_thresh = dtc->wb_thresh; unsigned long x_intercept; unsigned long setpoint; /* dirty pages' target balance point */ unsigned long wb_setpoint; unsigned long span; long long pos_ratio; /* for scaling up/down the rate limit */ long x; dtc->pos_ratio = 0; if (unlikely(dtc->dirty >= limit)) return; /* * global setpoint * * See comment for pos_ratio_polynom(). */ setpoint = (freerun + limit) / 2; pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); /* * The strictlimit feature is a tool preventing mistrusted filesystems * from growing a large number of dirty pages before throttling. For * such filesystems balance_dirty_pages always checks wb counters * against wb limits. Even if global "nr_dirty" is under "freerun". * This is especially important for fuse which sets bdi->max_ratio to * 1% by default. Without strictlimit feature, fuse writeback may * consume arbitrary amount of RAM because it is accounted in * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". * * Here, in wb_position_ratio(), we calculate pos_ratio based on * two values: wb_dirty and wb_thresh. Let's consider an example: * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global * limits are set by default to 10% and 20% (background and throttle). * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is * about ~6K pages (as the average of background and throttle wb * limits). The 3rd order polynomial will provide positive feedback if * wb_dirty is under wb_setpoint and vice versa. * * Note, that we cannot use global counters in these calculations * because we want to throttle process writing to a strictlimit wb * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB * in the example above). */ if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { long long wb_pos_ratio; if (dtc->wb_dirty < 8) { dtc->pos_ratio = min_t(long long, pos_ratio * 2, 2 << RATELIMIT_CALC_SHIFT); return; } if (dtc->wb_dirty >= wb_thresh) return; wb_setpoint = dirty_freerun_ceiling(wb_thresh, dtc->wb_bg_thresh); if (wb_setpoint == 0 || wb_setpoint == wb_thresh) return; wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, wb_thresh); /* * Typically, for strictlimit case, wb_setpoint << setpoint * and pos_ratio >> wb_pos_ratio. In the other words global * state ("dirty") is not limiting factor and we have to * make decision based on wb counters. But there is an * important case when global pos_ratio should get precedence: * global limits are exceeded (e.g. due to activities on other * wb's) while given strictlimit wb is below limit. * * "pos_ratio * wb_pos_ratio" would work for the case above, * but it would look too non-natural for the case of all * activity in the system coming from a single strictlimit wb * with bdi->max_ratio == 100%. * * Note that min() below somewhat changes the dynamics of the * control system. Normally, pos_ratio value can be well over 3 * (when globally we are at freerun and wb is well below wb * setpoint). Now the maximum pos_ratio in the same situation * is 2. We might want to tweak this if we observe the control * system is too slow to adapt. */ dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); return; } /* * We have computed basic pos_ratio above based on global situation. If * the wb is over/under its share of dirty pages, we want to scale * pos_ratio further down/up. That is done by the following mechanism. */ /* * wb setpoint * * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) * * x_intercept - wb_dirty * := -------------------------- * x_intercept - wb_setpoint * * The main wb control line is a linear function that subjects to * * (1) f(wb_setpoint) = 1.0 * (2) k = - 1 / (8 * write_bw) (in single wb case) * or equally: x_intercept = wb_setpoint + 8 * write_bw * * For single wb case, the dirty pages are observed to fluctuate * regularly within range * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] * for various filesystems, where (2) can yield in a reasonable 12.5% * fluctuation range for pos_ratio. * * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its * own size, so move the slope over accordingly and choose a slope that * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. */ if (unlikely(wb_thresh > dtc->thresh)) wb_thresh = dtc->thresh; /* * It's very possible that wb_thresh is close to 0 not because the * device is slow, but that it has remained inactive for long time. * Honour such devices a reasonable good (hopefully IO efficient) * threshold, so that the occasional writes won't be blocked and active * writes can rampup the threshold quickly. */ wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); /* * scale global setpoint to wb's: * wb_setpoint = setpoint * wb_thresh / thresh */ x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); wb_setpoint = setpoint * (u64)x >> 16; /* * Use span=(8*write_bw) in single wb case as indicated by * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. * * wb_thresh thresh - wb_thresh * span = --------- * (8 * write_bw) + ------------------ * wb_thresh * thresh thresh */ span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; x_intercept = wb_setpoint + span; if (dtc->wb_dirty < x_intercept - span / 4) { pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), (x_intercept - wb_setpoint) | 1); } else pos_ratio /= 4; /* * wb reserve area, safeguard against dirty pool underrun and disk idle * It may push the desired control point of global dirty pages higher * than setpoint. */ x_intercept = wb_thresh / 2; if (dtc->wb_dirty < x_intercept) { if (dtc->wb_dirty > x_intercept / 8) pos_ratio = div_u64(pos_ratio * x_intercept, dtc->wb_dirty); else pos_ratio *= 8; } dtc->pos_ratio = pos_ratio; } static void wb_update_write_bandwidth(struct bdi_writeback *wb, unsigned long elapsed, unsigned long written) { const unsigned long period = roundup_pow_of_two(3 * HZ); unsigned long avg = wb->avg_write_bandwidth; unsigned long old = wb->write_bandwidth; u64 bw; /* * bw = written * HZ / elapsed * * bw * elapsed + write_bandwidth * (period - elapsed) * write_bandwidth = --------------------------------------------------- * period * * @written may have decreased due to folio_account_redirty(). * Avoid underflowing @bw calculation. */ bw = written - min(written, wb->written_stamp); bw *= HZ; if (unlikely(elapsed > period)) { bw = div64_ul(bw, elapsed); avg = bw; goto out; } bw += (u64)wb->write_bandwidth * (period - elapsed); bw >>= ilog2(period); /* * one more level of smoothing, for filtering out sudden spikes */ if (avg > old && old >= (unsigned long)bw) avg -= (avg - old) >> 3; if (avg < old && old <= (unsigned long)bw) avg += (old - avg) >> 3; out: /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ avg = max(avg, 1LU); if (wb_has_dirty_io(wb)) { long delta = avg - wb->avg_write_bandwidth; WARN_ON_ONCE(atomic_long_add_return(delta, &wb->bdi->tot_write_bandwidth) <= 0); } wb->write_bandwidth = bw; WRITE_ONCE(wb->avg_write_bandwidth, avg); } static void update_dirty_limit(struct dirty_throttle_control *dtc) { struct wb_domain *dom = dtc_dom(dtc); unsigned long thresh = dtc->thresh; unsigned long limit = dom->dirty_limit; /* * Follow up in one step. */ if (limit < thresh) { limit = thresh; goto update; } /* * Follow down slowly. Use the higher one as the target, because thresh * may drop below dirty. This is exactly the reason to introduce * dom->dirty_limit which is guaranteed to lie above the dirty pages. */ thresh = max(thresh, dtc->dirty); if (limit > thresh) { limit -= (limit - thresh) >> 5; goto update; } return; update: dom->dirty_limit = limit; } static void domain_update_dirty_limit(struct dirty_throttle_control *dtc, unsigned long now) { struct wb_domain *dom = dtc_dom(dtc); /* * check locklessly first to optimize away locking for the most time */ if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) return; spin_lock(&dom->lock); if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { update_dirty_limit(dtc); dom->dirty_limit_tstamp = now; } spin_unlock(&dom->lock); } /* * Maintain wb->dirty_ratelimit, the base dirty throttle rate. * * Normal wb tasks will be curbed at or below it in long term. * Obviously it should be around (write_bw / N) when there are N dd tasks. */ static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, unsigned long dirtied, unsigned long elapsed) { struct bdi_writeback *wb = dtc->wb; unsigned long dirty = dtc->dirty; unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); unsigned long setpoint = (freerun + limit) / 2; unsigned long write_bw = wb->avg_write_bandwidth; unsigned long dirty_ratelimit = wb->dirty_ratelimit; unsigned long dirty_rate; unsigned long task_ratelimit; unsigned long balanced_dirty_ratelimit; unsigned long step; unsigned long x; unsigned long shift; /* * The dirty rate will match the writeout rate in long term, except * when dirty pages are truncated by userspace or re-dirtied by FS. */ dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; /* * task_ratelimit reflects each dd's dirty rate for the past 200ms. */ task_ratelimit = (u64)dirty_ratelimit * dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ /* * A linear estimation of the "balanced" throttle rate. The theory is, * if there are N dd tasks, each throttled at task_ratelimit, the wb's * dirty_rate will be measured to be (N * task_ratelimit). So the below * formula will yield the balanced rate limit (write_bw / N). * * Note that the expanded form is not a pure rate feedback: * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) * but also takes pos_ratio into account: * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) * * (1) is not realistic because pos_ratio also takes part in balancing * the dirty rate. Consider the state * pos_ratio = 0.5 (3) * rate = 2 * (write_bw / N) (4) * If (1) is used, it will stuck in that state! Because each dd will * be throttled at * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) * yielding * dirty_rate = N * task_ratelimit = write_bw (6) * put (6) into (1) we get * rate_(i+1) = rate_(i) (7) * * So we end up using (2) to always keep * rate_(i+1) ~= (write_bw / N) (8) * regardless of the value of pos_ratio. As long as (8) is satisfied, * pos_ratio is able to drive itself to 1.0, which is not only where * the dirty count meet the setpoint, but also where the slope of * pos_ratio is most flat and hence task_ratelimit is least fluctuated. */ balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, dirty_rate | 1); /* * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw */ if (unlikely(balanced_dirty_ratelimit > write_bw)) balanced_dirty_ratelimit = write_bw; /* * We could safely do this and return immediately: * * wb->dirty_ratelimit = balanced_dirty_ratelimit; * * However to get a more stable dirty_ratelimit, the below elaborated * code makes use of task_ratelimit to filter out singular points and * limit the step size. * * The below code essentially only uses the relative value of * * task_ratelimit - dirty_ratelimit * = (pos_ratio - 1) * dirty_ratelimit * * which reflects the direction and size of dirty position error. */ /* * dirty_ratelimit will follow balanced_dirty_ratelimit iff * task_ratelimit is on the same side of dirty_ratelimit, too. * For example, when * - dirty_ratelimit > balanced_dirty_ratelimit * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) * lowering dirty_ratelimit will help meet both the position and rate * control targets. Otherwise, don't update dirty_ratelimit if it will * only help meet the rate target. After all, what the users ultimately * feel and care are stable dirty rate and small position error. * * |task_ratelimit - dirty_ratelimit| is used to limit the step size * and filter out the singular points of balanced_dirty_ratelimit. Which * keeps jumping around randomly and can even leap far away at times * due to the small 200ms estimation period of dirty_rate (we want to * keep that period small to reduce time lags). */ step = 0; /* * For strictlimit case, calculations above were based on wb counters * and limits (starting from pos_ratio = wb_position_ratio() and up to * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). * Hence, to calculate "step" properly, we have to use wb_dirty as * "dirty" and wb_setpoint as "setpoint". * * We rampup dirty_ratelimit forcibly if wb_dirty is low because * it's possible that wb_thresh is close to zero due to inactivity * of backing device. */ if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { dirty = dtc->wb_dirty; if (dtc->wb_dirty < 8) setpoint = dtc->wb_dirty + 1; else setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; } if (dirty < setpoint) { x = min3(wb->balanced_dirty_ratelimit, balanced_dirty_ratelimit, task_ratelimit); if (dirty_ratelimit < x) step = x - dirty_ratelimit; } else { x = max3(wb->balanced_dirty_ratelimit, balanced_dirty_ratelimit, task_ratelimit); if (dirty_ratelimit > x) step = dirty_ratelimit - x; } /* * Don't pursue 100% rate matching. It's impossible since the balanced * rate itself is constantly fluctuating. So decrease the track speed * when it gets close to the target. Helps eliminate pointless tremors. */ shift = dirty_ratelimit / (2 * step + 1); if (shift < BITS_PER_LONG) step = DIV_ROUND_UP(step >> shift, 8); else step = 0; if (dirty_ratelimit < balanced_dirty_ratelimit) dirty_ratelimit += step; else dirty_ratelimit -= step; WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL)); wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); } static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, struct dirty_throttle_control *mdtc, bool update_ratelimit) { struct bdi_writeback *wb = gdtc->wb; unsigned long now = jiffies; unsigned long elapsed; unsigned long dirtied; unsigned long written; spin_lock(&wb->list_lock); /* * Lockless checks for elapsed time are racy and delayed update after * IO completion doesn't do it at all (to make sure written pages are * accounted reasonably quickly). Make sure elapsed >= 1 to avoid * division errors. */ elapsed = max(now - wb->bw_time_stamp, 1UL); dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); written = percpu_counter_read(&wb->stat[WB_WRITTEN]); if (update_ratelimit) { domain_update_dirty_limit(gdtc, now); wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); /* * @mdtc is always NULL if !CGROUP_WRITEBACK but the * compiler has no way to figure that out. Help it. */ if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { domain_update_dirty_limit(mdtc, now); wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); } } wb_update_write_bandwidth(wb, elapsed, written); wb->dirtied_stamp = dirtied; wb->written_stamp = written; WRITE_ONCE(wb->bw_time_stamp, now); spin_unlock(&wb->list_lock); } void wb_update_bandwidth(struct bdi_writeback *wb) { struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; __wb_update_bandwidth(&gdtc, NULL, false); } /* Interval after which we consider wb idle and don't estimate bandwidth */ #define WB_BANDWIDTH_IDLE_JIF (HZ) static void wb_bandwidth_estimate_start(struct bdi_writeback *wb) { unsigned long now = jiffies; unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp); if (elapsed > WB_BANDWIDTH_IDLE_JIF && !atomic_read(&wb->writeback_inodes)) { spin_lock(&wb->list_lock); wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED); wb->written_stamp = wb_stat(wb, WB_WRITTEN); WRITE_ONCE(wb->bw_time_stamp, now); spin_unlock(&wb->list_lock); } } /* * After a task dirtied this many pages, balance_dirty_pages_ratelimited() * will look to see if it needs to start dirty throttling. * * If dirty_poll_interval is too low, big NUMA machines will call the expensive * global_zone_page_state() too often. So scale it near-sqrt to the safety margin * (the number of pages we may dirty without exceeding the dirty limits). */ static unsigned long dirty_poll_interval(unsigned long dirty, unsigned long thresh) { if (thresh > dirty) return 1UL << (ilog2(thresh - dirty) >> 1); return 1; } static unsigned long wb_max_pause(struct bdi_writeback *wb, unsigned long wb_dirty) { unsigned long bw = READ_ONCE(wb->avg_write_bandwidth); unsigned long t; /* * Limit pause time for small memory systems. If sleeping for too long * time, a small pool of dirty/writeback pages may go empty and disk go * idle. * * 8 serves as the safety ratio. */ t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); t++; return min_t(unsigned long, t, MAX_PAUSE); } static long wb_min_pause(struct bdi_writeback *wb, long max_pause, unsigned long task_ratelimit, unsigned long dirty_ratelimit, int *nr_dirtied_pause) { long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth)); long lo = ilog2(READ_ONCE(wb->dirty_ratelimit)); long t; /* target pause */ long pause; /* estimated next pause */ int pages; /* target nr_dirtied_pause */ /* target for 10ms pause on 1-dd case */ t = max(1, HZ / 100); /* * Scale up pause time for concurrent dirtiers in order to reduce CPU * overheads. * * (N * 10ms) on 2^N concurrent tasks. */ if (hi > lo) t += (hi - lo) * (10 * HZ) / 1024; /* * This is a bit convoluted. We try to base the next nr_dirtied_pause * on the much more stable dirty_ratelimit. However the next pause time * will be computed based on task_ratelimit and the two rate limits may * depart considerably at some time. Especially if task_ratelimit goes * below dirty_ratelimit/2 and the target pause is max_pause, the next * pause time will be max_pause*2 _trimmed down_ to max_pause. As a * result task_ratelimit won't be executed faithfully, which could * eventually bring down dirty_ratelimit. * * We apply two rules to fix it up: * 1) try to estimate the next pause time and if necessary, use a lower * nr_dirtied_pause so as not to exceed max_pause. When this happens, * nr_dirtied_pause will be "dancing" with task_ratelimit. * 2) limit the target pause time to max_pause/2, so that the normal * small fluctuations of task_ratelimit won't trigger rule (1) and * nr_dirtied_pause will remain as stable as dirty_ratelimit. */ t = min(t, 1 + max_pause / 2); pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); /* * Tiny nr_dirtied_pause is found to hurt I/O performance in the test * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. * When the 16 consecutive reads are often interrupted by some dirty * throttling pause during the async writes, cfq will go into idles * (deadline is fine). So push nr_dirtied_pause as high as possible * until reaches DIRTY_POLL_THRESH=32 pages. */ if (pages < DIRTY_POLL_THRESH) { t = max_pause; pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); if (pages > DIRTY_POLL_THRESH) { pages = DIRTY_POLL_THRESH; t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; } } pause = HZ * pages / (task_ratelimit + 1); if (pause > max_pause) { t = max_pause; pages = task_ratelimit * t / roundup_pow_of_two(HZ); } *nr_dirtied_pause = pages; /* * The minimal pause time will normally be half the target pause time. */ return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; } static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) { struct bdi_writeback *wb = dtc->wb; unsigned long wb_reclaimable; /* * wb_thresh is not treated as some limiting factor as * dirty_thresh, due to reasons * - in JBOD setup, wb_thresh can fluctuate a lot * - in a system with HDD and USB key, the USB key may somehow * go into state (wb_dirty >> wb_thresh) either because * wb_dirty starts high, or because wb_thresh drops low. * In this case we don't want to hard throttle the USB key * dirtiers for 100 seconds until wb_dirty drops under * wb_thresh. Instead the auxiliary wb control line in * wb_position_ratio() will let the dirtier task progress * at some rate <= (write_bw / 2) for bringing down wb_dirty. */ dtc->wb_thresh = __wb_calc_thresh(dtc); dtc->wb_bg_thresh = dtc->thresh ? div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; /* * In order to avoid the stacked BDI deadlock we need * to ensure we accurately count the 'dirty' pages when * the threshold is low. * * Otherwise it would be possible to get thresh+n pages * reported dirty, even though there are thresh-m pages * actually dirty; with m+n sitting in the percpu * deltas. */ if (dtc->wb_thresh < 2 * wb_stat_error()) { wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); } else { wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); } } /* * balance_dirty_pages() must be called by processes which are generating dirty * data. It looks at the number of dirty pages in the machine and will force * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. * If we're over `background_thresh' then the writeback threads are woken to * perform some writeout. */ static void balance_dirty_pages(struct bdi_writeback *wb, unsigned long pages_dirtied) { struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; struct dirty_throttle_control * const gdtc = &gdtc_stor; struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? &mdtc_stor : NULL; struct dirty_throttle_control *sdtc; unsigned long nr_reclaimable; /* = file_dirty */ long period; long pause; long max_pause; long min_pause; int nr_dirtied_pause; bool dirty_exceeded = false; unsigned long task_ratelimit; unsigned long dirty_ratelimit; struct backing_dev_info *bdi = wb->bdi; bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; unsigned long start_time = jiffies; for (;;) { unsigned long now = jiffies; unsigned long dirty, thresh, bg_thresh; unsigned long m_dirty = 0; /* stop bogus uninit warnings */ unsigned long m_thresh = 0; unsigned long m_bg_thresh = 0; nr_reclaimable = global_node_page_state(NR_FILE_DIRTY); gdtc->avail = global_dirtyable_memory(); gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK); domain_dirty_limits(gdtc); if (unlikely(strictlimit)) { wb_dirty_limits(gdtc); dirty = gdtc->wb_dirty; thresh = gdtc->wb_thresh; bg_thresh = gdtc->wb_bg_thresh; } else { dirty = gdtc->dirty; thresh = gdtc->thresh; bg_thresh = gdtc->bg_thresh; } if (mdtc) { unsigned long filepages, headroom, writeback; /* * If @wb belongs to !root memcg, repeat the same * basic calculations for the memcg domain. */ mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty, &writeback); mdtc->dirty += writeback; mdtc_calc_avail(mdtc, filepages, headroom); domain_dirty_limits(mdtc); if (unlikely(strictlimit)) { wb_dirty_limits(mdtc); m_dirty = mdtc->wb_dirty; m_thresh = mdtc->wb_thresh; m_bg_thresh = mdtc->wb_bg_thresh; } else { m_dirty = mdtc->dirty; m_thresh = mdtc->thresh; m_bg_thresh = mdtc->bg_thresh; } } /* * Throttle it only when the background writeback cannot * catch-up. This avoids (excessively) small writeouts * when the wb limits are ramping up in case of !strictlimit. * * In strictlimit case make decision based on the wb counters * and limits. Small writeouts when the wb limits are ramping * up are the price we consciously pay for strictlimit-ing. * * If memcg domain is in effect, @dirty should be under * both global and memcg freerun ceilings. */ if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) && (!mdtc || m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) { unsigned long intv; unsigned long m_intv; free_running: intv = dirty_poll_interval(dirty, thresh); m_intv = ULONG_MAX; current->dirty_paused_when = now; current->nr_dirtied = 0; if (mdtc) m_intv = dirty_poll_interval(m_dirty, m_thresh); current->nr_dirtied_pause = min(intv, m_intv); break; } if (unlikely(!writeback_in_progress(wb))) wb_start_background_writeback(wb); mem_cgroup_flush_foreign(wb); /* * Calculate global domain's pos_ratio and select the * global dtc by default. */ if (!strictlimit) { wb_dirty_limits(gdtc); if ((current->flags & PF_LOCAL_THROTTLE) && gdtc->wb_dirty < dirty_freerun_ceiling(gdtc->wb_thresh, gdtc->wb_bg_thresh)) /* * LOCAL_THROTTLE tasks must not be throttled * when below the per-wb freerun ceiling. */ goto free_running; } dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) && ((gdtc->dirty > gdtc->thresh) || strictlimit); wb_position_ratio(gdtc); sdtc = gdtc; if (mdtc) { /* * If memcg domain is in effect, calculate its * pos_ratio. @wb should satisfy constraints from * both global and memcg domains. Choose the one * w/ lower pos_ratio. */ if (!strictlimit) { wb_dirty_limits(mdtc); if ((current->flags & PF_LOCAL_THROTTLE) && mdtc->wb_dirty < dirty_freerun_ceiling(mdtc->wb_thresh, mdtc->wb_bg_thresh)) /* * LOCAL_THROTTLE tasks must not be * throttled when below the per-wb * freerun ceiling. */ goto free_running; } dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) && ((mdtc->dirty > mdtc->thresh) || strictlimit); wb_position_ratio(mdtc); if (mdtc->pos_ratio < gdtc->pos_ratio) sdtc = mdtc; } if (dirty_exceeded && !wb->dirty_exceeded) wb->dirty_exceeded = 1; if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + BANDWIDTH_INTERVAL)) __wb_update_bandwidth(gdtc, mdtc, true); /* throttle according to the chosen dtc */ dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit); task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> RATELIMIT_CALC_SHIFT; max_pause = wb_max_pause(wb, sdtc->wb_dirty); min_pause = wb_min_pause(wb, max_pause, task_ratelimit, dirty_ratelimit, &nr_dirtied_pause); if (unlikely(task_ratelimit == 0)) { period = max_pause; pause = max_pause; goto pause; } period = HZ * pages_dirtied / task_ratelimit; pause = period; if (current->dirty_paused_when) pause -= now - current->dirty_paused_when; /* * For less than 1s think time (ext3/4 may block the dirtier * for up to 800ms from time to time on 1-HDD; so does xfs, * however at much less frequency), try to compensate it in * future periods by updating the virtual time; otherwise just * do a reset, as it may be a light dirtier. */ if (pause < min_pause) { trace_balance_dirty_pages(wb, sdtc->thresh, sdtc->bg_thresh, sdtc->dirty, sdtc->wb_thresh, sdtc->wb_dirty, dirty_ratelimit, task_ratelimit, pages_dirtied, period, min(pause, 0L), start_time); if (pause < -HZ) { current->dirty_paused_when = now; current->nr_dirtied = 0; } else if (period) { current->dirty_paused_when += period; current->nr_dirtied = 0; } else if (current->nr_dirtied_pause <= pages_dirtied) current->nr_dirtied_pause += pages_dirtied; break; } if (unlikely(pause > max_pause)) { /* for occasional dropped task_ratelimit */ now += min(pause - max_pause, max_pause); pause = max_pause; } pause: trace_balance_dirty_pages(wb, sdtc->thresh, sdtc->bg_thresh, sdtc->dirty, sdtc->wb_thresh, sdtc->wb_dirty, dirty_ratelimit, task_ratelimit, pages_dirtied, period, pause, start_time); __set_current_state(TASK_KILLABLE); wb->dirty_sleep = now; io_schedule_timeout(pause); current->dirty_paused_when = now + pause; current->nr_dirtied = 0; current->nr_dirtied_pause = nr_dirtied_pause; /* * This is typically equal to (dirty < thresh) and can also * keep "1000+ dd on a slow USB stick" under control. */ if (task_ratelimit) break; /* * In the case of an unresponsive NFS server and the NFS dirty * pages exceeds dirty_thresh, give the other good wb's a pipe * to go through, so that tasks on them still remain responsive. * * In theory 1 page is enough to keep the consumer-producer * pipe going: the flusher cleans 1 page => the task dirties 1 * more page. However wb_dirty has accounting errors. So use * the larger and more IO friendly wb_stat_error. */ if (sdtc->wb_dirty <= wb_stat_error()) break; if (fatal_signal_pending(current)) break; } if (!dirty_exceeded && wb->dirty_exceeded) wb->dirty_exceeded = 0; if (writeback_in_progress(wb)) return; /* * In laptop mode, we wait until hitting the higher threshold before * starting background writeout, and then write out all the way down * to the lower threshold. So slow writers cause minimal disk activity. * * In normal mode, we start background writeout at the lower * background_thresh, to keep the amount of dirty memory low. */ if (laptop_mode) return; if (nr_reclaimable > gdtc->bg_thresh) wb_start_background_writeback(wb); } static DEFINE_PER_CPU(int, bdp_ratelimits); /* * Normal tasks are throttled by * loop { * dirty tsk->nr_dirtied_pause pages; * take a snap in balance_dirty_pages(); * } * However there is a worst case. If every task exit immediately when dirtied * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be * called to throttle the page dirties. The solution is to save the not yet * throttled page dirties in dirty_throttle_leaks on task exit and charge them * randomly into the running tasks. This works well for the above worst case, * as the new task will pick up and accumulate the old task's leaked dirty * count and eventually get throttled. */ DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; /** * balance_dirty_pages_ratelimited - balance dirty memory state * @mapping: address_space which was dirtied * * Processes which are dirtying memory should call in here once for each page * which was newly dirtied. The function will periodically check the system's * dirty state and will initiate writeback if needed. * * Once we're over the dirty memory limit we decrease the ratelimiting * by a lot, to prevent individual processes from overshooting the limit * by (ratelimit_pages) each. */ void balance_dirty_pages_ratelimited(struct address_space *mapping) { struct inode *inode = mapping->host; struct backing_dev_info *bdi = inode_to_bdi(inode); struct bdi_writeback *wb = NULL; int ratelimit; int *p; if (!(bdi->capabilities & BDI_CAP_WRITEBACK)) return; if (inode_cgwb_enabled(inode)) wb = wb_get_create_current(bdi, GFP_KERNEL); if (!wb) wb = &bdi->wb; ratelimit = current->nr_dirtied_pause; if (wb->dirty_exceeded) ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); preempt_disable(); /* * This prevents one CPU to accumulate too many dirtied pages without * calling into balance_dirty_pages(), which can happen when there are * 1000+ tasks, all of them start dirtying pages at exactly the same * time, hence all honoured too large initial task->nr_dirtied_pause. */ p = this_cpu_ptr(&bdp_ratelimits); if (unlikely(current->nr_dirtied >= ratelimit)) *p = 0; else if (unlikely(*p >= ratelimit_pages)) { *p = 0; ratelimit = 0; } /* * Pick up the dirtied pages by the exited tasks. This avoids lots of * short-lived tasks (eg. gcc invocations in a kernel build) escaping * the dirty throttling and livelock other long-run dirtiers. */ p = this_cpu_ptr(&dirty_throttle_leaks); if (*p > 0 && current->nr_dirtied < ratelimit) { unsigned long nr_pages_dirtied; nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); *p -= nr_pages_dirtied; current->nr_dirtied += nr_pages_dirtied; } preempt_enable(); if (unlikely(current->nr_dirtied >= ratelimit)) balance_dirty_pages(wb, current->nr_dirtied); wb_put(wb); } EXPORT_SYMBOL(balance_dirty_pages_ratelimited); /** * wb_over_bg_thresh - does @wb need to be written back? * @wb: bdi_writeback of interest * * Determines whether background writeback should keep writing @wb or it's * clean enough. * * Return: %true if writeback should continue. */ bool wb_over_bg_thresh(struct bdi_writeback *wb) { struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; struct dirty_throttle_control * const gdtc = &gdtc_stor; struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? &mdtc_stor : NULL; unsigned long reclaimable; unsigned long thresh; /* * Similar to balance_dirty_pages() but ignores pages being written * as we're trying to decide whether to put more under writeback. */ gdtc->avail = global_dirtyable_memory(); gdtc->dirty = global_node_page_state(NR_FILE_DIRTY); domain_dirty_limits(gdtc); if (gdtc->dirty > gdtc->bg_thresh) return true; thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh); if (thresh < 2 * wb_stat_error()) reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); else reclaimable = wb_stat(wb, WB_RECLAIMABLE); if (reclaimable > thresh) return true; if (mdtc) { unsigned long filepages, headroom, writeback; mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty, &writeback); mdtc_calc_avail(mdtc, filepages, headroom); domain_dirty_limits(mdtc); /* ditto, ignore writeback */ if (mdtc->dirty > mdtc->bg_thresh) return true; thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh); if (thresh < 2 * wb_stat_error()) reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); else reclaimable = wb_stat(wb, WB_RECLAIMABLE); if (reclaimable > thresh) return true; } return false; } /* * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs */ int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos) { unsigned int old_interval = dirty_writeback_interval; int ret; ret = proc_dointvec(table, write, buffer, length, ppos); /* * Writing 0 to dirty_writeback_interval will disable periodic writeback * and a different non-zero value will wakeup the writeback threads. * wb_wakeup_delayed() would be more appropriate, but it's a pain to * iterate over all bdis and wbs. * The reason we do this is to make the change take effect immediately. */ if (!ret && write && dirty_writeback_interval && dirty_writeback_interval != old_interval) wakeup_flusher_threads(WB_REASON_PERIODIC); return ret; } void laptop_mode_timer_fn(struct timer_list *t) { struct backing_dev_info *backing_dev_info = from_timer(backing_dev_info, t, laptop_mode_wb_timer); wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER); } /* * We've spun up the disk and we're in laptop mode: schedule writeback * of all dirty data a few seconds from now. If the flush is already scheduled * then push it back - the user is still using the disk. */ void laptop_io_completion(struct backing_dev_info *info) { mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); } /* * We're in laptop mode and we've just synced. The sync's writes will have * caused another writeback to be scheduled by laptop_io_completion. * Nothing needs to be written back anymore, so we unschedule the writeback. */ void laptop_sync_completion(void) { struct backing_dev_info *bdi; rcu_read_lock(); list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) del_timer(&bdi->laptop_mode_wb_timer); rcu_read_unlock(); } /* * If ratelimit_pages is too high then we can get into dirty-data overload * if a large number of processes all perform writes at the same time. * * Here we set ratelimit_pages to a level which ensures that when all CPUs are * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory * thresholds. */ void writeback_set_ratelimit(void) { struct wb_domain *dom = &global_wb_domain; unsigned long background_thresh; unsigned long dirty_thresh; global_dirty_limits(&background_thresh, &dirty_thresh); dom->dirty_limit = dirty_thresh; ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); if (ratelimit_pages < 16) ratelimit_pages = 16; } static int page_writeback_cpu_online(unsigned int cpu) { writeback_set_ratelimit(); return 0; } /* * Called early on to tune the page writeback dirty limits. * * We used to scale dirty pages according to how total memory * related to pages that could be allocated for buffers. * * However, that was when we used "dirty_ratio" to scale with * all memory, and we don't do that any more. "dirty_ratio" * is now applied to total non-HIGHPAGE memory, and as such we can't * get into the old insane situation any more where we had * large amounts of dirty pages compared to a small amount of * non-HIGHMEM memory. * * But we might still want to scale the dirty_ratio by how * much memory the box has.. */ void __init page_writeback_init(void) { BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", page_writeback_cpu_online, NULL); cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, page_writeback_cpu_online); } /** * tag_pages_for_writeback - tag pages to be written by write_cache_pages * @mapping: address space structure to write * @start: starting page index * @end: ending page index (inclusive) * * This function scans the page range from @start to @end (inclusive) and tags * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is * that write_cache_pages (or whoever calls this function) will then use * TOWRITE tag to identify pages eligible for writeback. This mechanism is * used to avoid livelocking of writeback by a process steadily creating new * dirty pages in the file (thus it is important for this function to be quick * so that it can tag pages faster than a dirtying process can create them). */ void tag_pages_for_writeback(struct address_space *mapping, pgoff_t start, pgoff_t end) { XA_STATE(xas, &mapping->i_pages, start); unsigned int tagged = 0; void *page; xas_lock_irq(&xas); xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); if (++tagged % XA_CHECK_SCHED) continue; xas_pause(&xas); xas_unlock_irq(&xas); cond_resched(); xas_lock_irq(&xas); } xas_unlock_irq(&xas); } EXPORT_SYMBOL(tag_pages_for_writeback); /** * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. * @mapping: address space structure to write * @wbc: subtract the number of written pages from *@wbc->nr_to_write * @writepage: function called for each page * @data: data passed to writepage function * * If a page is already under I/O, write_cache_pages() skips it, even * if it's dirty. This is desirable behaviour for memory-cleaning writeback, * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() * and msync() need to guarantee that all the data which was dirty at the time * the call was made get new I/O started against them. If wbc->sync_mode is * WB_SYNC_ALL then we were called for data integrity and we must wait for * existing IO to complete. * * To avoid livelocks (when other process dirties new pages), we first tag * pages which should be written back with TOWRITE tag and only then start * writing them. For data-integrity sync we have to be careful so that we do * not miss some pages (e.g., because some other process has cleared TOWRITE * tag we set). The rule we follow is that TOWRITE tag can be cleared only * by the process clearing the DIRTY tag (and submitting the page for IO). * * To avoid deadlocks between range_cyclic writeback and callers that hold * pages in PageWriteback to aggregate IO until write_cache_pages() returns, * we do not loop back to the start of the file. Doing so causes a page * lock/page writeback access order inversion - we should only ever lock * multiple pages in ascending page->index order, and looping back to the start * of the file violates that rule and causes deadlocks. * * Return: %0 on success, negative error code otherwise */ int write_cache_pages(struct address_space *mapping, struct writeback_control *wbc, writepage_t writepage, void *data) { int ret = 0; int done = 0; int error; struct pagevec pvec; int nr_pages; pgoff_t index; pgoff_t end; /* Inclusive */ pgoff_t done_index; int range_whole = 0; xa_mark_t tag; pagevec_init(&pvec); if (wbc->range_cyclic) { index = mapping->writeback_index; /* prev offset */ end = -1; } else { index = wbc->range_start >> PAGE_SHIFT; end = wbc->range_end >> PAGE_SHIFT; if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) range_whole = 1; } if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) { tag_pages_for_writeback(mapping, index, end); tag = PAGECACHE_TAG_TOWRITE; } else { tag = PAGECACHE_TAG_DIRTY; } done_index = index; while (!done && (index <= end)) { int i; nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, tag); if (nr_pages == 0) break; for (i = 0; i < nr_pages; i++) { struct page *page = pvec.pages[i]; done_index = page->index; lock_page(page); /* * Page truncated or invalidated. We can freely skip it * then, even for data integrity operations: the page * has disappeared concurrently, so there could be no * real expectation of this data integrity operation * even if there is now a new, dirty page at the same * pagecache address. */ if (unlikely(page->mapping != mapping)) { continue_unlock: unlock_page(page); continue; } if (!PageDirty(page)) { /* someone wrote it for us */ goto continue_unlock; } if (PageWriteback(page)) { if (wbc->sync_mode != WB_SYNC_NONE) wait_on_page_writeback(page); else goto continue_unlock; } BUG_ON(PageWriteback(page)); if (!clear_page_dirty_for_io(page)) goto continue_unlock; trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); error = (*writepage)(page, wbc, data); if (unlikely(error)) { /* * Handle errors according to the type of * writeback. There's no need to continue for * background writeback. Just push done_index * past this page so media errors won't choke * writeout for the entire file. For integrity * writeback, we must process the entire dirty * set regardless of errors because the fs may * still have state to clear for each page. In * that case we continue processing and return * the first error. */ if (error == AOP_WRITEPAGE_ACTIVATE) { unlock_page(page); error = 0; } else if (wbc->sync_mode != WB_SYNC_ALL) { ret = error; done_index = page->index + 1; done = 1; break; } if (!ret) ret = error; } /* * We stop writing back only if we are not doing * integrity sync. In case of integrity sync we have to * keep going until we have written all the pages * we tagged for writeback prior to entering this loop. */ if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) { done = 1; break; } } pagevec_release(&pvec); cond_resched(); } /* * If we hit the last page and there is more work to be done: wrap * back the index back to the start of the file for the next * time we are called. */ if (wbc->range_cyclic && !done) done_index = 0; if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) mapping->writeback_index = done_index; return ret; } EXPORT_SYMBOL(write_cache_pages); /* * Function used by generic_writepages to call the real writepage * function and set the mapping flags on error */ static int __writepage(struct page *page, struct writeback_control *wbc, void *data) { struct address_space *mapping = data; int ret = mapping->a_ops->writepage(page, wbc); mapping_set_error(mapping, ret); return ret; } /** * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. * @mapping: address space structure to write * @wbc: subtract the number of written pages from *@wbc->nr_to_write * * This is a library function, which implements the writepages() * address_space_operation. * * Return: %0 on success, negative error code otherwise */ int generic_writepages(struct address_space *mapping, struct writeback_control *wbc) { struct blk_plug plug; int ret; /* deal with chardevs and other special file */ if (!mapping->a_ops->writepage) return 0; blk_start_plug(&plug); ret = write_cache_pages(mapping, wbc, __writepage, mapping); blk_finish_plug(&plug); return ret; } EXPORT_SYMBOL(generic_writepages); int do_writepages(struct address_space *mapping, struct writeback_control *wbc) { int ret; struct bdi_writeback *wb; if (wbc->nr_to_write <= 0) return 0; wb = inode_to_wb_wbc(mapping->host, wbc); wb_bandwidth_estimate_start(wb); while (1) { if (mapping->a_ops->writepages) ret = mapping->a_ops->writepages(mapping, wbc); else ret = generic_writepages(mapping, wbc); if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL)) break; /* * Lacking an allocation context or the locality or writeback * state of any of the inode's pages, throttle based on * writeback activity on the local node. It's as good a * guess as any. */ reclaim_throttle(NODE_DATA(numa_node_id()), VMSCAN_THROTTLE_WRITEBACK); } /* * Usually few pages are written by now from those we've just submitted * but if there's constant writeback being submitted, this makes sure * writeback bandwidth is updated once in a while. */ if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + BANDWIDTH_INTERVAL)) wb_update_bandwidth(wb); return ret; } /** * folio_write_one - write out a single folio and wait on I/O. * @folio: The folio to write. * * The folio must be locked by the caller and will be unlocked upon return. * * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this * function returns. * * Return: %0 on success, negative error code otherwise */ int folio_write_one(struct folio *folio) { struct address_space *mapping = folio->mapping; int ret = 0; struct writeback_control wbc = { .sync_mode = WB_SYNC_ALL, .nr_to_write = folio_nr_pages(folio), }; BUG_ON(!folio_test_locked(folio)); folio_wait_writeback(folio); if (folio_clear_dirty_for_io(folio)) { folio_get(folio); ret = mapping->a_ops->writepage(&folio->page, &wbc); if (ret == 0) folio_wait_writeback(folio); folio_put(folio); } else { folio_unlock(folio); } if (!ret) ret = filemap_check_errors(mapping); return ret; } EXPORT_SYMBOL(folio_write_one); /* * For address_spaces which do not use buffers nor write back. */ int __set_page_dirty_no_writeback(struct page *page) { if (!PageDirty(page)) return !TestSetPageDirty(page); return 0; } EXPORT_SYMBOL(__set_page_dirty_no_writeback); /* * Helper function for set_page_dirty family. * * Caller must hold lock_page_memcg(). * * NOTE: This relies on being atomic wrt interrupts. */ static void folio_account_dirtied(struct folio *folio, struct address_space *mapping) { struct inode *inode = mapping->host; trace_writeback_dirty_folio(folio, mapping); if (mapping_can_writeback(mapping)) { struct bdi_writeback *wb; long nr = folio_nr_pages(folio); inode_attach_wb(inode, &folio->page); wb = inode_to_wb(inode); __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr); __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); __node_stat_mod_folio(folio, NR_DIRTIED, nr); wb_stat_mod(wb, WB_RECLAIMABLE, nr); wb_stat_mod(wb, WB_DIRTIED, nr); task_io_account_write(nr * PAGE_SIZE); current->nr_dirtied += nr; __this_cpu_add(bdp_ratelimits, nr); mem_cgroup_track_foreign_dirty(folio, wb); } } /* * Helper function for deaccounting dirty page without writeback. * * Caller must hold lock_page_memcg(). */ void folio_account_cleaned(struct folio *folio, struct address_space *mapping, struct bdi_writeback *wb) { if (mapping_can_writeback(mapping)) { long nr = folio_nr_pages(folio); lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); wb_stat_mod(wb, WB_RECLAIMABLE, -nr); task_io_account_cancelled_write(nr * PAGE_SIZE); } } /* * Mark the folio dirty, and set it dirty in the page cache, and mark * the inode dirty. * * If warn is true, then emit a warning if the folio is not uptodate and has * not been truncated. * * The caller must hold lock_page_memcg(). Most callers have the folio * locked. A few have the folio blocked from truncation through other * means (eg zap_page_range() has it mapped and is holding the page table * lock). This can also be called from mark_buffer_dirty(), which I * cannot prove is always protected against truncate. */ void __folio_mark_dirty(struct folio *folio, struct address_space *mapping, int warn) { unsigned long flags; xa_lock_irqsave(&mapping->i_pages, flags); if (folio->mapping) { /* Race with truncate? */ WARN_ON_ONCE(warn && !folio_test_uptodate(folio)); folio_account_dirtied(folio, mapping); __xa_set_mark(&mapping->i_pages, folio_index(folio), PAGECACHE_TAG_DIRTY); } xa_unlock_irqrestore(&mapping->i_pages, flags); } /** * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads. * @mapping: Address space this folio belongs to. * @folio: Folio to be marked as dirty. * * Filesystems which do not use buffer heads should call this function * from their set_page_dirty address space operation. It ignores the * contents of folio_get_private(), so if the filesystem marks individual * blocks as dirty, the filesystem should handle that itself. * * This is also sometimes used by filesystems which use buffer_heads when * a single buffer is being dirtied: we want to set the folio dirty in * that case, but not all the buffers. This is a "bottom-up" dirtying, * whereas __set_page_dirty_buffers() is a "top-down" dirtying. * * The caller must ensure this doesn't race with truncation. Most will * simply hold the folio lock, but e.g. zap_pte_range() calls with the * folio mapped and the pte lock held, which also locks out truncation. */ bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio) { folio_memcg_lock(folio); if (folio_test_set_dirty(folio)) { folio_memcg_unlock(folio); return false; } __folio_mark_dirty(folio, mapping, !folio_test_private(folio)); folio_memcg_unlock(folio); if (mapping->host) { /* !PageAnon && !swapper_space */ __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); } return true; } EXPORT_SYMBOL(filemap_dirty_folio); /** * folio_account_redirty - Manually account for redirtying a page. * @folio: The folio which is being redirtied. * * Most filesystems should call folio_redirty_for_writepage() instead * of this fuction. If your filesystem is doing writeback outside the * context of a writeback_control(), it can call this when redirtying * a folio, to de-account the dirty counters (NR_DIRTIED, WB_DIRTIED, * tsk->nr_dirtied), so that they match the written counters (NR_WRITTEN, * WB_WRITTEN) in long term. The mismatches will lead to systematic errors * in balanced_dirty_ratelimit and the dirty pages position control. */ void folio_account_redirty(struct folio *folio) { struct address_space *mapping = folio->mapping; if (mapping && mapping_can_writeback(mapping)) { struct inode *inode = mapping->host; struct bdi_writeback *wb; struct wb_lock_cookie cookie = {}; long nr = folio_nr_pages(folio); wb = unlocked_inode_to_wb_begin(inode, &cookie); current->nr_dirtied -= nr; node_stat_mod_folio(folio, NR_DIRTIED, -nr); wb_stat_mod(wb, WB_DIRTIED, -nr); unlocked_inode_to_wb_end(inode, &cookie); } } EXPORT_SYMBOL(folio_account_redirty); /** * folio_redirty_for_writepage - Decline to write a dirty folio. * @wbc: The writeback control. * @folio: The folio. * * When a writepage implementation decides that it doesn't want to write * @folio for some reason, it should call this function, unlock @folio and * return 0. * * Return: True if we redirtied the folio. False if someone else dirtied * it first. */ bool folio_redirty_for_writepage(struct writeback_control *wbc, struct folio *folio) { bool ret; long nr = folio_nr_pages(folio); wbc->pages_skipped += nr; ret = filemap_dirty_folio(folio->mapping, folio); folio_account_redirty(folio); return ret; } EXPORT_SYMBOL(folio_redirty_for_writepage); /** * folio_mark_dirty - Mark a folio as being modified. * @folio: The folio. * * For folios with a mapping this should be done with the folio lock held * for the benefit of asynchronous memory errors who prefer a consistent * dirty state. This rule can be broken in some special cases, * but should be better not to. * * Return: True if the folio was newly dirtied, false if it was already dirty. */ bool folio_mark_dirty(struct folio *folio) { struct address_space *mapping = folio_mapping(folio); if (likely(mapping)) { /* * readahead/lru_deactivate_page could remain * PG_readahead/PG_reclaim due to race with folio_end_writeback * About readahead, if the folio is written, the flags would be * reset. So no problem. * About lru_deactivate_page, if the folio is redirtied, * the flag will be reset. So no problem. but if the * folio is used by readahead it will confuse readahead * and make it restart the size rampup process. But it's * a trivial problem. */ if (folio_test_reclaim(folio)) folio_clear_reclaim(folio); if (mapping->a_ops->dirty_folio) return mapping->a_ops->dirty_folio(mapping, folio); return mapping->a_ops->set_page_dirty(&folio->page); } if (!folio_test_dirty(folio)) { if (!folio_test_set_dirty(folio)) return true; } return false; } EXPORT_SYMBOL(folio_mark_dirty); /* * set_page_dirty() is racy if the caller has no reference against * page->mapping->host, and if the page is unlocked. This is because another * CPU could truncate the page off the mapping and then free the mapping. * * Usually, the page _is_ locked, or the caller is a user-space process which * holds a reference on the inode by having an open file. * * In other cases, the page should be locked before running set_page_dirty(). */ int set_page_dirty_lock(struct page *page) { int ret; lock_page(page); ret = set_page_dirty(page); unlock_page(page); return ret; } EXPORT_SYMBOL(set_page_dirty_lock); /* * This cancels just the dirty bit on the kernel page itself, it does NOT * actually remove dirty bits on any mmap's that may be around. It also * leaves the page tagged dirty, so any sync activity will still find it on * the dirty lists, and in particular, clear_page_dirty_for_io() will still * look at the dirty bits in the VM. * * Doing this should *normally* only ever be done when a page is truncated, * and is not actually mapped anywhere at all. However, fs/buffer.c does * this when it notices that somebody has cleaned out all the buffers on a * page without actually doing it through the VM. Can you say "ext3 is * horribly ugly"? Thought you could. */ void __folio_cancel_dirty(struct folio *folio) { struct address_space *mapping = folio_mapping(folio); if (mapping_can_writeback(mapping)) { struct inode *inode = mapping->host; struct bdi_writeback *wb; struct wb_lock_cookie cookie = {}; folio_memcg_lock(folio); wb = unlocked_inode_to_wb_begin(inode, &cookie); if (folio_test_clear_dirty(folio)) folio_account_cleaned(folio, mapping, wb); unlocked_inode_to_wb_end(inode, &cookie); folio_memcg_unlock(folio); } else { folio_clear_dirty(folio); } } EXPORT_SYMBOL(__folio_cancel_dirty); /* * Clear a folio's dirty flag, while caring for dirty memory accounting. * Returns true if the folio was previously dirty. * * This is for preparing to put the folio under writeout. We leave * the folio tagged as dirty in the xarray so that a concurrent * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk. * The ->writepage implementation will run either folio_start_writeback() * or folio_mark_dirty(), at which stage we bring the folio's dirty flag * and xarray dirty tag back into sync. * * This incoherency between the folio's dirty flag and xarray tag is * unfortunate, but it only exists while the folio is locked. */ bool folio_clear_dirty_for_io(struct folio *folio) { struct address_space *mapping = folio_mapping(folio); bool ret = false; VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); if (mapping && mapping_can_writeback(mapping)) { struct inode *inode = mapping->host; struct bdi_writeback *wb; struct wb_lock_cookie cookie = {}; /* * Yes, Virginia, this is indeed insane. * * We use this sequence to make sure that * (a) we account for dirty stats properly * (b) we tell the low-level filesystem to * mark the whole folio dirty if it was * dirty in a pagetable. Only to then * (c) clean the folio again and return 1 to * cause the writeback. * * This way we avoid all nasty races with the * dirty bit in multiple places and clearing * them concurrently from different threads. * * Note! Normally the "folio_mark_dirty(folio)" * has no effect on the actual dirty bit - since * that will already usually be set. But we * need the side effects, and it can help us * avoid races. * * We basically use the folio "master dirty bit" * as a serialization point for all the different * threads doing their things. */ if (folio_mkclean(folio)) folio_mark_dirty(folio); /* * We carefully synchronise fault handlers against * installing a dirty pte and marking the folio dirty * at this point. We do this by having them hold the * page lock while dirtying the folio, and folios are * always locked coming in here, so we get the desired * exclusion. */ wb = unlocked_inode_to_wb_begin(inode, &cookie); if (folio_test_clear_dirty(folio)) { long nr = folio_nr_pages(folio); lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); wb_stat_mod(wb, WB_RECLAIMABLE, -nr); ret = true; } unlocked_inode_to_wb_end(inode, &cookie); return ret; } return folio_test_clear_dirty(folio); } EXPORT_SYMBOL(folio_clear_dirty_for_io); static void wb_inode_writeback_start(struct bdi_writeback *wb) { atomic_inc(&wb->writeback_inodes); } static void wb_inode_writeback_end(struct bdi_writeback *wb) { atomic_dec(&wb->writeback_inodes); /* * Make sure estimate of writeback throughput gets updated after * writeback completed. We delay the update by BANDWIDTH_INTERVAL * (which is the interval other bandwidth updates use for batching) so * that if multiple inodes end writeback at a similar time, they get * batched into one bandwidth update. */ queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL); } bool __folio_end_writeback(struct folio *folio) { long nr = folio_nr_pages(folio); struct address_space *mapping = folio_mapping(folio); bool ret; folio_memcg_lock(folio); if (mapping && mapping_use_writeback_tags(mapping)) { struct inode *inode = mapping->host; struct backing_dev_info *bdi = inode_to_bdi(inode); unsigned long flags; xa_lock_irqsave(&mapping->i_pages, flags); ret = folio_test_clear_writeback(folio); if (ret) { __xa_clear_mark(&mapping->i_pages, folio_index(folio), PAGECACHE_TAG_WRITEBACK); if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { struct bdi_writeback *wb = inode_to_wb(inode); wb_stat_mod(wb, WB_WRITEBACK, -nr); __wb_writeout_add(wb, nr); if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) wb_inode_writeback_end(wb); } } if (mapping->host && !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) sb_clear_inode_writeback(mapping->host); xa_unlock_irqrestore(&mapping->i_pages, flags); } else { ret = folio_test_clear_writeback(folio); } if (ret) { lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr); zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); node_stat_mod_folio(folio, NR_WRITTEN, nr); } folio_memcg_unlock(folio); return ret; } bool __folio_start_writeback(struct folio *folio, bool keep_write) { long nr = folio_nr_pages(folio); struct address_space *mapping = folio_mapping(folio); bool ret; int access_ret; folio_memcg_lock(folio); if (mapping && mapping_use_writeback_tags(mapping)) { XA_STATE(xas, &mapping->i_pages, folio_index(folio)); struct inode *inode = mapping->host; struct backing_dev_info *bdi = inode_to_bdi(inode); unsigned long flags; xas_lock_irqsave(&xas, flags); xas_load(&xas); ret = folio_test_set_writeback(folio); if (!ret) { bool on_wblist; on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK); xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { struct bdi_writeback *wb = inode_to_wb(inode); wb_stat_mod(wb, WB_WRITEBACK, nr); if (!on_wblist) wb_inode_writeback_start(wb); } /* * We can come through here when swapping * anonymous folios, so we don't necessarily * have an inode to track for sync. */ if (mapping->host && !on_wblist) sb_mark_inode_writeback(mapping->host); } if (!folio_test_dirty(folio)) xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); if (!keep_write) xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); xas_unlock_irqrestore(&xas, flags); } else { ret = folio_test_set_writeback(folio); } if (!ret) { lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr); zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); } folio_memcg_unlock(folio); access_ret = arch_make_folio_accessible(folio); /* * If writeback has been triggered on a page that cannot be made * accessible, it is too late to recover here. */ VM_BUG_ON_FOLIO(access_ret != 0, folio); return ret; } EXPORT_SYMBOL(__folio_start_writeback); /** * folio_wait_writeback - Wait for a folio to finish writeback. * @folio: The folio to wait for. * * If the folio is currently being written back to storage, wait for the * I/O to complete. * * Context: Sleeps. Must be called in process context and with * no spinlocks held. Caller should hold a reference on the folio. * If the folio is not locked, writeback may start again after writeback * has finished. */ void folio_wait_writeback(struct folio *folio) { while (folio_test_writeback(folio)) { trace_folio_wait_writeback(folio, folio_mapping(folio)); folio_wait_bit(folio, PG_writeback); } } EXPORT_SYMBOL_GPL(folio_wait_writeback); /** * folio_wait_writeback_killable - Wait for a folio to finish writeback. * @folio: The folio to wait for. * * If the folio is currently being written back to storage, wait for the * I/O to complete or a fatal signal to arrive. * * Context: Sleeps. Must be called in process context and with * no spinlocks held. Caller should hold a reference on the folio. * If the folio is not locked, writeback may start again after writeback * has finished. * Return: 0 on success, -EINTR if we get a fatal signal while waiting. */ int folio_wait_writeback_killable(struct folio *folio) { while (folio_test_writeback(folio)) { trace_folio_wait_writeback(folio, folio_mapping(folio)); if (folio_wait_bit_killable(folio, PG_writeback)) return -EINTR; } return 0; } EXPORT_SYMBOL_GPL(folio_wait_writeback_killable); /** * folio_wait_stable() - wait for writeback to finish, if necessary. * @folio: The folio to wait on. * * This function determines if the given folio is related to a backing * device that requires folio contents to be held stable during writeback. * If so, then it will wait for any pending writeback to complete. * * Context: Sleeps. Must be called in process context and with * no spinlocks held. Caller should hold a reference on the folio. * If the folio is not locked, writeback may start again after writeback * has finished. */ void folio_wait_stable(struct folio *folio) { if (folio_inode(folio)->i_sb->s_iflags & SB_I_STABLE_WRITES) folio_wait_writeback(folio); } EXPORT_SYMBOL_GPL(folio_wait_stable);