#include <linux/mm.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/compiler.h> #include <linux/export.h> #include <linux/err.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/sched/task_stack.h> #include <linux/security.h> #include <linux/swap.h> #include <linux/swapops.h> #include <linux/mman.h> #include <linux/hugetlb.h> #include <linux/vmalloc.h> #include <linux/userfaultfd_k.h> #include <asm/sections.h> #include <linux/uaccess.h> #include "internal.h" static inline int is_kernel_rodata(unsigned long addr) { return addr >= (unsigned long)__start_rodata && addr < (unsigned long)__end_rodata; } /** * kfree_const - conditionally free memory * @x: pointer to the memory * * Function calls kfree only if @x is not in .rodata section. */ void kfree_const(const void *x) { if (!is_kernel_rodata((unsigned long)x)) kfree(x); } EXPORT_SYMBOL(kfree_const); /** * kstrdup - allocate space for and copy an existing string * @s: the string to duplicate * @gfp: the GFP mask used in the kmalloc() call when allocating memory */ char *kstrdup(const char *s, gfp_t gfp) { size_t len; char *buf; if (!s) return NULL; len = strlen(s) + 1; buf = kmalloc_track_caller(len, gfp); if (buf) memcpy(buf, s, len); return buf; } EXPORT_SYMBOL(kstrdup); /** * kstrdup_const - conditionally duplicate an existing const string * @s: the string to duplicate * @gfp: the GFP mask used in the kmalloc() call when allocating memory * * Function returns source string if it is in .rodata section otherwise it * fallbacks to kstrdup. * Strings allocated by kstrdup_const should be freed by kfree_const. */ const char *kstrdup_const(const char *s, gfp_t gfp) { if (is_kernel_rodata((unsigned long)s)) return s; return kstrdup(s, gfp); } EXPORT_SYMBOL(kstrdup_const); /** * kstrndup - allocate space for and copy an existing string * @s: the string to duplicate * @max: read at most @max chars from @s * @gfp: the GFP mask used in the kmalloc() call when allocating memory */ char *kstrndup(const char *s, size_t max, gfp_t gfp) { size_t len; char *buf; if (!s) return NULL; len = strnlen(s, max); buf = kmalloc_track_caller(len+1, gfp); if (buf) { memcpy(buf, s, len); buf[len] = '\0'; } return buf; } EXPORT_SYMBOL(kstrndup); /** * kmemdup - duplicate region of memory * * @src: memory region to duplicate * @len: memory region length * @gfp: GFP mask to use */ void *kmemdup(const void *src, size_t len, gfp_t gfp) { void *p; p = kmalloc_track_caller(len, gfp); if (p) memcpy(p, src, len); return p; } EXPORT_SYMBOL(kmemdup); /** * memdup_user - duplicate memory region from user space * * @src: source address in user space * @len: number of bytes to copy * * Returns an ERR_PTR() on failure. */ void *memdup_user(const void __user *src, size_t len) { void *p; /* * Always use GFP_KERNEL, since copy_from_user() can sleep and * cause pagefault, which makes it pointless to use GFP_NOFS * or GFP_ATOMIC. */ p = kmalloc_track_caller(len, GFP_KERNEL); if (!p) return ERR_PTR(-ENOMEM); if (copy_from_user(p, src, len)) { kfree(p); return ERR_PTR(-EFAULT); } return p; } EXPORT_SYMBOL(memdup_user); /* * strndup_user - duplicate an existing string from user space * @s: The string to duplicate * @n: Maximum number of bytes to copy, including the trailing NUL. */ char *strndup_user(const char __user *s, long n) { char *p; long length; length = strnlen_user(s, n); if (!length) return ERR_PTR(-EFAULT); if (length > n) return ERR_PTR(-EINVAL); p = memdup_user(s, length); if (IS_ERR(p)) return p; p[length - 1] = '\0'; return p; } EXPORT_SYMBOL(strndup_user); /** * memdup_user_nul - duplicate memory region from user space and NUL-terminate * * @src: source address in user space * @len: number of bytes to copy * * Returns an ERR_PTR() on failure. */ void *memdup_user_nul(const void __user *src, size_t len) { char *p; /* * Always use GFP_KERNEL, since copy_from_user() can sleep and * cause pagefault, which makes it pointless to use GFP_NOFS * or GFP_ATOMIC. */ p = kmalloc_track_caller(len + 1, GFP_KERNEL); if (!p) return ERR_PTR(-ENOMEM); if (copy_from_user(p, src, len)) { kfree(p); return ERR_PTR(-EFAULT); } p[len] = '\0'; return p; } EXPORT_SYMBOL(memdup_user_nul); void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, struct vm_area_struct *prev, struct rb_node *rb_parent) { struct vm_area_struct *next; vma->vm_prev = prev; if (prev) { next = prev->vm_next; prev->vm_next = vma; } else { mm->mmap = vma; if (rb_parent) next = rb_entry(rb_parent, struct vm_area_struct, vm_rb); else next = NULL; } vma->vm_next = next; if (next) next->vm_prev = vma; } /* Check if the vma is being used as a stack by this task */ int vma_is_stack_for_current(struct vm_area_struct *vma) { struct task_struct * __maybe_unused t = current; return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); } #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) void arch_pick_mmap_layout(struct mm_struct *mm) { mm->mmap_base = TASK_UNMAPPED_BASE; mm->get_unmapped_area = arch_get_unmapped_area; } #endif /* * Like get_user_pages_fast() except its IRQ-safe in that it won't fall * back to the regular GUP. * If the architecture not support this function, simply return with no * page pinned */ int __weak __get_user_pages_fast(unsigned long start, int nr_pages, int write, struct page **pages) { return 0; } EXPORT_SYMBOL_GPL(__get_user_pages_fast); /** * get_user_pages_fast() - pin user pages in memory * @start: starting user address * @nr_pages: number of pages from start to pin * @write: whether pages will be written to * @pages: array that receives pointers to the pages pinned. * Should be at least nr_pages long. * * Returns number of pages pinned. This may be fewer than the number * requested. If nr_pages is 0 or negative, returns 0. If no pages * were pinned, returns -errno. * * get_user_pages_fast provides equivalent functionality to get_user_pages, * operating on current and current->mm, with force=0 and vma=NULL. However * unlike get_user_pages, it must be called without mmap_sem held. * * get_user_pages_fast may take mmap_sem and page table locks, so no * assumptions can be made about lack of locking. get_user_pages_fast is to be * implemented in a way that is advantageous (vs get_user_pages()) when the * user memory area is already faulted in and present in ptes. However if the * pages have to be faulted in, it may turn out to be slightly slower so * callers need to carefully consider what to use. On many architectures, * get_user_pages_fast simply falls back to get_user_pages. */ int __weak get_user_pages_fast(unsigned long start, int nr_pages, int write, struct page **pages) { return get_user_pages_unlocked(start, nr_pages, pages, write ? FOLL_WRITE : 0); } EXPORT_SYMBOL_GPL(get_user_pages_fast); unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, unsigned long len, unsigned long prot, unsigned long flag, unsigned long pgoff) { unsigned long ret; struct mm_struct *mm = current->mm; unsigned long populate; LIST_HEAD(uf); ret = security_mmap_file(file, prot, flag); if (!ret) { if (down_write_killable(&mm->mmap_sem)) return -EINTR; ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff, &populate, &uf); up_write(&mm->mmap_sem); userfaultfd_unmap_complete(mm, &uf); if (populate) mm_populate(ret, populate); } return ret; } unsigned long vm_mmap(struct file *file, unsigned long addr, unsigned long len, unsigned long prot, unsigned long flag, unsigned long offset) { if (unlikely(offset + PAGE_ALIGN(len) < offset)) return -EINVAL; if (unlikely(offset_in_page(offset))) return -EINVAL; return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); } EXPORT_SYMBOL(vm_mmap); /** * kvmalloc_node - attempt to allocate physically contiguous memory, but upon * failure, fall back to non-contiguous (vmalloc) allocation. * @size: size of the request. * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. * @node: numa node to allocate from * * Uses kmalloc to get the memory but if the allocation fails then falls back * to the vmalloc allocator. Use kvfree for freeing the memory. * * Reclaim modifiers - __GFP_NORETRY, __GFP_REPEAT and __GFP_NOFAIL are not supported * * Any use of gfp flags outside of GFP_KERNEL should be consulted with mm people. */ void *kvmalloc_node(size_t size, gfp_t flags, int node) { gfp_t kmalloc_flags = flags; void *ret; /* * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables) * so the given set of flags has to be compatible. */ WARN_ON_ONCE((flags & GFP_KERNEL) != GFP_KERNEL); /* * Make sure that larger requests are not too disruptive - no OOM * killer and no allocation failure warnings as we have a fallback */ if (size > PAGE_SIZE) kmalloc_flags |= __GFP_NORETRY | __GFP_NOWARN; ret = kmalloc_node(size, kmalloc_flags, node); /* * It doesn't really make sense to fallback to vmalloc for sub page * requests */ if (ret || size <= PAGE_SIZE) return ret; return __vmalloc_node_flags(size, node, flags | __GFP_HIGHMEM); } EXPORT_SYMBOL(kvmalloc_node); void kvfree(const void *addr) { if (is_vmalloc_addr(addr)) vfree(addr); else kfree(addr); } EXPORT_SYMBOL(kvfree); static inline void *__page_rmapping(struct page *page) { unsigned long mapping; mapping = (unsigned long)page->mapping; mapping &= ~PAGE_MAPPING_FLAGS; return (void *)mapping; } /* Neutral page->mapping pointer to address_space or anon_vma or other */ void *page_rmapping(struct page *page) { page = compound_head(page); return __page_rmapping(page); } /* * Return true if this page is mapped into pagetables. * For compound page it returns true if any subpage of compound page is mapped. */ bool page_mapped(struct page *page) { int i; if (likely(!PageCompound(page))) return atomic_read(&page->_mapcount) >= 0; page = compound_head(page); if (atomic_read(compound_mapcount_ptr(page)) >= 0) return true; if (PageHuge(page)) return false; for (i = 0; i < hpage_nr_pages(page); i++) { if (atomic_read(&page[i]._mapcount) >= 0) return true; } return false; } EXPORT_SYMBOL(page_mapped); struct anon_vma *page_anon_vma(struct page *page) { unsigned long mapping; page = compound_head(page); mapping = (unsigned long)page->mapping; if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) return NULL; return __page_rmapping(page); } struct address_space *page_mapping(struct page *page) { struct address_space *mapping; page = compound_head(page); /* This happens if someone calls flush_dcache_page on slab page */ if (unlikely(PageSlab(page))) return NULL; if (unlikely(PageSwapCache(page))) { swp_entry_t entry; entry.val = page_private(page); return swap_address_space(entry); } mapping = page->mapping; if ((unsigned long)mapping & PAGE_MAPPING_ANON) return NULL; return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS); } EXPORT_SYMBOL(page_mapping); /* Slow path of page_mapcount() for compound pages */ int __page_mapcount(struct page *page) { int ret; ret = atomic_read(&page->_mapcount) + 1; /* * For file THP page->_mapcount contains total number of mapping * of the page: no need to look into compound_mapcount. */ if (!PageAnon(page) && !PageHuge(page)) return ret; page = compound_head(page); ret += atomic_read(compound_mapcount_ptr(page)) + 1; if (PageDoubleMap(page)) ret--; return ret; } EXPORT_SYMBOL_GPL(__page_mapcount); int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; int sysctl_overcommit_ratio __read_mostly = 50; unsigned long sysctl_overcommit_kbytes __read_mostly; int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ int overcommit_ratio_handler(struct ctl_table *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { int ret; ret = proc_dointvec(table, write, buffer, lenp, ppos); if (ret == 0 && write) sysctl_overcommit_kbytes = 0; return ret; } int overcommit_kbytes_handler(struct ctl_table *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { int ret; ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); if (ret == 0 && write) sysctl_overcommit_ratio = 0; return ret; } /* * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used */ unsigned long vm_commit_limit(void) { unsigned long allowed; if (sysctl_overcommit_kbytes) allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); else allowed = ((totalram_pages - hugetlb_total_pages()) * sysctl_overcommit_ratio / 100); allowed += total_swap_pages; return allowed; } /* * Make sure vm_committed_as in one cacheline and not cacheline shared with * other variables. It can be updated by several CPUs frequently. */ struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; /* * The global memory commitment made in the system can be a metric * that can be used to drive ballooning decisions when Linux is hosted * as a guest. On Hyper-V, the host implements a policy engine for dynamically * balancing memory across competing virtual machines that are hosted. * Several metrics drive this policy engine including the guest reported * memory commitment. */ unsigned long vm_memory_committed(void) { return percpu_counter_read_positive(&vm_committed_as); } EXPORT_SYMBOL_GPL(vm_memory_committed); /* * Check that a process has enough memory to allocate a new virtual * mapping. 0 means there is enough memory for the allocation to * succeed and -ENOMEM implies there is not. * * We currently support three overcommit policies, which are set via the * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting * * Strict overcommit modes added 2002 Feb 26 by Alan Cox. * Additional code 2002 Jul 20 by Robert Love. * * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. * * Note this is a helper function intended to be used by LSMs which * wish to use this logic. */ int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) { long free, allowed, reserve; VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) < -(s64)vm_committed_as_batch * num_online_cpus(), "memory commitment underflow"); vm_acct_memory(pages); /* * Sometimes we want to use more memory than we have */ if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) return 0; if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { free = global_page_state(NR_FREE_PAGES); free += global_node_page_state(NR_FILE_PAGES); /* * shmem pages shouldn't be counted as free in this * case, they can't be purged, only swapped out, and * that won't affect the overall amount of available * memory in the system. */ free -= global_node_page_state(NR_SHMEM); free += get_nr_swap_pages(); /* * Any slabs which are created with the * SLAB_RECLAIM_ACCOUNT flag claim to have contents * which are reclaimable, under pressure. The dentry * cache and most inode caches should fall into this */ free += global_page_state(NR_SLAB_RECLAIMABLE); /* * Leave reserved pages. The pages are not for anonymous pages. */ if (free <= totalreserve_pages) goto error; else free -= totalreserve_pages; /* * Reserve some for root */ if (!cap_sys_admin) free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); if (free > pages) return 0; goto error; } allowed = vm_commit_limit(); /* * Reserve some for root */ if (!cap_sys_admin) allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); /* * Don't let a single process grow so big a user can't recover */ if (mm) { reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); allowed -= min_t(long, mm->total_vm / 32, reserve); } if (percpu_counter_read_positive(&vm_committed_as) < allowed) return 0; error: vm_unacct_memory(pages); return -ENOMEM; } /** * get_cmdline() - copy the cmdline value to a buffer. * @task: the task whose cmdline value to copy. * @buffer: the buffer to copy to. * @buflen: the length of the buffer. Larger cmdline values are truncated * to this length. * Returns the size of the cmdline field copied. Note that the copy does * not guarantee an ending NULL byte. */ int get_cmdline(struct task_struct *task, char *buffer, int buflen) { int res = 0; unsigned int len; struct mm_struct *mm = get_task_mm(task); unsigned long arg_start, arg_end, env_start, env_end; if (!mm) goto out; if (!mm->arg_end) goto out_mm; /* Shh! No looking before we're done */ down_read(&mm->mmap_sem); arg_start = mm->arg_start; arg_end = mm->arg_end; env_start = mm->env_start; env_end = mm->env_end; up_read(&mm->mmap_sem); len = arg_end - arg_start; if (len > buflen) len = buflen; res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); /* * If the nul at the end of args has been overwritten, then * assume application is using setproctitle(3). */ if (res > 0 && buffer[res-1] != '\0' && len < buflen) { len = strnlen(buffer, res); if (len < res) { res = len; } else { len = env_end - env_start; if (len > buflen - res) len = buflen - res; res += access_process_vm(task, env_start, buffer+res, len, FOLL_FORCE); res = strnlen(buffer, res); } } out_mm: mmput(mm); out: return res; }