// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Swap reorganised 29.12.95, Stephen Tweedie. * kswapd added: 7.1.96 sct * Removed kswapd_ctl limits, and swap out as many pages as needed * to bring the system back to freepages.high: 2.4.97, Rik van Riel. * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). * Multiqueue VM started 5.8.00, Rik van Riel. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for buffer_heads_over_limit */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "swap.h" #define CREATE_TRACE_POINTS #include struct scan_control { /* How many pages shrink_list() should reclaim */ unsigned long nr_to_reclaim; /* * Nodemask of nodes allowed by the caller. If NULL, all nodes * are scanned. */ nodemask_t *nodemask; /* * The memory cgroup that hit its limit and as a result is the * primary target of this reclaim invocation. */ struct mem_cgroup *target_mem_cgroup; /* * Scan pressure balancing between anon and file LRUs */ unsigned long anon_cost; unsigned long file_cost; /* Can active folios be deactivated as part of reclaim? */ #define DEACTIVATE_ANON 1 #define DEACTIVATE_FILE 2 unsigned int may_deactivate:2; unsigned int force_deactivate:1; unsigned int skipped_deactivate:1; /* Writepage batching in laptop mode; RECLAIM_WRITE */ unsigned int may_writepage:1; /* Can mapped folios be reclaimed? */ unsigned int may_unmap:1; /* Can folios be swapped as part of reclaim? */ unsigned int may_swap:1; /* Proactive reclaim invoked by userspace through memory.reclaim */ unsigned int proactive:1; /* * Cgroup memory below memory.low is protected as long as we * don't threaten to OOM. If any cgroup is reclaimed at * reduced force or passed over entirely due to its memory.low * setting (memcg_low_skipped), and nothing is reclaimed as a * result, then go back for one more cycle that reclaims the protected * memory (memcg_low_reclaim) to avert OOM. */ unsigned int memcg_low_reclaim:1; unsigned int memcg_low_skipped:1; unsigned int hibernation_mode:1; /* One of the zones is ready for compaction */ unsigned int compaction_ready:1; /* There is easily reclaimable cold cache in the current node */ unsigned int cache_trim_mode:1; /* The file folios on the current node are dangerously low */ unsigned int file_is_tiny:1; /* Always discard instead of demoting to lower tier memory */ unsigned int no_demotion:1; /* Allocation order */ s8 order; /* Scan (total_size >> priority) pages at once */ s8 priority; /* The highest zone to isolate folios for reclaim from */ s8 reclaim_idx; /* This context's GFP mask */ gfp_t gfp_mask; /* Incremented by the number of inactive pages that were scanned */ unsigned long nr_scanned; /* Number of pages freed so far during a call to shrink_zones() */ unsigned long nr_reclaimed; struct { unsigned int dirty; unsigned int unqueued_dirty; unsigned int congested; unsigned int writeback; unsigned int immediate; unsigned int file_taken; unsigned int taken; } nr; /* for recording the reclaimed slab by now */ struct reclaim_state reclaim_state; }; #ifdef ARCH_HAS_PREFETCHW #define prefetchw_prev_lru_folio(_folio, _base, _field) \ do { \ if ((_folio)->lru.prev != _base) { \ struct folio *prev; \ \ prev = lru_to_folio(&(_folio->lru)); \ prefetchw(&prev->_field); \ } \ } while (0) #else #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) #endif /* * From 0 .. 200. Higher means more swappy. */ int vm_swappiness = 60; static void set_task_reclaim_state(struct task_struct *task, struct reclaim_state *rs) { /* Check for an overwrite */ WARN_ON_ONCE(rs && task->reclaim_state); /* Check for the nulling of an already-nulled member */ WARN_ON_ONCE(!rs && !task->reclaim_state); task->reclaim_state = rs; } LIST_HEAD(shrinker_list); DECLARE_RWSEM(shrinker_rwsem); #ifdef CONFIG_MEMCG static int shrinker_nr_max; /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ static inline int shrinker_map_size(int nr_items) { return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); } static inline int shrinker_defer_size(int nr_items) { return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); } static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, int nid) { return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, lockdep_is_held(&shrinker_rwsem)); } static int expand_one_shrinker_info(struct mem_cgroup *memcg, int map_size, int defer_size, int old_map_size, int old_defer_size) { struct shrinker_info *new, *old; struct mem_cgroup_per_node *pn; int nid; int size = map_size + defer_size; for_each_node(nid) { pn = memcg->nodeinfo[nid]; old = shrinker_info_protected(memcg, nid); /* Not yet online memcg */ if (!old) return 0; new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); if (!new) return -ENOMEM; new->nr_deferred = (atomic_long_t *)(new + 1); new->map = (void *)new->nr_deferred + defer_size; /* map: set all old bits, clear all new bits */ memset(new->map, (int)0xff, old_map_size); memset((void *)new->map + old_map_size, 0, map_size - old_map_size); /* nr_deferred: copy old values, clear all new values */ memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); memset((void *)new->nr_deferred + old_defer_size, 0, defer_size - old_defer_size); rcu_assign_pointer(pn->shrinker_info, new); kvfree_rcu(old, rcu); } return 0; } void free_shrinker_info(struct mem_cgroup *memcg) { struct mem_cgroup_per_node *pn; struct shrinker_info *info; int nid; for_each_node(nid) { pn = memcg->nodeinfo[nid]; info = rcu_dereference_protected(pn->shrinker_info, true); kvfree(info); rcu_assign_pointer(pn->shrinker_info, NULL); } } int alloc_shrinker_info(struct mem_cgroup *memcg) { struct shrinker_info *info; int nid, size, ret = 0; int map_size, defer_size = 0; down_write(&shrinker_rwsem); map_size = shrinker_map_size(shrinker_nr_max); defer_size = shrinker_defer_size(shrinker_nr_max); size = map_size + defer_size; for_each_node(nid) { info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); if (!info) { free_shrinker_info(memcg); ret = -ENOMEM; break; } info->nr_deferred = (atomic_long_t *)(info + 1); info->map = (void *)info->nr_deferred + defer_size; rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); } up_write(&shrinker_rwsem); return ret; } static inline bool need_expand(int nr_max) { return round_up(nr_max, BITS_PER_LONG) > round_up(shrinker_nr_max, BITS_PER_LONG); } static int expand_shrinker_info(int new_id) { int ret = 0; int new_nr_max = new_id + 1; int map_size, defer_size = 0; int old_map_size, old_defer_size = 0; struct mem_cgroup *memcg; if (!need_expand(new_nr_max)) goto out; if (!root_mem_cgroup) goto out; lockdep_assert_held(&shrinker_rwsem); map_size = shrinker_map_size(new_nr_max); defer_size = shrinker_defer_size(new_nr_max); old_map_size = shrinker_map_size(shrinker_nr_max); old_defer_size = shrinker_defer_size(shrinker_nr_max); memcg = mem_cgroup_iter(NULL, NULL, NULL); do { ret = expand_one_shrinker_info(memcg, map_size, defer_size, old_map_size, old_defer_size); if (ret) { mem_cgroup_iter_break(NULL, memcg); goto out; } } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); out: if (!ret) shrinker_nr_max = new_nr_max; return ret; } void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) { if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { struct shrinker_info *info; rcu_read_lock(); info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); /* Pairs with smp mb in shrink_slab() */ smp_mb__before_atomic(); set_bit(shrinker_id, info->map); rcu_read_unlock(); } } static DEFINE_IDR(shrinker_idr); static int prealloc_memcg_shrinker(struct shrinker *shrinker) { int id, ret = -ENOMEM; if (mem_cgroup_disabled()) return -ENOSYS; down_write(&shrinker_rwsem); /* This may call shrinker, so it must use down_read_trylock() */ id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); if (id < 0) goto unlock; if (id >= shrinker_nr_max) { if (expand_shrinker_info(id)) { idr_remove(&shrinker_idr, id); goto unlock; } } shrinker->id = id; ret = 0; unlock: up_write(&shrinker_rwsem); return ret; } static void unregister_memcg_shrinker(struct shrinker *shrinker) { int id = shrinker->id; BUG_ON(id < 0); lockdep_assert_held(&shrinker_rwsem); idr_remove(&shrinker_idr, id); } static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, struct mem_cgroup *memcg) { struct shrinker_info *info; info = shrinker_info_protected(memcg, nid); return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); } static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, struct mem_cgroup *memcg) { struct shrinker_info *info; info = shrinker_info_protected(memcg, nid); return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); } void reparent_shrinker_deferred(struct mem_cgroup *memcg) { int i, nid; long nr; struct mem_cgroup *parent; struct shrinker_info *child_info, *parent_info; parent = parent_mem_cgroup(memcg); if (!parent) parent = root_mem_cgroup; /* Prevent from concurrent shrinker_info expand */ down_read(&shrinker_rwsem); for_each_node(nid) { child_info = shrinker_info_protected(memcg, nid); parent_info = shrinker_info_protected(parent, nid); for (i = 0; i < shrinker_nr_max; i++) { nr = atomic_long_read(&child_info->nr_deferred[i]); atomic_long_add(nr, &parent_info->nr_deferred[i]); } } up_read(&shrinker_rwsem); } static bool cgroup_reclaim(struct scan_control *sc) { return sc->target_mem_cgroup; } static bool global_reclaim(struct scan_control *sc) { return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); } /** * writeback_throttling_sane - is the usual dirty throttling mechanism available? * @sc: scan_control in question * * The normal page dirty throttling mechanism in balance_dirty_pages() is * completely broken with the legacy memcg and direct stalling in * shrink_folio_list() is used for throttling instead, which lacks all the * niceties such as fairness, adaptive pausing, bandwidth proportional * allocation and configurability. * * This function tests whether the vmscan currently in progress can assume * that the normal dirty throttling mechanism is operational. */ static bool writeback_throttling_sane(struct scan_control *sc) { if (!cgroup_reclaim(sc)) return true; #ifdef CONFIG_CGROUP_WRITEBACK if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) return true; #endif return false; } #else static int prealloc_memcg_shrinker(struct shrinker *shrinker) { return -ENOSYS; } static void unregister_memcg_shrinker(struct shrinker *shrinker) { } static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, struct mem_cgroup *memcg) { return 0; } static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, struct mem_cgroup *memcg) { return 0; } static bool cgroup_reclaim(struct scan_control *sc) { return false; } static bool global_reclaim(struct scan_control *sc) { return true; } static bool writeback_throttling_sane(struct scan_control *sc) { return true; } #endif static long xchg_nr_deferred(struct shrinker *shrinker, struct shrink_control *sc) { int nid = sc->nid; if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) nid = 0; if (sc->memcg && (shrinker->flags & SHRINKER_MEMCG_AWARE)) return xchg_nr_deferred_memcg(nid, shrinker, sc->memcg); return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); } static long add_nr_deferred(long nr, struct shrinker *shrinker, struct shrink_control *sc) { int nid = sc->nid; if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) nid = 0; if (sc->memcg && (shrinker->flags & SHRINKER_MEMCG_AWARE)) return add_nr_deferred_memcg(nr, nid, shrinker, sc->memcg); return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); } static bool can_demote(int nid, struct scan_control *sc) { if (!numa_demotion_enabled) return false; if (sc && sc->no_demotion) return false; if (next_demotion_node(nid) == NUMA_NO_NODE) return false; return true; } static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, int nid, struct scan_control *sc) { if (memcg == NULL) { /* * For non-memcg reclaim, is there * space in any swap device? */ if (get_nr_swap_pages() > 0) return true; } else { /* Is the memcg below its swap limit? */ if (mem_cgroup_get_nr_swap_pages(memcg) > 0) return true; } /* * The page can not be swapped. * * Can it be reclaimed from this node via demotion? */ return can_demote(nid, sc); } /* * This misses isolated folios which are not accounted for to save counters. * As the data only determines if reclaim or compaction continues, it is * not expected that isolated folios will be a dominating factor. */ unsigned long zone_reclaimable_pages(struct zone *zone) { unsigned long nr; nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); return nr; } /** * lruvec_lru_size - Returns the number of pages on the given LRU list. * @lruvec: lru vector * @lru: lru to use * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) */ static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) { unsigned long size = 0; int zid; for (zid = 0; zid <= zone_idx; zid++) { struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; if (!managed_zone(zone)) continue; if (!mem_cgroup_disabled()) size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); else size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); } return size; } /* * Add a shrinker callback to be called from the vm. */ static int __prealloc_shrinker(struct shrinker *shrinker) { unsigned int size; int err; if (shrinker->flags & SHRINKER_MEMCG_AWARE) { err = prealloc_memcg_shrinker(shrinker); if (err != -ENOSYS) return err; shrinker->flags &= ~SHRINKER_MEMCG_AWARE; } size = sizeof(*shrinker->nr_deferred); if (shrinker->flags & SHRINKER_NUMA_AWARE) size *= nr_node_ids; shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); if (!shrinker->nr_deferred) return -ENOMEM; return 0; } #ifdef CONFIG_SHRINKER_DEBUG int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) { va_list ap; int err; va_start(ap, fmt); shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); va_end(ap); if (!shrinker->name) return -ENOMEM; err = __prealloc_shrinker(shrinker); if (err) { kfree_const(shrinker->name); shrinker->name = NULL; } return err; } #else int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) { return __prealloc_shrinker(shrinker); } #endif void free_prealloced_shrinker(struct shrinker *shrinker) { #ifdef CONFIG_SHRINKER_DEBUG kfree_const(shrinker->name); shrinker->name = NULL; #endif if (shrinker->flags & SHRINKER_MEMCG_AWARE) { down_write(&shrinker_rwsem); unregister_memcg_shrinker(shrinker); up_write(&shrinker_rwsem); return; } kfree(shrinker->nr_deferred); shrinker->nr_deferred = NULL; } void register_shrinker_prepared(struct shrinker *shrinker) { down_write(&shrinker_rwsem); list_add_tail(&shrinker->list, &shrinker_list); shrinker->flags |= SHRINKER_REGISTERED; shrinker_debugfs_add(shrinker); up_write(&shrinker_rwsem); } static int __register_shrinker(struct shrinker *shrinker) { int err = __prealloc_shrinker(shrinker); if (err) return err; register_shrinker_prepared(shrinker); return 0; } #ifdef CONFIG_SHRINKER_DEBUG int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) { va_list ap; int err; va_start(ap, fmt); shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); va_end(ap); if (!shrinker->name) return -ENOMEM; err = __register_shrinker(shrinker); if (err) { kfree_const(shrinker->name); shrinker->name = NULL; } return err; } #else int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) { return __register_shrinker(shrinker); } #endif EXPORT_SYMBOL(register_shrinker); /* * Remove one */ void unregister_shrinker(struct shrinker *shrinker) { struct dentry *debugfs_entry; if (!(shrinker->flags & SHRINKER_REGISTERED)) return; down_write(&shrinker_rwsem); list_del(&shrinker->list); shrinker->flags &= ~SHRINKER_REGISTERED; if (shrinker->flags & SHRINKER_MEMCG_AWARE) unregister_memcg_shrinker(shrinker); debugfs_entry = shrinker_debugfs_remove(shrinker); up_write(&shrinker_rwsem); debugfs_remove_recursive(debugfs_entry); kfree(shrinker->nr_deferred); shrinker->nr_deferred = NULL; } EXPORT_SYMBOL(unregister_shrinker); /** * synchronize_shrinkers - Wait for all running shrinkers to complete. * * This is equivalent to calling unregister_shrink() and register_shrinker(), * but atomically and with less overhead. This is useful to guarantee that all * shrinker invocations have seen an update, before freeing memory, similar to * rcu. */ void synchronize_shrinkers(void) { down_write(&shrinker_rwsem); up_write(&shrinker_rwsem); } EXPORT_SYMBOL(synchronize_shrinkers); #define SHRINK_BATCH 128 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, struct shrinker *shrinker, int priority) { unsigned long freed = 0; unsigned long long delta; long total_scan; long freeable; long nr; long new_nr; long batch_size = shrinker->batch ? shrinker->batch : SHRINK_BATCH; long scanned = 0, next_deferred; freeable = shrinker->count_objects(shrinker, shrinkctl); if (freeable == 0 || freeable == SHRINK_EMPTY) return freeable; /* * copy the current shrinker scan count into a local variable * and zero it so that other concurrent shrinker invocations * don't also do this scanning work. */ nr = xchg_nr_deferred(shrinker, shrinkctl); if (shrinker->seeks) { delta = freeable >> priority; delta *= 4; do_div(delta, shrinker->seeks); } else { /* * These objects don't require any IO to create. Trim * them aggressively under memory pressure to keep * them from causing refetches in the IO caches. */ delta = freeable / 2; } total_scan = nr >> priority; total_scan += delta; total_scan = min(total_scan, (2 * freeable)); trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, freeable, delta, total_scan, priority); /* * Normally, we should not scan less than batch_size objects in one * pass to avoid too frequent shrinker calls, but if the slab has less * than batch_size objects in total and we are really tight on memory, * we will try to reclaim all available objects, otherwise we can end * up failing allocations although there are plenty of reclaimable * objects spread over several slabs with usage less than the * batch_size. * * We detect the "tight on memory" situations by looking at the total * number of objects we want to scan (total_scan). If it is greater * than the total number of objects on slab (freeable), we must be * scanning at high prio and therefore should try to reclaim as much as * possible. */ while (total_scan >= batch_size || total_scan >= freeable) { unsigned long ret; unsigned long nr_to_scan = min(batch_size, total_scan); shrinkctl->nr_to_scan = nr_to_scan; shrinkctl->nr_scanned = nr_to_scan; ret = shrinker->scan_objects(shrinker, shrinkctl); if (ret == SHRINK_STOP) break; freed += ret; count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); total_scan -= shrinkctl->nr_scanned; scanned += shrinkctl->nr_scanned; cond_resched(); } /* * The deferred work is increased by any new work (delta) that wasn't * done, decreased by old deferred work that was done now. * * And it is capped to two times of the freeable items. */ next_deferred = max_t(long, (nr + delta - scanned), 0); next_deferred = min(next_deferred, (2 * freeable)); /* * move the unused scan count back into the shrinker in a * manner that handles concurrent updates. */ new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); return freed; } #ifdef CONFIG_MEMCG static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg, int priority) { struct shrinker_info *info; unsigned long ret, freed = 0; int i; if (!mem_cgroup_online(memcg)) return 0; if (!down_read_trylock(&shrinker_rwsem)) return 0; info = shrinker_info_protected(memcg, nid); if (unlikely(!info)) goto unlock; for_each_set_bit(i, info->map, shrinker_nr_max) { struct shrink_control sc = { .gfp_mask = gfp_mask, .nid = nid, .memcg = memcg, }; struct shrinker *shrinker; shrinker = idr_find(&shrinker_idr, i); if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { if (!shrinker) clear_bit(i, info->map); continue; } /* Call non-slab shrinkers even though kmem is disabled */ if (!memcg_kmem_online() && !(shrinker->flags & SHRINKER_NONSLAB)) continue; ret = do_shrink_slab(&sc, shrinker, priority); if (ret == SHRINK_EMPTY) { clear_bit(i, info->map); /* * After the shrinker reported that it had no objects to * free, but before we cleared the corresponding bit in * the memcg shrinker map, a new object might have been * added. To make sure, we have the bit set in this * case, we invoke the shrinker one more time and reset * the bit if it reports that it is not empty anymore. * The memory barrier here pairs with the barrier in * set_shrinker_bit(): * * list_lru_add() shrink_slab_memcg() * list_add_tail() clear_bit() * * set_bit() do_shrink_slab() */ smp_mb__after_atomic(); ret = do_shrink_slab(&sc, shrinker, priority); if (ret == SHRINK_EMPTY) ret = 0; else set_shrinker_bit(memcg, nid, i); } freed += ret; if (rwsem_is_contended(&shrinker_rwsem)) { freed = freed ? : 1; break; } } unlock: up_read(&shrinker_rwsem); return freed; } #else /* CONFIG_MEMCG */ static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg, int priority) { return 0; } #endif /* CONFIG_MEMCG */ /** * shrink_slab - shrink slab caches * @gfp_mask: allocation context * @nid: node whose slab caches to target * @memcg: memory cgroup whose slab caches to target * @priority: the reclaim priority * * Call the shrink functions to age shrinkable caches. * * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, * unaware shrinkers will receive a node id of 0 instead. * * @memcg specifies the memory cgroup to target. Unaware shrinkers * are called only if it is the root cgroup. * * @priority is sc->priority, we take the number of objects and >> by priority * in order to get the scan target. * * Returns the number of reclaimed slab objects. */ static unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg, int priority) { unsigned long ret, freed = 0; struct shrinker *shrinker; /* * The root memcg might be allocated even though memcg is disabled * via "cgroup_disable=memory" boot parameter. This could make * mem_cgroup_is_root() return false, then just run memcg slab * shrink, but skip global shrink. This may result in premature * oom. */ if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) return shrink_slab_memcg(gfp_mask, nid, memcg, priority); if (!down_read_trylock(&shrinker_rwsem)) goto out; list_for_each_entry(shrinker, &shrinker_list, list) { struct shrink_control sc = { .gfp_mask = gfp_mask, .nid = nid, .memcg = memcg, }; ret = do_shrink_slab(&sc, shrinker, priority); if (ret == SHRINK_EMPTY) ret = 0; freed += ret; /* * Bail out if someone want to register a new shrinker to * prevent the registration from being stalled for long periods * by parallel ongoing shrinking. */ if (rwsem_is_contended(&shrinker_rwsem)) { freed = freed ? : 1; break; } } up_read(&shrinker_rwsem); out: cond_resched(); return freed; } static unsigned long drop_slab_node(int nid) { unsigned long freed = 0; struct mem_cgroup *memcg = NULL; memcg = mem_cgroup_iter(NULL, NULL, NULL); do { freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); return freed; } void drop_slab(void) { int nid; int shift = 0; unsigned long freed; do { freed = 0; for_each_online_node(nid) { if (fatal_signal_pending(current)) return; freed += drop_slab_node(nid); } } while ((freed >> shift++) > 1); } static int reclaimer_offset(void) { BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD); BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != PGSCAN_DIRECT - PGSCAN_KSWAPD); BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD); BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD); if (current_is_kswapd()) return 0; if (current_is_khugepaged()) return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; } static inline int is_page_cache_freeable(struct folio *folio) { /* * A freeable page cache folio is referenced only by the caller * that isolated the folio, the page cache and optional filesystem * private data at folio->private. */ return folio_ref_count(folio) - folio_test_private(folio) == 1 + folio_nr_pages(folio); } /* * We detected a synchronous write error writing a folio out. Probably * -ENOSPC. We need to propagate that into the address_space for a subsequent * fsync(), msync() or close(). * * The tricky part is that after writepage we cannot touch the mapping: nothing * prevents it from being freed up. But we have a ref on the folio and once * that folio is locked, the mapping is pinned. * * We're allowed to run sleeping folio_lock() here because we know the caller has * __GFP_FS. */ static void handle_write_error(struct address_space *mapping, struct folio *folio, int error) { folio_lock(folio); if (folio_mapping(folio) == mapping) mapping_set_error(mapping, error); folio_unlock(folio); } static bool skip_throttle_noprogress(pg_data_t *pgdat) { int reclaimable = 0, write_pending = 0; int i; /* * If kswapd is disabled, reschedule if necessary but do not * throttle as the system is likely near OOM. */ if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) return true; /* * If there are a lot of dirty/writeback folios then do not * throttle as throttling will occur when the folios cycle * towards the end of the LRU if still under writeback. */ for (i = 0; i < MAX_NR_ZONES; i++) { struct zone *zone = pgdat->node_zones + i; if (!managed_zone(zone)) continue; reclaimable += zone_reclaimable_pages(zone); write_pending += zone_page_state_snapshot(zone, NR_ZONE_WRITE_PENDING); } if (2 * write_pending <= reclaimable) return true; return false; } void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) { wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; long timeout, ret; DEFINE_WAIT(wait); /* * Do not throttle IO workers, kthreads other than kswapd or * workqueues. They may be required for reclaim to make * forward progress (e.g. journalling workqueues or kthreads). */ if (!current_is_kswapd() && current->flags & (PF_IO_WORKER|PF_KTHREAD)) { cond_resched(); return; } /* * These figures are pulled out of thin air. * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many * parallel reclaimers which is a short-lived event so the timeout is * short. Failing to make progress or waiting on writeback are * potentially long-lived events so use a longer timeout. This is shaky * logic as a failure to make progress could be due to anything from * writeback to a slow device to excessive referenced folios at the tail * of the inactive LRU. */ switch(reason) { case VMSCAN_THROTTLE_WRITEBACK: timeout = HZ/10; if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { WRITE_ONCE(pgdat->nr_reclaim_start, node_page_state(pgdat, NR_THROTTLED_WRITTEN)); } break; case VMSCAN_THROTTLE_CONGESTED: fallthrough; case VMSCAN_THROTTLE_NOPROGRESS: if (skip_throttle_noprogress(pgdat)) { cond_resched(); return; } timeout = 1; break; case VMSCAN_THROTTLE_ISOLATED: timeout = HZ/50; break; default: WARN_ON_ONCE(1); timeout = HZ; break; } prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); ret = schedule_timeout(timeout); finish_wait(wqh, &wait); if (reason == VMSCAN_THROTTLE_WRITEBACK) atomic_dec(&pgdat->nr_writeback_throttled); trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), jiffies_to_usecs(timeout - ret), reason); } /* * Account for folios written if tasks are throttled waiting on dirty * folios to clean. If enough folios have been cleaned since throttling * started then wakeup the throttled tasks. */ void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, int nr_throttled) { unsigned long nr_written; node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); /* * This is an inaccurate read as the per-cpu deltas may not * be synchronised. However, given that the system is * writeback throttled, it is not worth taking the penalty * of getting an accurate count. At worst, the throttle * timeout guarantees forward progress. */ nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - READ_ONCE(pgdat->nr_reclaim_start); if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); } /* possible outcome of pageout() */ typedef enum { /* failed to write folio out, folio is locked */ PAGE_KEEP, /* move folio to the active list, folio is locked */ PAGE_ACTIVATE, /* folio has been sent to the disk successfully, folio is unlocked */ PAGE_SUCCESS, /* folio is clean and locked */ PAGE_CLEAN, } pageout_t; /* * pageout is called by shrink_folio_list() for each dirty folio. * Calls ->writepage(). */ static pageout_t pageout(struct folio *folio, struct address_space *mapping, struct swap_iocb **plug) { /* * If the folio is dirty, only perform writeback if that write * will be non-blocking. To prevent this allocation from being * stalled by pagecache activity. But note that there may be * stalls if we need to run get_block(). We could test * PagePrivate for that. * * If this process is currently in __generic_file_write_iter() against * this folio's queue, we can perform writeback even if that * will block. * * If the folio is swapcache, write it back even if that would * block, for some throttling. This happens by accident, because * swap_backing_dev_info is bust: it doesn't reflect the * congestion state of the swapdevs. Easy to fix, if needed. */ if (!is_page_cache_freeable(folio)) return PAGE_KEEP; if (!mapping) { /* * Some data journaling orphaned folios can have * folio->mapping == NULL while being dirty with clean buffers. */ if (folio_test_private(folio)) { if (try_to_free_buffers(folio)) { folio_clear_dirty(folio); pr_info("%s: orphaned folio\n", __func__); return PAGE_CLEAN; } } return PAGE_KEEP; } if (mapping->a_ops->writepage == NULL) return PAGE_ACTIVATE; if (folio_clear_dirty_for_io(folio)) { int res; struct writeback_control wbc = { .sync_mode = WB_SYNC_NONE, .nr_to_write = SWAP_CLUSTER_MAX, .range_start = 0, .range_end = LLONG_MAX, .for_reclaim = 1, .swap_plug = plug, }; folio_set_reclaim(folio); res = mapping->a_ops->writepage(&folio->page, &wbc); if (res < 0) handle_write_error(mapping, folio, res); if (res == AOP_WRITEPAGE_ACTIVATE) { folio_clear_reclaim(folio); return PAGE_ACTIVATE; } if (!folio_test_writeback(folio)) { /* synchronous write or broken a_ops? */ folio_clear_reclaim(folio); } trace_mm_vmscan_write_folio(folio); node_stat_add_folio(folio, NR_VMSCAN_WRITE); return PAGE_SUCCESS; } return PAGE_CLEAN; } /* * Same as remove_mapping, but if the folio is removed from the mapping, it * gets returned with a refcount of 0. */ static int __remove_mapping(struct address_space *mapping, struct folio *folio, bool reclaimed, struct mem_cgroup *target_memcg) { int refcount; void *shadow = NULL; BUG_ON(!folio_test_locked(folio)); BUG_ON(mapping != folio_mapping(folio)); if (!folio_test_swapcache(folio)) spin_lock(&mapping->host->i_lock); xa_lock_irq(&mapping->i_pages); /* * The non racy check for a busy folio. * * Must be careful with the order of the tests. When someone has * a ref to the folio, it may be possible that they dirty it then * drop the reference. So if the dirty flag is tested before the * refcount here, then the following race may occur: * * get_user_pages(&page); * [user mapping goes away] * write_to(page); * !folio_test_dirty(folio) [good] * folio_set_dirty(folio); * folio_put(folio); * !refcount(folio) [good, discard it] * * [oops, our write_to data is lost] * * Reversing the order of the tests ensures such a situation cannot * escape unnoticed. The smp_rmb is needed to ensure the folio->flags * load is not satisfied before that of folio->_refcount. * * Note that if the dirty flag is always set via folio_mark_dirty, * and thus under the i_pages lock, then this ordering is not required. */ refcount = 1 + folio_nr_pages(folio); if (!folio_ref_freeze(folio, refcount)) goto cannot_free; /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ if (unlikely(folio_test_dirty(folio))) { folio_ref_unfreeze(folio, refcount); goto cannot_free; } if (folio_test_swapcache(folio)) { swp_entry_t swap = folio_swap_entry(folio); if (reclaimed && !mapping_exiting(mapping)) shadow = workingset_eviction(folio, target_memcg); __delete_from_swap_cache(folio, swap, shadow); mem_cgroup_swapout(folio, swap); xa_unlock_irq(&mapping->i_pages); put_swap_folio(folio, swap); } else { void (*free_folio)(struct folio *); free_folio = mapping->a_ops->free_folio; /* * Remember a shadow entry for reclaimed file cache in * order to detect refaults, thus thrashing, later on. * * But don't store shadows in an address space that is * already exiting. This is not just an optimization, * inode reclaim needs to empty out the radix tree or * the nodes are lost. Don't plant shadows behind its * back. * * We also don't store shadows for DAX mappings because the * only page cache folios found in these are zero pages * covering holes, and because we don't want to mix DAX * exceptional entries and shadow exceptional entries in the * same address_space. */ if (reclaimed && folio_is_file_lru(folio) && !mapping_exiting(mapping) && !dax_mapping(mapping)) shadow = workingset_eviction(folio, target_memcg); __filemap_remove_folio(folio, shadow); xa_unlock_irq(&mapping->i_pages); if (mapping_shrinkable(mapping)) inode_add_lru(mapping->host); spin_unlock(&mapping->host->i_lock); if (free_folio) free_folio(folio); } return 1; cannot_free: xa_unlock_irq(&mapping->i_pages); if (!folio_test_swapcache(folio)) spin_unlock(&mapping->host->i_lock); return 0; } /** * remove_mapping() - Attempt to remove a folio from its mapping. * @mapping: The address space. * @folio: The folio to remove. * * If the folio is dirty, under writeback or if someone else has a ref * on it, removal will fail. * Return: The number of pages removed from the mapping. 0 if the folio * could not be removed. * Context: The caller should have a single refcount on the folio and * hold its lock. */ long remove_mapping(struct address_space *mapping, struct folio *folio) { if (__remove_mapping(mapping, folio, false, NULL)) { /* * Unfreezing the refcount with 1 effectively * drops the pagecache ref for us without requiring another * atomic operation. */ folio_ref_unfreeze(folio, 1); return folio_nr_pages(folio); } return 0; } /** * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. * @folio: Folio to be returned to an LRU list. * * Add previously isolated @folio to appropriate LRU list. * The folio may still be unevictable for other reasons. * * Context: lru_lock must not be held, interrupts must be enabled. */ void folio_putback_lru(struct folio *folio) { folio_add_lru(folio); folio_put(folio); /* drop ref from isolate */ } enum folio_references { FOLIOREF_RECLAIM, FOLIOREF_RECLAIM_CLEAN, FOLIOREF_KEEP, FOLIOREF_ACTIVATE, }; static enum folio_references folio_check_references(struct folio *folio, struct scan_control *sc) { int referenced_ptes, referenced_folio; unsigned long vm_flags; referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, &vm_flags); referenced_folio = folio_test_clear_referenced(folio); /* * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. * Let the folio, now marked Mlocked, be moved to the unevictable list. */ if (vm_flags & VM_LOCKED) return FOLIOREF_ACTIVATE; /* rmap lock contention: rotate */ if (referenced_ptes == -1) return FOLIOREF_KEEP; if (referenced_ptes) { /* * All mapped folios start out with page table * references from the instantiating fault, so we need * to look twice if a mapped file/anon folio is used more * than once. * * Mark it and spare it for another trip around the * inactive list. Another page table reference will * lead to its activation. * * Note: the mark is set for activated folios as well * so that recently deactivated but used folios are * quickly recovered. */ folio_set_referenced(folio); if (referenced_folio || referenced_ptes > 1) return FOLIOREF_ACTIVATE; /* * Activate file-backed executable folios after first usage. */ if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) return FOLIOREF_ACTIVATE; return FOLIOREF_KEEP; } /* Reclaim if clean, defer dirty folios to writeback */ if (referenced_folio && folio_is_file_lru(folio)) return FOLIOREF_RECLAIM_CLEAN; return FOLIOREF_RECLAIM; } /* Check if a folio is dirty or under writeback */ static void folio_check_dirty_writeback(struct folio *folio, bool *dirty, bool *writeback) { struct address_space *mapping; /* * Anonymous folios are not handled by flushers and must be written * from reclaim context. Do not stall reclaim based on them. * MADV_FREE anonymous folios are put into inactive file list too. * They could be mistakenly treated as file lru. So further anon * test is needed. */ if (!folio_is_file_lru(folio) || (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { *dirty = false; *writeback = false; return; } /* By default assume that the folio flags are accurate */ *dirty = folio_test_dirty(folio); *writeback = folio_test_writeback(folio); /* Verify dirty/writeback state if the filesystem supports it */ if (!folio_test_private(folio)) return; mapping = folio_mapping(folio); if (mapping && mapping->a_ops->is_dirty_writeback) mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); } static struct page *alloc_demote_page(struct page *page, unsigned long private) { struct page *target_page; nodemask_t *allowed_mask; struct migration_target_control *mtc; mtc = (struct migration_target_control *)private; allowed_mask = mtc->nmask; /* * make sure we allocate from the target node first also trying to * demote or reclaim pages from the target node via kswapd if we are * low on free memory on target node. If we don't do this and if * we have free memory on the slower(lower) memtier, we would start * allocating pages from slower(lower) memory tiers without even forcing * a demotion of cold pages from the target memtier. This can result * in the kernel placing hot pages in slower(lower) memory tiers. */ mtc->nmask = NULL; mtc->gfp_mask |= __GFP_THISNODE; target_page = alloc_migration_target(page, (unsigned long)mtc); if (target_page) return target_page; mtc->gfp_mask &= ~__GFP_THISNODE; mtc->nmask = allowed_mask; return alloc_migration_target(page, (unsigned long)mtc); } /* * Take folios on @demote_folios and attempt to demote them to another node. * Folios which are not demoted are left on @demote_folios. */ static unsigned int demote_folio_list(struct list_head *demote_folios, struct pglist_data *pgdat) { int target_nid = next_demotion_node(pgdat->node_id); unsigned int nr_succeeded; nodemask_t allowed_mask; struct migration_target_control mtc = { /* * Allocate from 'node', or fail quickly and quietly. * When this happens, 'page' will likely just be discarded * instead of migrated. */ .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | __GFP_NOMEMALLOC | GFP_NOWAIT, .nid = target_nid, .nmask = &allowed_mask }; if (list_empty(demote_folios)) return 0; if (target_nid == NUMA_NO_NODE) return 0; node_get_allowed_targets(pgdat, &allowed_mask); /* Demotion ignores all cpuset and mempolicy settings */ migrate_pages(demote_folios, alloc_demote_page, NULL, (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, &nr_succeeded); __count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded); return nr_succeeded; } static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) { if (gfp_mask & __GFP_FS) return true; if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) return false; /* * We can "enter_fs" for swap-cache with only __GFP_IO * providing this isn't SWP_FS_OPS. * ->flags can be updated non-atomicially (scan_swap_map_slots), * but that will never affect SWP_FS_OPS, so the data_race * is safe. */ return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); } /* * shrink_folio_list() returns the number of reclaimed pages */ static unsigned int shrink_folio_list(struct list_head *folio_list, struct pglist_data *pgdat, struct scan_control *sc, struct reclaim_stat *stat, bool ignore_references) { LIST_HEAD(ret_folios); LIST_HEAD(free_folios); LIST_HEAD(demote_folios); unsigned int nr_reclaimed = 0; unsigned int pgactivate = 0; bool do_demote_pass; struct swap_iocb *plug = NULL; memset(stat, 0, sizeof(*stat)); cond_resched(); do_demote_pass = can_demote(pgdat->node_id, sc); retry: while (!list_empty(folio_list)) { struct address_space *mapping; struct folio *folio; enum folio_references references = FOLIOREF_RECLAIM; bool dirty, writeback; unsigned int nr_pages; cond_resched(); folio = lru_to_folio(folio_list); list_del(&folio->lru); if (!folio_trylock(folio)) goto keep; VM_BUG_ON_FOLIO(folio_test_active(folio), folio); nr_pages = folio_nr_pages(folio); /* Account the number of base pages */ sc->nr_scanned += nr_pages; if (unlikely(!folio_evictable(folio))) goto activate_locked; if (!sc->may_unmap && folio_mapped(folio)) goto keep_locked; /* folio_update_gen() tried to promote this page? */ if (lru_gen_enabled() && !ignore_references && folio_mapped(folio) && folio_test_referenced(folio)) goto keep_locked; /* * The number of dirty pages determines if a node is marked * reclaim_congested. kswapd will stall and start writing * folios if the tail of the LRU is all dirty unqueued folios. */ folio_check_dirty_writeback(folio, &dirty, &writeback); if (dirty || writeback) stat->nr_dirty += nr_pages; if (dirty && !writeback) stat->nr_unqueued_dirty += nr_pages; /* * Treat this folio as congested if folios are cycling * through the LRU so quickly that the folios marked * for immediate reclaim are making it to the end of * the LRU a second time. */ if (writeback && folio_test_reclaim(folio)) stat->nr_congested += nr_pages; /* * If a folio at the tail of the LRU is under writeback, there * are three cases to consider. * * 1) If reclaim is encountering an excessive number * of folios under writeback and this folio has both * the writeback and reclaim flags set, then it * indicates that folios are being queued for I/O but * are being recycled through the LRU before the I/O * can complete. Waiting on the folio itself risks an * indefinite stall if it is impossible to writeback * the folio due to I/O error or disconnected storage * so instead note that the LRU is being scanned too * quickly and the caller can stall after the folio * list has been processed. * * 2) Global or new memcg reclaim encounters a folio that is * not marked for immediate reclaim, or the caller does not * have __GFP_FS (or __GFP_IO if it's simply going to swap, * not to fs). In this case mark the folio for immediate * reclaim and continue scanning. * * Require may_enter_fs() because we would wait on fs, which * may not have submitted I/O yet. And the loop driver might * enter reclaim, and deadlock if it waits on a folio for * which it is needed to do the write (loop masks off * __GFP_IO|__GFP_FS for this reason); but more thought * would probably show more reasons. * * 3) Legacy memcg encounters a folio that already has the * reclaim flag set. memcg does not have any dirty folio * throttling so we could easily OOM just because too many * folios are in writeback and there is nothing else to * reclaim. Wait for the writeback to complete. * * In cases 1) and 2) we activate the folios to get them out of * the way while we continue scanning for clean folios on the * inactive list and refilling from the active list. The * observation here is that waiting for disk writes is more * expensive than potentially causing reloads down the line. * Since they're marked for immediate reclaim, they won't put * memory pressure on the cache working set any longer than it * takes to write them to disk. */ if (folio_test_writeback(folio)) { /* Case 1 above */ if (current_is_kswapd() && folio_test_reclaim(folio) && test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { stat->nr_immediate += nr_pages; goto activate_locked; /* Case 2 above */ } else if (writeback_throttling_sane(sc) || !folio_test_reclaim(folio) || !may_enter_fs(folio, sc->gfp_mask)) { /* * This is slightly racy - * folio_end_writeback() might have * just cleared the reclaim flag, then * setting the reclaim flag here ends up * interpreted as the readahead flag - but * that does not matter enough to care. * What we do want is for this folio to * have the reclaim flag set next time * memcg reclaim reaches the tests above, * so it will then wait for writeback to * avoid OOM; and it's also appropriate * in global reclaim. */ folio_set_reclaim(folio); stat->nr_writeback += nr_pages; goto activate_locked; /* Case 3 above */ } else { folio_unlock(folio); folio_wait_writeback(folio); /* then go back and try same folio again */ list_add_tail(&folio->lru, folio_list); continue; } } if (!ignore_references) references = folio_check_references(folio, sc); switch (references) { case FOLIOREF_ACTIVATE: goto activate_locked; case FOLIOREF_KEEP: stat->nr_ref_keep += nr_pages; goto keep_locked; case FOLIOREF_RECLAIM: case FOLIOREF_RECLAIM_CLEAN: ; /* try to reclaim the folio below */ } /* * Before reclaiming the folio, try to relocate * its contents to another node. */ if (do_demote_pass && (thp_migration_supported() || !folio_test_large(folio))) { list_add(&folio->lru, &demote_folios); folio_unlock(folio); continue; } /* * Anonymous process memory has backing store? * Try to allocate it some swap space here. * Lazyfree folio could be freed directly */ if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { if (!folio_test_swapcache(folio)) { if (!(sc->gfp_mask & __GFP_IO)) goto keep_locked; if (folio_maybe_dma_pinned(folio)) goto keep_locked; if (folio_test_large(folio)) { /* cannot split folio, skip it */ if (!can_split_folio(folio, NULL)) goto activate_locked; /* * Split folios without a PMD map right * away. Chances are some or all of the * tail pages can be freed without IO. */ if (!folio_entire_mapcount(folio) && split_folio_to_list(folio, folio_list)) goto activate_locked; } if (!add_to_swap(folio)) { if (!folio_test_large(folio)) goto activate_locked_split; /* Fallback to swap normal pages */ if (split_folio_to_list(folio, folio_list)) goto activate_locked; #ifdef CONFIG_TRANSPARENT_HUGEPAGE count_vm_event(THP_SWPOUT_FALLBACK); #endif if (!add_to_swap(folio)) goto activate_locked_split; } } } else if (folio_test_swapbacked(folio) && folio_test_large(folio)) { /* Split shmem folio */ if (split_folio_to_list(folio, folio_list)) goto keep_locked; } /* * If the folio was split above, the tail pages will make * their own pass through this function and be accounted * then. */ if ((nr_pages > 1) && !folio_test_large(folio)) { sc->nr_scanned -= (nr_pages - 1); nr_pages = 1; } /* * The folio is mapped into the page tables of one or more * processes. Try to unmap it here. */ if (folio_mapped(folio)) { enum ttu_flags flags = TTU_BATCH_FLUSH; bool was_swapbacked = folio_test_swapbacked(folio); if (folio_test_pmd_mappable(folio)) flags |= TTU_SPLIT_HUGE_PMD; try_to_unmap(folio, flags); if (folio_mapped(folio)) { stat->nr_unmap_fail += nr_pages; if (!was_swapbacked && folio_test_swapbacked(folio)) stat->nr_lazyfree_fail += nr_pages; goto activate_locked; } } mapping = folio_mapping(folio); if (folio_test_dirty(folio)) { /* * Only kswapd can writeback filesystem folios * to avoid risk of stack overflow. But avoid * injecting inefficient single-folio I/O into * flusher writeback as much as possible: only * write folios when we've encountered many * dirty folios, and when we've already scanned * the rest of the LRU for clean folios and see * the same dirty folios again (with the reclaim * flag set). */ if (folio_is_file_lru(folio) && (!current_is_kswapd() || !folio_test_reclaim(folio) || !test_bit(PGDAT_DIRTY, &pgdat->flags))) { /* * Immediately reclaim when written back. * Similar in principle to folio_deactivate() * except we already have the folio isolated * and know it's dirty */ node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, nr_pages); folio_set_reclaim(folio); goto activate_locked; } if (references == FOLIOREF_RECLAIM_CLEAN) goto keep_locked; if (!may_enter_fs(folio, sc->gfp_mask)) goto keep_locked; if (!sc->may_writepage) goto keep_locked; /* * Folio is dirty. Flush the TLB if a writable entry * potentially exists to avoid CPU writes after I/O * starts and then write it out here. */ try_to_unmap_flush_dirty(); switch (pageout(folio, mapping, &plug)) { case PAGE_KEEP: goto keep_locked; case PAGE_ACTIVATE: goto activate_locked; case PAGE_SUCCESS: stat->nr_pageout += nr_pages; if (folio_test_writeback(folio)) goto keep; if (folio_test_dirty(folio)) goto keep; /* * A synchronous write - probably a ramdisk. Go * ahead and try to reclaim the folio. */ if (!folio_trylock(folio)) goto keep; if (folio_test_dirty(folio) || folio_test_writeback(folio)) goto keep_locked; mapping = folio_mapping(folio); fallthrough; case PAGE_CLEAN: ; /* try to free the folio below */ } } /* * If the folio has buffers, try to free the buffer * mappings associated with this folio. If we succeed * we try to free the folio as well. * * We do this even if the folio is dirty. * filemap_release_folio() does not perform I/O, but it * is possible for a folio to have the dirty flag set, * but it is actually clean (all its buffers are clean). * This happens if the buffers were written out directly, * with submit_bh(). ext3 will do this, as well as * the blockdev mapping. filemap_release_folio() will * discover that cleanness and will drop the buffers * and mark the folio clean - it can be freed. * * Rarely, folios can have buffers and no ->mapping. * These are the folios which were not successfully * invalidated in truncate_cleanup_folio(). We try to * drop those buffers here and if that worked, and the * folio is no longer mapped into process address space * (refcount == 1) it can be freed. Otherwise, leave * the folio on the LRU so it is swappable. */ if (folio_has_private(folio)) { if (!filemap_release_folio(folio, sc->gfp_mask)) goto activate_locked; if (!mapping && folio_ref_count(folio) == 1) { folio_unlock(folio); if (folio_put_testzero(folio)) goto free_it; else { /* * rare race with speculative reference. * the speculative reference will free * this folio shortly, so we may * increment nr_reclaimed here (and * leave it off the LRU). */ nr_reclaimed += nr_pages; continue; } } } if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { /* follow __remove_mapping for reference */ if (!folio_ref_freeze(folio, 1)) goto keep_locked; /* * The folio has only one reference left, which is * from the isolation. After the caller puts the * folio back on the lru and drops the reference, the * folio will be freed anyway. It doesn't matter * which lru it goes on. So we don't bother checking * the dirty flag here. */ count_vm_events(PGLAZYFREED, nr_pages); count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); } else if (!mapping || !__remove_mapping(mapping, folio, true, sc->target_mem_cgroup)) goto keep_locked; folio_unlock(folio); free_it: /* * Folio may get swapped out as a whole, need to account * all pages in it. */ nr_reclaimed += nr_pages; /* * Is there need to periodically free_folio_list? It would * appear not as the counts should be low */ if (unlikely(folio_test_large(folio))) destroy_large_folio(folio); else list_add(&folio->lru, &free_folios); continue; activate_locked_split: /* * The tail pages that are failed to add into swap cache * reach here. Fixup nr_scanned and nr_pages. */ if (nr_pages > 1) { sc->nr_scanned -= (nr_pages - 1); nr_pages = 1; } activate_locked: /* Not a candidate for swapping, so reclaim swap space. */ if (folio_test_swapcache(folio) && (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) folio_free_swap(folio); VM_BUG_ON_FOLIO(folio_test_active(folio), folio); if (!folio_test_mlocked(folio)) { int type = folio_is_file_lru(folio); folio_set_active(folio); stat->nr_activate[type] += nr_pages; count_memcg_folio_events(folio, PGACTIVATE, nr_pages); } keep_locked: folio_unlock(folio); keep: list_add(&folio->lru, &ret_folios); VM_BUG_ON_FOLIO(folio_test_lru(folio) || folio_test_unevictable(folio), folio); } /* 'folio_list' is always empty here */ /* Migrate folios selected for demotion */ nr_reclaimed += demote_folio_list(&demote_folios, pgdat); /* Folios that could not be demoted are still in @demote_folios */ if (!list_empty(&demote_folios)) { /* Folios which weren't demoted go back on @folio_list */ list_splice_init(&demote_folios, folio_list); /* * goto retry to reclaim the undemoted folios in folio_list if * desired. * * Reclaiming directly from top tier nodes is not often desired * due to it breaking the LRU ordering: in general memory * should be reclaimed from lower tier nodes and demoted from * top tier nodes. * * However, disabling reclaim from top tier nodes entirely * would cause ooms in edge scenarios where lower tier memory * is unreclaimable for whatever reason, eg memory being * mlocked or too hot to reclaim. We can disable reclaim * from top tier nodes in proactive reclaim though as that is * not real memory pressure. */ if (!sc->proactive) { do_demote_pass = false; goto retry; } } pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; mem_cgroup_uncharge_list(&free_folios); try_to_unmap_flush(); free_unref_page_list(&free_folios); list_splice(&ret_folios, folio_list); count_vm_events(PGACTIVATE, pgactivate); if (plug) swap_write_unplug(plug); return nr_reclaimed; } unsigned int reclaim_clean_pages_from_list(struct zone *zone, struct list_head *folio_list) { struct scan_control sc = { .gfp_mask = GFP_KERNEL, .may_unmap = 1, }; struct reclaim_stat stat; unsigned int nr_reclaimed; struct folio *folio, *next; LIST_HEAD(clean_folios); unsigned int noreclaim_flag; list_for_each_entry_safe(folio, next, folio_list, lru) { if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && !folio_test_dirty(folio) && !__folio_test_movable(folio) && !folio_test_unevictable(folio)) { folio_clear_active(folio); list_move(&folio->lru, &clean_folios); } } /* * We should be safe here since we are only dealing with file pages and * we are not kswapd and therefore cannot write dirty file pages. But * call memalloc_noreclaim_save() anyway, just in case these conditions * change in the future. */ noreclaim_flag = memalloc_noreclaim_save(); nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, &stat, true); memalloc_noreclaim_restore(noreclaim_flag); list_splice(&clean_folios, folio_list); mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -(long)nr_reclaimed); /* * Since lazyfree pages are isolated from file LRU from the beginning, * they will rotate back to anonymous LRU in the end if it failed to * discard so isolated count will be mismatched. * Compensate the isolated count for both LRU lists. */ mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, stat.nr_lazyfree_fail); mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -(long)stat.nr_lazyfree_fail); return nr_reclaimed; } /* * Update LRU sizes after isolating pages. The LRU size updates must * be complete before mem_cgroup_update_lru_size due to a sanity check. */ static __always_inline void update_lru_sizes(struct lruvec *lruvec, enum lru_list lru, unsigned long *nr_zone_taken) { int zid; for (zid = 0; zid < MAX_NR_ZONES; zid++) { if (!nr_zone_taken[zid]) continue; update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); } } /* * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. * * lruvec->lru_lock is heavily contended. Some of the functions that * shrink the lists perform better by taking out a batch of pages * and working on them outside the LRU lock. * * For pagecache intensive workloads, this function is the hottest * spot in the kernel (apart from copy_*_user functions). * * Lru_lock must be held before calling this function. * * @nr_to_scan: The number of eligible pages to look through on the list. * @lruvec: The LRU vector to pull pages from. * @dst: The temp list to put pages on to. * @nr_scanned: The number of pages that were scanned. * @sc: The scan_control struct for this reclaim session * @lru: LRU list id for isolating * * returns how many pages were moved onto *@dst. */ static unsigned long isolate_lru_folios(unsigned long nr_to_scan, struct lruvec *lruvec, struct list_head *dst, unsigned long *nr_scanned, struct scan_control *sc, enum lru_list lru) { struct list_head *src = &lruvec->lists[lru]; unsigned long nr_taken = 0; unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; unsigned long skipped = 0; unsigned long scan, total_scan, nr_pages; LIST_HEAD(folios_skipped); total_scan = 0; scan = 0; while (scan < nr_to_scan && !list_empty(src)) { struct list_head *move_to = src; struct folio *folio; folio = lru_to_folio(src); prefetchw_prev_lru_folio(folio, src, flags); nr_pages = folio_nr_pages(folio); total_scan += nr_pages; if (folio_zonenum(folio) > sc->reclaim_idx) { nr_skipped[folio_zonenum(folio)] += nr_pages; move_to = &folios_skipped; goto move; } /* * Do not count skipped folios because that makes the function * return with no isolated folios if the LRU mostly contains * ineligible folios. This causes the VM to not reclaim any * folios, triggering a premature OOM. * Account all pages in a folio. */ scan += nr_pages; if (!folio_test_lru(folio)) goto move; if (!sc->may_unmap && folio_mapped(folio)) goto move; /* * Be careful not to clear the lru flag until after we're * sure the folio is not being freed elsewhere -- the * folio release code relies on it. */ if (unlikely(!folio_try_get(folio))) goto move; if (!folio_test_clear_lru(folio)) { /* Another thread is already isolating this folio */ folio_put(folio); goto move; } nr_taken += nr_pages; nr_zone_taken[folio_zonenum(folio)] += nr_pages; move_to = dst; move: list_move(&folio->lru, move_to); } /* * Splice any skipped folios to the start of the LRU list. Note that * this disrupts the LRU order when reclaiming for lower zones but * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX * scanning would soon rescan the same folios to skip and waste lots * of cpu cycles. */ if (!list_empty(&folios_skipped)) { int zid; list_splice(&folios_skipped, src); for (zid = 0; zid < MAX_NR_ZONES; zid++) { if (!nr_skipped[zid]) continue; __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); skipped += nr_skipped[zid]; } } *nr_scanned = total_scan; trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, total_scan, skipped, nr_taken, sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru); update_lru_sizes(lruvec, lru, nr_zone_taken); return nr_taken; } /** * folio_isolate_lru() - Try to isolate a folio from its LRU list. * @folio: Folio to isolate from its LRU list. * * Isolate a @folio from an LRU list and adjust the vmstat statistic * corresponding to whatever LRU list the folio was on. * * The folio will have its LRU flag cleared. If it was found on the * active list, it will have the Active flag set. If it was found on the * unevictable list, it will have the Unevictable flag set. These flags * may need to be cleared by the caller before letting the page go. * * Context: * * (1) Must be called with an elevated refcount on the folio. This is a * fundamental difference from isolate_lru_folios() (which is called * without a stable reference). * (2) The lru_lock must not be held. * (3) Interrupts must be enabled. * * Return: 0 if the folio was removed from an LRU list. * -EBUSY if the folio was not on an LRU list. */ int folio_isolate_lru(struct folio *folio) { int ret = -EBUSY; VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); if (folio_test_clear_lru(folio)) { struct lruvec *lruvec; folio_get(folio); lruvec = folio_lruvec_lock_irq(folio); lruvec_del_folio(lruvec, folio); unlock_page_lruvec_irq(lruvec); ret = 0; } return ret; } /* * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and * then get rescheduled. When there are massive number of tasks doing page * allocation, such sleeping direct reclaimers may keep piling up on each CPU, * the LRU list will go small and be scanned faster than necessary, leading to * unnecessary swapping, thrashing and OOM. */ static int too_many_isolated(struct pglist_data *pgdat, int file, struct scan_control *sc) { unsigned long inactive, isolated; bool too_many; if (current_is_kswapd()) return 0; if (!writeback_throttling_sane(sc)) return 0; if (file) { inactive = node_page_state(pgdat, NR_INACTIVE_FILE); isolated = node_page_state(pgdat, NR_ISOLATED_FILE); } else { inactive = node_page_state(pgdat, NR_INACTIVE_ANON); isolated = node_page_state(pgdat, NR_ISOLATED_ANON); } /* * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they * won't get blocked by normal direct-reclaimers, forming a circular * deadlock. */ if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) inactive >>= 3; too_many = isolated > inactive; /* Wake up tasks throttled due to too_many_isolated. */ if (!too_many) wake_throttle_isolated(pgdat); return too_many; } /* * move_folios_to_lru() moves folios from private @list to appropriate LRU list. * On return, @list is reused as a list of folios to be freed by the caller. * * Returns the number of pages moved to the given lruvec. */ static unsigned int move_folios_to_lru(struct lruvec *lruvec, struct list_head *list) { int nr_pages, nr_moved = 0; LIST_HEAD(folios_to_free); while (!list_empty(list)) { struct folio *folio = lru_to_folio(list); VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); list_del(&folio->lru); if (unlikely(!folio_evictable(folio))) { spin_unlock_irq(&lruvec->lru_lock); folio_putback_lru(folio); spin_lock_irq(&lruvec->lru_lock); continue; } /* * The folio_set_lru needs to be kept here for list integrity. * Otherwise: * #0 move_folios_to_lru #1 release_pages * if (!folio_put_testzero()) * if (folio_put_testzero()) * !lru //skip lru_lock * folio_set_lru() * list_add(&folio->lru,) * list_add(&folio->lru,) */ folio_set_lru(folio); if (unlikely(folio_put_testzero(folio))) { __folio_clear_lru_flags(folio); if (unlikely(folio_test_large(folio))) { spin_unlock_irq(&lruvec->lru_lock); destroy_large_folio(folio); spin_lock_irq(&lruvec->lru_lock); } else list_add(&folio->lru, &folios_to_free); continue; } /* * All pages were isolated from the same lruvec (and isolation * inhibits memcg migration). */ VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); lruvec_add_folio(lruvec, folio); nr_pages = folio_nr_pages(folio); nr_moved += nr_pages; if (folio_test_active(folio)) workingset_age_nonresident(lruvec, nr_pages); } /* * To save our caller's stack, now use input list for pages to free. */ list_splice(&folios_to_free, list); return nr_moved; } /* * If a kernel thread (such as nfsd for loop-back mounts) services a backing * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case * we should not throttle. Otherwise it is safe to do so. */ static int current_may_throttle(void) { return !(current->flags & PF_LOCAL_THROTTLE); } /* * shrink_inactive_list() is a helper for shrink_node(). It returns the number * of reclaimed pages */ static unsigned long shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, struct scan_control *sc, enum lru_list lru) { LIST_HEAD(folio_list); unsigned long nr_scanned; unsigned int nr_reclaimed = 0; unsigned long nr_taken; struct reclaim_stat stat; bool file = is_file_lru(lru); enum vm_event_item item; struct pglist_data *pgdat = lruvec_pgdat(lruvec); bool stalled = false; while (unlikely(too_many_isolated(pgdat, file, sc))) { if (stalled) return 0; /* wait a bit for the reclaimer. */ stalled = true; reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); /* We are about to die and free our memory. Return now. */ if (fatal_signal_pending(current)) return SWAP_CLUSTER_MAX; } lru_add_drain(); spin_lock_irq(&lruvec->lru_lock); nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, &nr_scanned, sc, lru); __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); item = PGSCAN_KSWAPD + reclaimer_offset(); if (!cgroup_reclaim(sc)) __count_vm_events(item, nr_scanned); __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); __count_vm_events(PGSCAN_ANON + file, nr_scanned); spin_unlock_irq(&lruvec->lru_lock); if (nr_taken == 0) return 0; nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); spin_lock_irq(&lruvec->lru_lock); move_folios_to_lru(lruvec, &folio_list); __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); item = PGSTEAL_KSWAPD + reclaimer_offset(); if (!cgroup_reclaim(sc)) __count_vm_events(item, nr_reclaimed); __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); spin_unlock_irq(&lruvec->lru_lock); lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); mem_cgroup_uncharge_list(&folio_list); free_unref_page_list(&folio_list); /* * If dirty folios are scanned that are not queued for IO, it * implies that flushers are not doing their job. This can * happen when memory pressure pushes dirty folios to the end of * the LRU before the dirty limits are breached and the dirty * data has expired. It can also happen when the proportion of * dirty folios grows not through writes but through memory * pressure reclaiming all the clean cache. And in some cases, * the flushers simply cannot keep up with the allocation * rate. Nudge the flusher threads in case they are asleep. */ if (stat.nr_unqueued_dirty == nr_taken) { wakeup_flusher_threads(WB_REASON_VMSCAN); /* * For cgroupv1 dirty throttling is achieved by waking up * the kernel flusher here and later waiting on folios * which are in writeback to finish (see shrink_folio_list()). * * Flusher may not be able to issue writeback quickly * enough for cgroupv1 writeback throttling to work * on a large system. */ if (!writeback_throttling_sane(sc)) reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); } sc->nr.dirty += stat.nr_dirty; sc->nr.congested += stat.nr_congested; sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; sc->nr.writeback += stat.nr_writeback; sc->nr.immediate += stat.nr_immediate; sc->nr.taken += nr_taken; if (file) sc->nr.file_taken += nr_taken; trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, nr_scanned, nr_reclaimed, &stat, sc->priority, file); return nr_reclaimed; } /* * shrink_active_list() moves folios from the active LRU to the inactive LRU. * * We move them the other way if the folio is referenced by one or more * processes. * * If the folios are mostly unmapped, the processing is fast and it is * appropriate to hold lru_lock across the whole operation. But if * the folios are mapped, the processing is slow (folio_referenced()), so * we should drop lru_lock around each folio. It's impossible to balance * this, so instead we remove the folios from the LRU while processing them. * It is safe to rely on the active flag against the non-LRU folios in here * because nobody will play with that bit on a non-LRU folio. * * The downside is that we have to touch folio->_refcount against each folio. * But we had to alter folio->flags anyway. */ static void shrink_active_list(unsigned long nr_to_scan, struct lruvec *lruvec, struct scan_control *sc, enum lru_list lru) { unsigned long nr_taken; unsigned long nr_scanned; unsigned long vm_flags; LIST_HEAD(l_hold); /* The folios which were snipped off */ LIST_HEAD(l_active); LIST_HEAD(l_inactive); unsigned nr_deactivate, nr_activate; unsigned nr_rotated = 0; int file = is_file_lru(lru); struct pglist_data *pgdat = lruvec_pgdat(lruvec); lru_add_drain(); spin_lock_irq(&lruvec->lru_lock); nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, &nr_scanned, sc, lru); __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); if (!cgroup_reclaim(sc)) __count_vm_events(PGREFILL, nr_scanned); __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); spin_unlock_irq(&lruvec->lru_lock); while (!list_empty(&l_hold)) { struct folio *folio; cond_resched(); folio = lru_to_folio(&l_hold); list_del(&folio->lru); if (unlikely(!folio_evictable(folio))) { folio_putback_lru(folio); continue; } if (unlikely(buffer_heads_over_limit)) { if (folio_test_private(folio) && folio_trylock(folio)) { if (folio_test_private(folio)) filemap_release_folio(folio, 0); folio_unlock(folio); } } /* Referenced or rmap lock contention: rotate */ if (folio_referenced(folio, 0, sc->target_mem_cgroup, &vm_flags) != 0) { /* * Identify referenced, file-backed active folios and * give them one more trip around the active list. So * that executable code get better chances to stay in * memory under moderate memory pressure. Anon folios * are not likely to be evicted by use-once streaming * IO, plus JVM can create lots of anon VM_EXEC folios, * so we ignore them here. */ if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { nr_rotated += folio_nr_pages(folio); list_add(&folio->lru, &l_active); continue; } } folio_clear_active(folio); /* we are de-activating */ folio_set_workingset(folio); list_add(&folio->lru, &l_inactive); } /* * Move folios back to the lru list. */ spin_lock_irq(&lruvec->lru_lock); nr_activate = move_folios_to_lru(lruvec, &l_active); nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); /* Keep all free folios in l_active list */ list_splice(&l_inactive, &l_active); __count_vm_events(PGDEACTIVATE, nr_deactivate); __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); spin_unlock_irq(&lruvec->lru_lock); if (nr_rotated) lru_note_cost(lruvec, file, 0, nr_rotated); mem_cgroup_uncharge_list(&l_active); free_unref_page_list(&l_active); trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, nr_deactivate, nr_rotated, sc->priority, file); } static unsigned int reclaim_folio_list(struct list_head *folio_list, struct pglist_data *pgdat) { struct reclaim_stat dummy_stat; unsigned int nr_reclaimed; struct folio *folio; struct scan_control sc = { .gfp_mask = GFP_KERNEL, .may_writepage = 1, .may_unmap = 1, .may_swap = 1, .no_demotion = 1, }; nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false); while (!list_empty(folio_list)) { folio = lru_to_folio(folio_list); list_del(&folio->lru); folio_putback_lru(folio); } return nr_reclaimed; } unsigned long reclaim_pages(struct list_head *folio_list) { int nid; unsigned int nr_reclaimed = 0; LIST_HEAD(node_folio_list); unsigned int noreclaim_flag; if (list_empty(folio_list)) return nr_reclaimed; noreclaim_flag = memalloc_noreclaim_save(); nid = folio_nid(lru_to_folio(folio_list)); do { struct folio *folio = lru_to_folio(folio_list); if (nid == folio_nid(folio)) { folio_clear_active(folio); list_move(&folio->lru, &node_folio_list); continue; } nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); nid = folio_nid(lru_to_folio(folio_list)); } while (!list_empty(folio_list)); nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); memalloc_noreclaim_restore(noreclaim_flag); return nr_reclaimed; } static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, struct lruvec *lruvec, struct scan_control *sc) { if (is_active_lru(lru)) { if (sc->may_deactivate & (1 << is_file_lru(lru))) shrink_active_list(nr_to_scan, lruvec, sc, lru); else sc->skipped_deactivate = 1; return 0; } return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); } /* * The inactive anon list should be small enough that the VM never has * to do too much work. * * The inactive file list should be small enough to leave most memory * to the established workingset on the scan-resistant active list, * but large enough to avoid thrashing the aggregate readahead window. * * Both inactive lists should also be large enough that each inactive * folio has a chance to be referenced again before it is reclaimed. * * If that fails and refaulting is observed, the inactive list grows. * * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios * on this LRU, maintained by the pageout code. An inactive_ratio * of 3 means 3:1 or 25% of the folios are kept on the inactive list. * * total target max * memory ratio inactive * ------------------------------------- * 10MB 1 5MB * 100MB 1 50MB * 1GB 3 250MB * 10GB 10 0.9GB * 100GB 31 3GB * 1TB 101 10GB * 10TB 320 32GB */ static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) { enum lru_list active_lru = inactive_lru + LRU_ACTIVE; unsigned long inactive, active; unsigned long inactive_ratio; unsigned long gb; inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); gb = (inactive + active) >> (30 - PAGE_SHIFT); if (gb) inactive_ratio = int_sqrt(10 * gb); else inactive_ratio = 1; return inactive * inactive_ratio < active; } enum scan_balance { SCAN_EQUAL, SCAN_FRACT, SCAN_ANON, SCAN_FILE, }; static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc) { unsigned long file; struct lruvec *target_lruvec; if (lru_gen_enabled()) return; target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); /* * Flush the memory cgroup stats, so that we read accurate per-memcg * lruvec stats for heuristics. */ mem_cgroup_flush_stats(); /* * Determine the scan balance between anon and file LRUs. */ spin_lock_irq(&target_lruvec->lru_lock); sc->anon_cost = target_lruvec->anon_cost; sc->file_cost = target_lruvec->file_cost; spin_unlock_irq(&target_lruvec->lru_lock); /* * Target desirable inactive:active list ratios for the anon * and file LRU lists. */ if (!sc->force_deactivate) { unsigned long refaults; /* * When refaults are being observed, it means a new * workingset is being established. Deactivate to get * rid of any stale active pages quickly. */ refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) sc->may_deactivate |= DEACTIVATE_ANON; else sc->may_deactivate &= ~DEACTIVATE_ANON; refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) sc->may_deactivate |= DEACTIVATE_FILE; else sc->may_deactivate &= ~DEACTIVATE_FILE; } else sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; /* * If we have plenty of inactive file pages that aren't * thrashing, try to reclaim those first before touching * anonymous pages. */ file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) sc->cache_trim_mode = 1; else sc->cache_trim_mode = 0; /* * Prevent the reclaimer from falling into the cache trap: as * cache pages start out inactive, every cache fault will tip * the scan balance towards the file LRU. And as the file LRU * shrinks, so does the window for rotation from references. * This means we have a runaway feedback loop where a tiny * thrashing file LRU becomes infinitely more attractive than * anon pages. Try to detect this based on file LRU size. */ if (!cgroup_reclaim(sc)) { unsigned long total_high_wmark = 0; unsigned long free, anon; int z; free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); file = node_page_state(pgdat, NR_ACTIVE_FILE) + node_page_state(pgdat, NR_INACTIVE_FILE); for (z = 0; z < MAX_NR_ZONES; z++) { struct zone *zone = &pgdat->node_zones[z]; if (!managed_zone(zone)) continue; total_high_wmark += high_wmark_pages(zone); } /* * Consider anon: if that's low too, this isn't a * runaway file reclaim problem, but rather just * extreme pressure. Reclaim as per usual then. */ anon = node_page_state(pgdat, NR_INACTIVE_ANON); sc->file_is_tiny = file + free <= total_high_wmark && !(sc->may_deactivate & DEACTIVATE_ANON) && anon >> sc->priority; } } /* * Determine how aggressively the anon and file LRU lists should be * scanned. * * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan */ static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, unsigned long *nr) { struct pglist_data *pgdat = lruvec_pgdat(lruvec); struct mem_cgroup *memcg = lruvec_memcg(lruvec); unsigned long anon_cost, file_cost, total_cost; int swappiness = mem_cgroup_swappiness(memcg); u64 fraction[ANON_AND_FILE]; u64 denominator = 0; /* gcc */ enum scan_balance scan_balance; unsigned long ap, fp; enum lru_list lru; /* If we have no swap space, do not bother scanning anon folios. */ if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { scan_balance = SCAN_FILE; goto out; } /* * Global reclaim will swap to prevent OOM even with no * swappiness, but memcg users want to use this knob to * disable swapping for individual groups completely when * using the memory controller's swap limit feature would be * too expensive. */ if (cgroup_reclaim(sc) && !swappiness) { scan_balance = SCAN_FILE; goto out; } /* * Do not apply any pressure balancing cleverness when the * system is close to OOM, scan both anon and file equally * (unless the swappiness setting disagrees with swapping). */ if (!sc->priority && swappiness) { scan_balance = SCAN_EQUAL; goto out; } /* * If the system is almost out of file pages, force-scan anon. */ if (sc->file_is_tiny) { scan_balance = SCAN_ANON; goto out; } /* * If there is enough inactive page cache, we do not reclaim * anything from the anonymous working right now. */ if (sc->cache_trim_mode) { scan_balance = SCAN_FILE; goto out; } scan_balance = SCAN_FRACT; /* * Calculate the pressure balance between anon and file pages. * * The amount of pressure we put on each LRU is inversely * proportional to the cost of reclaiming each list, as * determined by the share of pages that are refaulting, times * the relative IO cost of bringing back a swapped out * anonymous page vs reloading a filesystem page (swappiness). * * Although we limit that influence to ensure no list gets * left behind completely: at least a third of the pressure is * applied, before swappiness. * * With swappiness at 100, anon and file have equal IO cost. */ total_cost = sc->anon_cost + sc->file_cost; anon_cost = total_cost + sc->anon_cost; file_cost = total_cost + sc->file_cost; total_cost = anon_cost + file_cost; ap = swappiness * (total_cost + 1); ap /= anon_cost + 1; fp = (200 - swappiness) * (total_cost + 1); fp /= file_cost + 1; fraction[0] = ap; fraction[1] = fp; denominator = ap + fp; out: for_each_evictable_lru(lru) { int file = is_file_lru(lru); unsigned long lruvec_size; unsigned long low, min; unsigned long scan; lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); mem_cgroup_protection(sc->target_mem_cgroup, memcg, &min, &low); if (min || low) { /* * Scale a cgroup's reclaim pressure by proportioning * its current usage to its memory.low or memory.min * setting. * * This is important, as otherwise scanning aggression * becomes extremely binary -- from nothing as we * approach the memory protection threshold, to totally * nominal as we exceed it. This results in requiring * setting extremely liberal protection thresholds. It * also means we simply get no protection at all if we * set it too low, which is not ideal. * * If there is any protection in place, we reduce scan * pressure by how much of the total memory used is * within protection thresholds. * * There is one special case: in the first reclaim pass, * we skip over all groups that are within their low * protection. If that fails to reclaim enough pages to * satisfy the reclaim goal, we come back and override * the best-effort low protection. However, we still * ideally want to honor how well-behaved groups are in * that case instead of simply punishing them all * equally. As such, we reclaim them based on how much * memory they are using, reducing the scan pressure * again by how much of the total memory used is under * hard protection. */ unsigned long cgroup_size = mem_cgroup_size(memcg); unsigned long protection; /* memory.low scaling, make sure we retry before OOM */ if (!sc->memcg_low_reclaim && low > min) { protection = low; sc->memcg_low_skipped = 1; } else { protection = min; } /* Avoid TOCTOU with earlier protection check */ cgroup_size = max(cgroup_size, protection); scan = lruvec_size - lruvec_size * protection / (cgroup_size + 1); /* * Minimally target SWAP_CLUSTER_MAX pages to keep * reclaim moving forwards, avoiding decrementing * sc->priority further than desirable. */ scan = max(scan, SWAP_CLUSTER_MAX); } else { scan = lruvec_size; } scan >>= sc->priority; /* * If the cgroup's already been deleted, make sure to * scrape out the remaining cache. */ if (!scan && !mem_cgroup_online(memcg)) scan = min(lruvec_size, SWAP_CLUSTER_MAX); switch (scan_balance) { case SCAN_EQUAL: /* Scan lists relative to size */ break; case SCAN_FRACT: /* * Scan types proportional to swappiness and * their relative recent reclaim efficiency. * Make sure we don't miss the last page on * the offlined memory cgroups because of a * round-off error. */ scan = mem_cgroup_online(memcg) ? div64_u64(scan * fraction[file], denominator) : DIV64_U64_ROUND_UP(scan * fraction[file], denominator); break; case SCAN_FILE: case SCAN_ANON: /* Scan one type exclusively */ if ((scan_balance == SCAN_FILE) != file) scan = 0; break; default: /* Look ma, no brain */ BUG(); } nr[lru] = scan; } } /* * Anonymous LRU management is a waste if there is * ultimately no way to reclaim the memory. */ static bool can_age_anon_pages(struct pglist_data *pgdat, struct scan_control *sc) { /* Aging the anon LRU is valuable if swap is present: */ if (total_swap_pages > 0) return true; /* Also valuable if anon pages can be demoted: */ return can_demote(pgdat->node_id, sc); } #ifdef CONFIG_LRU_GEN #ifdef CONFIG_LRU_GEN_ENABLED DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) #else DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) #endif /****************************************************************************** * shorthand helpers ******************************************************************************/ #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) #define DEFINE_MAX_SEQ(lruvec) \ unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) #define DEFINE_MIN_SEQ(lruvec) \ unsigned long min_seq[ANON_AND_FILE] = { \ READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ } #define for_each_gen_type_zone(gen, type, zone) \ for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) { struct pglist_data *pgdat = NODE_DATA(nid); #ifdef CONFIG_MEMCG if (memcg) { struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; /* see the comment in mem_cgroup_lruvec() */ if (!lruvec->pgdat) lruvec->pgdat = pgdat; return lruvec; } #endif VM_WARN_ON_ONCE(!mem_cgroup_disabled()); return &pgdat->__lruvec; } static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) { struct mem_cgroup *memcg = lruvec_memcg(lruvec); struct pglist_data *pgdat = lruvec_pgdat(lruvec); if (!sc->may_swap) return 0; if (!can_demote(pgdat->node_id, sc) && mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) return 0; return mem_cgroup_swappiness(memcg); } static int get_nr_gens(struct lruvec *lruvec, int type) { return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; } static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) { /* see the comment on lru_gen_folio */ return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS && get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) && get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS; } /****************************************************************************** * Bloom filters ******************************************************************************/ /* * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of * bits in a bitmap, k is the number of hash functions and n is the number of * inserted items. * * Page table walkers use one of the two filters to reduce their search space. * To get rid of non-leaf entries that no longer have enough leaf entries, the * aging uses the double-buffering technique to flip to the other filter each * time it produces a new generation. For non-leaf entries that have enough * leaf entries, the aging carries them over to the next generation in * walk_pmd_range(); the eviction also report them when walking the rmap * in lru_gen_look_around(). * * For future optimizations: * 1. It's not necessary to keep both filters all the time. The spare one can be * freed after the RCU grace period and reallocated if needed again. * 2. And when reallocating, it's worth scaling its size according to the number * of inserted entries in the other filter, to reduce the memory overhead on * small systems and false positives on large systems. * 3. Jenkins' hash function is an alternative to Knuth's. */ #define BLOOM_FILTER_SHIFT 15 static inline int filter_gen_from_seq(unsigned long seq) { return seq % NR_BLOOM_FILTERS; } static void get_item_key(void *item, int *key) { u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); key[1] = hash >> BLOOM_FILTER_SHIFT; } static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) { int key[2]; unsigned long *filter; int gen = filter_gen_from_seq(seq); filter = READ_ONCE(lruvec->mm_state.filters[gen]); if (!filter) return true; get_item_key(item, key); return test_bit(key[0], filter) && test_bit(key[1], filter); } static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) { int key[2]; unsigned long *filter; int gen = filter_gen_from_seq(seq); filter = READ_ONCE(lruvec->mm_state.filters[gen]); if (!filter) return; get_item_key(item, key); if (!test_bit(key[0], filter)) set_bit(key[0], filter); if (!test_bit(key[1], filter)) set_bit(key[1], filter); } static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq) { unsigned long *filter; int gen = filter_gen_from_seq(seq); filter = lruvec->mm_state.filters[gen]; if (filter) { bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); return; } filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); WRITE_ONCE(lruvec->mm_state.filters[gen], filter); } /****************************************************************************** * mm_struct list ******************************************************************************/ static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) { static struct lru_gen_mm_list mm_list = { .fifo = LIST_HEAD_INIT(mm_list.fifo), .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), }; #ifdef CONFIG_MEMCG if (memcg) return &memcg->mm_list; #endif VM_WARN_ON_ONCE(!mem_cgroup_disabled()); return &mm_list; } void lru_gen_add_mm(struct mm_struct *mm) { int nid; struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); struct lru_gen_mm_list *mm_list = get_mm_list(memcg); VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); #ifdef CONFIG_MEMCG VM_WARN_ON_ONCE(mm->lru_gen.memcg); mm->lru_gen.memcg = memcg; #endif spin_lock(&mm_list->lock); for_each_node_state(nid, N_MEMORY) { struct lruvec *lruvec = get_lruvec(memcg, nid); /* the first addition since the last iteration */ if (lruvec->mm_state.tail == &mm_list->fifo) lruvec->mm_state.tail = &mm->lru_gen.list; } list_add_tail(&mm->lru_gen.list, &mm_list->fifo); spin_unlock(&mm_list->lock); } void lru_gen_del_mm(struct mm_struct *mm) { int nid; struct lru_gen_mm_list *mm_list; struct mem_cgroup *memcg = NULL; if (list_empty(&mm->lru_gen.list)) return; #ifdef CONFIG_MEMCG memcg = mm->lru_gen.memcg; #endif mm_list = get_mm_list(memcg); spin_lock(&mm_list->lock); for_each_node(nid) { struct lruvec *lruvec = get_lruvec(memcg, nid); /* where the last iteration ended (exclusive) */ if (lruvec->mm_state.tail == &mm->lru_gen.list) lruvec->mm_state.tail = lruvec->mm_state.tail->next; /* where the current iteration continues (inclusive) */ if (lruvec->mm_state.head != &mm->lru_gen.list) continue; lruvec->mm_state.head = lruvec->mm_state.head->next; /* the deletion ends the current iteration */ if (lruvec->mm_state.head == &mm_list->fifo) WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1); } list_del_init(&mm->lru_gen.list); spin_unlock(&mm_list->lock); #ifdef CONFIG_MEMCG mem_cgroup_put(mm->lru_gen.memcg); mm->lru_gen.memcg = NULL; #endif } #ifdef CONFIG_MEMCG void lru_gen_migrate_mm(struct mm_struct *mm) { struct mem_cgroup *memcg; struct task_struct *task = rcu_dereference_protected(mm->owner, true); VM_WARN_ON_ONCE(task->mm != mm); lockdep_assert_held(&task->alloc_lock); /* for mm_update_next_owner() */ if (mem_cgroup_disabled()) return; /* migration can happen before addition */ if (!mm->lru_gen.memcg) return; rcu_read_lock(); memcg = mem_cgroup_from_task(task); rcu_read_unlock(); if (memcg == mm->lru_gen.memcg) return; VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); lru_gen_del_mm(mm); lru_gen_add_mm(mm); } #endif static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last) { int i; int hist; lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); if (walk) { hist = lru_hist_from_seq(walk->max_seq); for (i = 0; i < NR_MM_STATS; i++) { WRITE_ONCE(lruvec->mm_state.stats[hist][i], lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]); walk->mm_stats[i] = 0; } } if (NR_HIST_GENS > 1 && last) { hist = lru_hist_from_seq(lruvec->mm_state.seq + 1); for (i = 0; i < NR_MM_STATS; i++) WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0); } } static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) { int type; unsigned long size = 0; struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) return true; clear_bit(key, &mm->lru_gen.bitmap); for (type = !walk->can_swap; type < ANON_AND_FILE; type++) { size += type ? get_mm_counter(mm, MM_FILEPAGES) : get_mm_counter(mm, MM_ANONPAGES) + get_mm_counter(mm, MM_SHMEMPAGES); } if (size < MIN_LRU_BATCH) return true; return !mmget_not_zero(mm); } static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, struct mm_struct **iter) { bool first = false; bool last = true; struct mm_struct *mm = NULL; struct mem_cgroup *memcg = lruvec_memcg(lruvec); struct lru_gen_mm_list *mm_list = get_mm_list(memcg); struct lru_gen_mm_state *mm_state = &lruvec->mm_state; /* * There are four interesting cases for this page table walker: * 1. It tries to start a new iteration of mm_list with a stale max_seq; * there is nothing left to do. * 2. It's the first of the current generation, and it needs to reset * the Bloom filter for the next generation. * 3. It reaches the end of mm_list, and it needs to increment * mm_state->seq; the iteration is done. * 4. It's the last of the current generation, and it needs to reset the * mm stats counters for the next generation. */ spin_lock(&mm_list->lock); VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq); VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq); VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers); if (walk->max_seq <= mm_state->seq) { if (!*iter) last = false; goto done; } if (!mm_state->nr_walkers) { VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo); mm_state->head = mm_list->fifo.next; first = true; } while (!mm && mm_state->head != &mm_list->fifo) { mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); mm_state->head = mm_state->head->next; /* force scan for those added after the last iteration */ if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) { mm_state->tail = mm_state->head; walk->force_scan = true; } if (should_skip_mm(mm, walk)) mm = NULL; } if (mm_state->head == &mm_list->fifo) WRITE_ONCE(mm_state->seq, mm_state->seq + 1); done: if (*iter && !mm) mm_state->nr_walkers--; if (!*iter && mm) mm_state->nr_walkers++; if (mm_state->nr_walkers) last = false; if (*iter || last) reset_mm_stats(lruvec, walk, last); spin_unlock(&mm_list->lock); if (mm && first) reset_bloom_filter(lruvec, walk->max_seq + 1); if (*iter) mmput_async(*iter); *iter = mm; return last; } static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq) { bool success = false; struct mem_cgroup *memcg = lruvec_memcg(lruvec); struct lru_gen_mm_list *mm_list = get_mm_list(memcg); struct lru_gen_mm_state *mm_state = &lruvec->mm_state; spin_lock(&mm_list->lock); VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq); if (max_seq > mm_state->seq && !mm_state->nr_walkers) { VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo); WRITE_ONCE(mm_state->seq, mm_state->seq + 1); reset_mm_stats(lruvec, NULL, true); success = true; } spin_unlock(&mm_list->lock); return success; } /****************************************************************************** * refault feedback loop ******************************************************************************/ /* * A feedback loop based on Proportional-Integral-Derivative (PID) controller. * * The P term is refaulted/(evicted+protected) from a tier in the generation * currently being evicted; the I term is the exponential moving average of the * P term over the generations previously evicted, using the smoothing factor * 1/2; the D term isn't supported. * * The setpoint (SP) is always the first tier of one type; the process variable * (PV) is either any tier of the other type or any other tier of the same * type. * * The error is the difference between the SP and the PV; the correction is to * turn off protection when SP>PV or turn on protection when SPlrugen; int hist = lru_hist_from_seq(lrugen->min_seq[type]); pos->refaulted = lrugen->avg_refaulted[type][tier] + atomic_long_read(&lrugen->refaulted[hist][type][tier]); pos->total = lrugen->avg_total[type][tier] + atomic_long_read(&lrugen->evicted[hist][type][tier]); if (tier) pos->total += lrugen->protected[hist][type][tier - 1]; pos->gain = gain; } static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) { int hist, tier; struct lru_gen_folio *lrugen = &lruvec->lrugen; bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; lockdep_assert_held(&lruvec->lru_lock); if (!carryover && !clear) return; hist = lru_hist_from_seq(seq); for (tier = 0; tier < MAX_NR_TIERS; tier++) { if (carryover) { unsigned long sum; sum = lrugen->avg_refaulted[type][tier] + atomic_long_read(&lrugen->refaulted[hist][type][tier]); WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); sum = lrugen->avg_total[type][tier] + atomic_long_read(&lrugen->evicted[hist][type][tier]); if (tier) sum += lrugen->protected[hist][type][tier - 1]; WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); } if (clear) { atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); atomic_long_set(&lrugen->evicted[hist][type][tier], 0); if (tier) WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0); } } } static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) { /* * Return true if the PV has a limited number of refaults or a lower * refaulted/total than the SP. */ return pv->refaulted < MIN_LRU_BATCH || pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= (sp->refaulted + 1) * pv->total * pv->gain; } /****************************************************************************** * the aging ******************************************************************************/ /* promote pages accessed through page tables */ static int folio_update_gen(struct folio *folio, int gen) { unsigned long new_flags, old_flags = READ_ONCE(folio->flags); VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); VM_WARN_ON_ONCE(!rcu_read_lock_held()); do { /* lru_gen_del_folio() has isolated this page? */ if (!(old_flags & LRU_GEN_MASK)) { /* for shrink_folio_list() */ new_flags = old_flags | BIT(PG_referenced); continue; } new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); new_flags |= (gen + 1UL) << LRU_GEN_PGOFF; } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; } /* protect pages accessed multiple times through file descriptors */ static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) { int type = folio_is_file_lru(folio); struct lru_gen_folio *lrugen = &lruvec->lrugen; int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); unsigned long new_flags, old_flags = READ_ONCE(folio->flags); VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); do { new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; /* folio_update_gen() has promoted this page? */ if (new_gen >= 0 && new_gen != old_gen) return new_gen; new_gen = (old_gen + 1) % MAX_NR_GENS; new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; /* for folio_end_writeback() */ if (reclaiming) new_flags |= BIT(PG_reclaim); } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); lru_gen_update_size(lruvec, folio, old_gen, new_gen); return new_gen; } static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, int old_gen, int new_gen) { int type = folio_is_file_lru(folio); int zone = folio_zonenum(folio); int delta = folio_nr_pages(folio); VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); walk->batched++; walk->nr_pages[old_gen][type][zone] -= delta; walk->nr_pages[new_gen][type][zone] += delta; } static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk) { int gen, type, zone; struct lru_gen_folio *lrugen = &lruvec->lrugen; walk->batched = 0; for_each_gen_type_zone(gen, type, zone) { enum lru_list lru = type * LRU_INACTIVE_FILE; int delta = walk->nr_pages[gen][type][zone]; if (!delta) continue; walk->nr_pages[gen][type][zone] = 0; WRITE_ONCE(lrugen->nr_pages[gen][type][zone], lrugen->nr_pages[gen][type][zone] + delta); if (lru_gen_is_active(lruvec, gen)) lru += LRU_ACTIVE; __update_lru_size(lruvec, lru, zone, delta); } } static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) { struct address_space *mapping; struct vm_area_struct *vma = args->vma; struct lru_gen_mm_walk *walk = args->private; if (!vma_is_accessible(vma)) return true; if (is_vm_hugetlb_page(vma)) return true; if (!vma_has_recency(vma)) return true; if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) return true; if (vma == get_gate_vma(vma->vm_mm)) return true; if (vma_is_anonymous(vma)) return !walk->can_swap; if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) return true; mapping = vma->vm_file->f_mapping; if (mapping_unevictable(mapping)) return true; if (shmem_mapping(mapping)) return !walk->can_swap; /* to exclude special mappings like dax, etc. */ return !mapping->a_ops->read_folio; } /* * Some userspace memory allocators map many single-page VMAs. Instead of * returning back to the PGD table for each of such VMAs, finish an entire PMD * table to reduce zigzags and improve cache performance. */ static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, unsigned long *vm_start, unsigned long *vm_end) { unsigned long start = round_up(*vm_end, size); unsigned long end = (start | ~mask) + 1; VMA_ITERATOR(vmi, args->mm, start); VM_WARN_ON_ONCE(mask & size); VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); for_each_vma(vmi, args->vma) { if (end && end <= args->vma->vm_start) return false; if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) continue; *vm_start = max(start, args->vma->vm_start); *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; return true; } return false; } static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr) { unsigned long pfn = pte_pfn(pte); VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); if (!pte_present(pte) || is_zero_pfn(pfn)) return -1; if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) return -1; if (WARN_ON_ONCE(!pfn_valid(pfn))) return -1; return pfn; } #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr) { unsigned long pfn = pmd_pfn(pmd); VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) return -1; if (WARN_ON_ONCE(pmd_devmap(pmd))) return -1; if (WARN_ON_ONCE(!pfn_valid(pfn))) return -1; return pfn; } #endif static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, struct pglist_data *pgdat, bool can_swap) { struct folio *folio; /* try to avoid unnecessary memory loads */ if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) return NULL; folio = pfn_folio(pfn); if (folio_nid(folio) != pgdat->node_id) return NULL; if (folio_memcg_rcu(folio) != memcg) return NULL; /* file VMAs can contain anon pages from COW */ if (!folio_is_file_lru(folio) && !can_swap) return NULL; return folio; } static bool suitable_to_scan(int total, int young) { int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); /* suitable if the average number of young PTEs per cacheline is >=1 */ return young * n >= total; } static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, struct mm_walk *args) { int i; pte_t *pte; spinlock_t *ptl; unsigned long addr; int total = 0; int young = 0; struct lru_gen_mm_walk *walk = args->private; struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); VM_WARN_ON_ONCE(pmd_leaf(*pmd)); ptl = pte_lockptr(args->mm, pmd); if (!spin_trylock(ptl)) return false; arch_enter_lazy_mmu_mode(); pte = pte_offset_map(pmd, start & PMD_MASK); restart: for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { unsigned long pfn; struct folio *folio; total++; walk->mm_stats[MM_LEAF_TOTAL]++; pfn = get_pte_pfn(pte[i], args->vma, addr); if (pfn == -1) continue; if (!pte_young(pte[i])) { walk->mm_stats[MM_LEAF_OLD]++; continue; } folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); if (!folio) continue; if (!ptep_test_and_clear_young(args->vma, addr, pte + i)) VM_WARN_ON_ONCE(true); young++; walk->mm_stats[MM_LEAF_YOUNG]++; if (pte_dirty(pte[i]) && !folio_test_dirty(folio) && !(folio_test_anon(folio) && folio_test_swapbacked(folio) && !folio_test_swapcache(folio))) folio_mark_dirty(folio); old_gen = folio_update_gen(folio, new_gen); if (old_gen >= 0 && old_gen != new_gen) update_batch_size(walk, folio, old_gen, new_gen); } if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) goto restart; pte_unmap(pte); arch_leave_lazy_mmu_mode(); spin_unlock(ptl); return suitable_to_scan(total, young); } #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, struct mm_walk *args, unsigned long *bitmap, unsigned long *first) { int i; pmd_t *pmd; spinlock_t *ptl; struct lru_gen_mm_walk *walk = args->private; struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); VM_WARN_ON_ONCE(pud_leaf(*pud)); /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ if (*first == -1) { *first = addr; bitmap_zero(bitmap, MIN_LRU_BATCH); return; } i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); if (i && i <= MIN_LRU_BATCH) { __set_bit(i - 1, bitmap); return; } pmd = pmd_offset(pud, *first); ptl = pmd_lockptr(args->mm, pmd); if (!spin_trylock(ptl)) goto done; arch_enter_lazy_mmu_mode(); do { unsigned long pfn; struct folio *folio; /* don't round down the first address */ addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; pfn = get_pmd_pfn(pmd[i], vma, addr); if (pfn == -1) goto next; if (!pmd_trans_huge(pmd[i])) { if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) pmdp_test_and_clear_young(vma, addr, pmd + i); goto next; } folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); if (!folio) goto next; if (!pmdp_test_and_clear_young(vma, addr, pmd + i)) goto next; walk->mm_stats[MM_LEAF_YOUNG]++; if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) && !(folio_test_anon(folio) && folio_test_swapbacked(folio) && !folio_test_swapcache(folio))) folio_mark_dirty(folio); old_gen = folio_update_gen(folio, new_gen); if (old_gen >= 0 && old_gen != new_gen) update_batch_size(walk, folio, old_gen, new_gen); next: i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; } while (i <= MIN_LRU_BATCH); arch_leave_lazy_mmu_mode(); spin_unlock(ptl); done: *first = -1; } #else static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, struct mm_walk *args, unsigned long *bitmap, unsigned long *first) { } #endif static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, struct mm_walk *args) { int i; pmd_t *pmd; unsigned long next; unsigned long addr; struct vm_area_struct *vma; unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)]; unsigned long first = -1; struct lru_gen_mm_walk *walk = args->private; VM_WARN_ON_ONCE(pud_leaf(*pud)); /* * Finish an entire PMD in two passes: the first only reaches to PTE * tables to avoid taking the PMD lock; the second, if necessary, takes * the PMD lock to clear the accessed bit in PMD entries. */ pmd = pmd_offset(pud, start & PUD_MASK); restart: /* walk_pte_range() may call get_next_vma() */ vma = args->vma; for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { pmd_t val = pmdp_get_lockless(pmd + i); next = pmd_addr_end(addr, end); if (!pmd_present(val) || is_huge_zero_pmd(val)) { walk->mm_stats[MM_LEAF_TOTAL]++; continue; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE if (pmd_trans_huge(val)) { unsigned long pfn = pmd_pfn(val); struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); walk->mm_stats[MM_LEAF_TOTAL]++; if (!pmd_young(val)) { walk->mm_stats[MM_LEAF_OLD]++; continue; } /* try to avoid unnecessary memory loads */ if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) continue; walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); continue; } #endif walk->mm_stats[MM_NONLEAF_TOTAL]++; if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) { if (!pmd_young(val)) continue; walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); } if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i)) continue; walk->mm_stats[MM_NONLEAF_FOUND]++; if (!walk_pte_range(&val, addr, next, args)) continue; walk->mm_stats[MM_NONLEAF_ADDED]++; /* carry over to the next generation */ update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i); } walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) goto restart; } static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, struct mm_walk *args) { int i; pud_t *pud; unsigned long addr; unsigned long next; struct lru_gen_mm_walk *walk = args->private; VM_WARN_ON_ONCE(p4d_leaf(*p4d)); pud = pud_offset(p4d, start & P4D_MASK); restart: for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { pud_t val = READ_ONCE(pud[i]); next = pud_addr_end(addr, end); if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) continue; walk_pmd_range(&val, addr, next, args); /* a racy check to curtail the waiting time */ if (wq_has_sleeper(&walk->lruvec->mm_state.wait)) return 1; if (need_resched() || walk->batched >= MAX_LRU_BATCH) { end = (addr | ~PUD_MASK) + 1; goto done; } } if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) goto restart; end = round_up(end, P4D_SIZE); done: if (!end || !args->vma) return 1; walk->next_addr = max(end, args->vma->vm_start); return -EAGAIN; } static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk) { static const struct mm_walk_ops mm_walk_ops = { .test_walk = should_skip_vma, .p4d_entry = walk_pud_range, }; int err; struct mem_cgroup *memcg = lruvec_memcg(lruvec); walk->next_addr = FIRST_USER_ADDRESS; do { err = -EBUSY; /* folio_update_gen() requires stable folio_memcg() */ if (!mem_cgroup_trylock_pages(memcg)) break; /* the caller might be holding the lock for write */ if (mmap_read_trylock(mm)) { err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); mmap_read_unlock(mm); } mem_cgroup_unlock_pages(); if (walk->batched) { spin_lock_irq(&lruvec->lru_lock); reset_batch_size(lruvec, walk); spin_unlock_irq(&lruvec->lru_lock); } cond_resched(); } while (err == -EAGAIN); } static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) { struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; if (pgdat && current_is_kswapd()) { VM_WARN_ON_ONCE(walk); walk = &pgdat->mm_walk; } else if (!walk && force_alloc) { VM_WARN_ON_ONCE(current_is_kswapd()); walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); } current->reclaim_state->mm_walk = walk; return walk; } static void clear_mm_walk(void) { struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); current->reclaim_state->mm_walk = NULL; if (!current_is_kswapd()) kfree(walk); } static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap) { int zone; int remaining = MAX_LRU_BATCH; struct lru_gen_folio *lrugen = &lruvec->lrugen; int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); if (type == LRU_GEN_ANON && !can_swap) goto done; /* prevent cold/hot inversion if force_scan is true */ for (zone = 0; zone < MAX_NR_ZONES; zone++) { struct list_head *head = &lrugen->folios[old_gen][type][zone]; while (!list_empty(head)) { struct folio *folio = lru_to_folio(head); VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); new_gen = folio_inc_gen(lruvec, folio, false); list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); if (!--remaining) return false; } } done: reset_ctrl_pos(lruvec, type, true); WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); return true; } static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap) { int gen, type, zone; bool success = false; struct lru_gen_folio *lrugen = &lruvec->lrugen; DEFINE_MIN_SEQ(lruvec); VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); /* find the oldest populated generation */ for (type = !can_swap; type < ANON_AND_FILE; type++) { while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { gen = lru_gen_from_seq(min_seq[type]); for (zone = 0; zone < MAX_NR_ZONES; zone++) { if (!list_empty(&lrugen->folios[gen][type][zone])) goto next; } min_seq[type]++; } next: ; } /* see the comment on lru_gen_folio */ if (can_swap) { min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]); min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]); } for (type = !can_swap; type < ANON_AND_FILE; type++) { if (min_seq[type] == lrugen->min_seq[type]) continue; reset_ctrl_pos(lruvec, type, true); WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); success = true; } return success; } static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan) { int prev, next; int type, zone; struct lru_gen_folio *lrugen = &lruvec->lrugen; spin_lock_irq(&lruvec->lru_lock); VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); for (type = ANON_AND_FILE - 1; type >= 0; type--) { if (get_nr_gens(lruvec, type) != MAX_NR_GENS) continue; VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap)); while (!inc_min_seq(lruvec, type, can_swap)) { spin_unlock_irq(&lruvec->lru_lock); cond_resched(); spin_lock_irq(&lruvec->lru_lock); } } /* * Update the active/inactive LRU sizes for compatibility. Both sides of * the current max_seq need to be covered, since max_seq+1 can overlap * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do * overlap, cold/hot inversion happens. */ prev = lru_gen_from_seq(lrugen->max_seq - 1); next = lru_gen_from_seq(lrugen->max_seq + 1); for (type = 0; type < ANON_AND_FILE; type++) { for (zone = 0; zone < MAX_NR_ZONES; zone++) { enum lru_list lru = type * LRU_INACTIVE_FILE; long delta = lrugen->nr_pages[prev][type][zone] - lrugen->nr_pages[next][type][zone]; if (!delta) continue; __update_lru_size(lruvec, lru, zone, delta); __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); } } for (type = 0; type < ANON_AND_FILE; type++) reset_ctrl_pos(lruvec, type, false); WRITE_ONCE(lrugen->timestamps[next], jiffies); /* make sure preceding modifications appear */ smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); spin_unlock_irq(&lruvec->lru_lock); } static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq, struct scan_control *sc, bool can_swap, bool force_scan) { bool success; struct lru_gen_mm_walk *walk; struct mm_struct *mm = NULL; struct lru_gen_folio *lrugen = &lruvec->lrugen; VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq)); /* see the comment in iterate_mm_list() */ if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) { success = false; goto done; } /* * If the hardware doesn't automatically set the accessed bit, fallback * to lru_gen_look_around(), which only clears the accessed bit in a * handful of PTEs. Spreading the work out over a period of time usually * is less efficient, but it avoids bursty page faults. */ if (!arch_has_hw_pte_young() || !get_cap(LRU_GEN_MM_WALK)) { success = iterate_mm_list_nowalk(lruvec, max_seq); goto done; } walk = set_mm_walk(NULL, true); if (!walk) { success = iterate_mm_list_nowalk(lruvec, max_seq); goto done; } walk->lruvec = lruvec; walk->max_seq = max_seq; walk->can_swap = can_swap; walk->force_scan = force_scan; do { success = iterate_mm_list(lruvec, walk, &mm); if (mm) walk_mm(lruvec, mm, walk); cond_resched(); } while (mm); done: if (!success) { if (sc->priority <= DEF_PRIORITY - 2) wait_event_killable(lruvec->mm_state.wait, max_seq < READ_ONCE(lrugen->max_seq)); return false; } VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq)); inc_max_seq(lruvec, can_swap, force_scan); /* either this sees any waiters or they will see updated max_seq */ if (wq_has_sleeper(&lruvec->mm_state.wait)) wake_up_all(&lruvec->mm_state.wait); return true; } /****************************************************************************** * working set protection ******************************************************************************/ static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) { int gen, type, zone; unsigned long total = 0; bool can_swap = get_swappiness(lruvec, sc); struct lru_gen_folio *lrugen = &lruvec->lrugen; struct mem_cgroup *memcg = lruvec_memcg(lruvec); DEFINE_MAX_SEQ(lruvec); DEFINE_MIN_SEQ(lruvec); for (type = !can_swap; type < ANON_AND_FILE; type++) { unsigned long seq; for (seq = min_seq[type]; seq <= max_seq; seq++) { gen = lru_gen_from_seq(seq); for (zone = 0; zone < MAX_NR_ZONES; zone++) total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); } } /* whether the size is big enough to be helpful */ return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; } static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, unsigned long min_ttl) { int gen; unsigned long birth; struct mem_cgroup *memcg = lruvec_memcg(lruvec); DEFINE_MIN_SEQ(lruvec); /* see the comment on lru_gen_folio */ gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]); birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); if (time_is_after_jiffies(birth + min_ttl)) return false; if (!lruvec_is_sizable(lruvec, sc)) return false; mem_cgroup_calculate_protection(NULL, memcg); return !mem_cgroup_below_min(NULL, memcg); } /* to protect the working set of the last N jiffies */ static unsigned long lru_gen_min_ttl __read_mostly; static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) { struct mem_cgroup *memcg; unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); VM_WARN_ON_ONCE(!current_is_kswapd()); /* check the order to exclude compaction-induced reclaim */ if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY) return; memcg = mem_cgroup_iter(NULL, NULL, NULL); do { struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) { mem_cgroup_iter_break(NULL, memcg); return; } cond_resched(); } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); /* * The main goal is to OOM kill if every generation from all memcgs is * younger than min_ttl. However, another possibility is all memcgs are * either too small or below min. */ if (mutex_trylock(&oom_lock)) { struct oom_control oc = { .gfp_mask = sc->gfp_mask, }; out_of_memory(&oc); mutex_unlock(&oom_lock); } } /****************************************************************************** * rmap/PT walk feedback ******************************************************************************/ /* * This function exploits spatial locality when shrink_folio_list() walks the * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If * the scan was done cacheline efficiently, it adds the PMD entry pointing to * the PTE table to the Bloom filter. This forms a feedback loop between the * eviction and the aging. */ void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) { int i; unsigned long start; unsigned long end; struct lru_gen_mm_walk *walk; int young = 0; pte_t *pte = pvmw->pte; unsigned long addr = pvmw->address; struct folio *folio = pfn_folio(pvmw->pfn); struct mem_cgroup *memcg = folio_memcg(folio); struct pglist_data *pgdat = folio_pgdat(folio); struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); DEFINE_MAX_SEQ(lruvec); int old_gen, new_gen = lru_gen_from_seq(max_seq); lockdep_assert_held(pvmw->ptl); VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); if (spin_is_contended(pvmw->ptl)) return; /* avoid taking the LRU lock under the PTL when possible */ walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; start = max(addr & PMD_MASK, pvmw->vma->vm_start); end = min(addr | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1; if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) end = start + MIN_LRU_BATCH * PAGE_SIZE; else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) start = end - MIN_LRU_BATCH * PAGE_SIZE; else { start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; } } /* folio_update_gen() requires stable folio_memcg() */ if (!mem_cgroup_trylock_pages(memcg)) return; arch_enter_lazy_mmu_mode(); pte -= (addr - start) / PAGE_SIZE; for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { unsigned long pfn; pfn = get_pte_pfn(pte[i], pvmw->vma, addr); if (pfn == -1) continue; if (!pte_young(pte[i])) continue; folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap); if (!folio) continue; if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i)) VM_WARN_ON_ONCE(true); young++; if (pte_dirty(pte[i]) && !folio_test_dirty(folio) && !(folio_test_anon(folio) && folio_test_swapbacked(folio) && !folio_test_swapcache(folio))) folio_mark_dirty(folio); if (walk) { old_gen = folio_update_gen(folio, new_gen); if (old_gen >= 0 && old_gen != new_gen) update_batch_size(walk, folio, old_gen, new_gen); continue; } old_gen = folio_lru_gen(folio); if (old_gen < 0) folio_set_referenced(folio); else if (old_gen != new_gen) folio_activate(folio); } arch_leave_lazy_mmu_mode(); mem_cgroup_unlock_pages(); /* feedback from rmap walkers to page table walkers */ if (suitable_to_scan(i, young)) update_bloom_filter(lruvec, max_seq, pvmw->pmd); } /****************************************************************************** * memcg LRU ******************************************************************************/ /* see the comment on MEMCG_NR_GENS */ enum { MEMCG_LRU_NOP, MEMCG_LRU_HEAD, MEMCG_LRU_TAIL, MEMCG_LRU_OLD, MEMCG_LRU_YOUNG, }; #ifdef CONFIG_MEMCG static int lru_gen_memcg_seg(struct lruvec *lruvec) { return READ_ONCE(lruvec->lrugen.seg); } static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) { int seg; int old, new; int bin = get_random_u32_below(MEMCG_NR_BINS); struct pglist_data *pgdat = lruvec_pgdat(lruvec); spin_lock(&pgdat->memcg_lru.lock); VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); seg = 0; new = old = lruvec->lrugen.gen; /* see the comment on MEMCG_NR_GENS */ if (op == MEMCG_LRU_HEAD) seg = MEMCG_LRU_HEAD; else if (op == MEMCG_LRU_TAIL) seg = MEMCG_LRU_TAIL; else if (op == MEMCG_LRU_OLD) new = get_memcg_gen(pgdat->memcg_lru.seq); else if (op == MEMCG_LRU_YOUNG) new = get_memcg_gen(pgdat->memcg_lru.seq + 1); else VM_WARN_ON_ONCE(true); hlist_nulls_del_rcu(&lruvec->lrugen.list); if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); else hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); pgdat->memcg_lru.nr_memcgs[old]--; pgdat->memcg_lru.nr_memcgs[new]++; lruvec->lrugen.gen = new; WRITE_ONCE(lruvec->lrugen.seg, seg); if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); spin_unlock(&pgdat->memcg_lru.lock); } void lru_gen_online_memcg(struct mem_cgroup *memcg) { int gen; int nid; int bin = get_random_u32_below(MEMCG_NR_BINS); for_each_node(nid) { struct pglist_data *pgdat = NODE_DATA(nid); struct lruvec *lruvec = get_lruvec(memcg, nid); spin_lock(&pgdat->memcg_lru.lock); VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); gen = get_memcg_gen(pgdat->memcg_lru.seq); hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); pgdat->memcg_lru.nr_memcgs[gen]++; lruvec->lrugen.gen = gen; spin_unlock(&pgdat->memcg_lru.lock); } } void lru_gen_offline_memcg(struct mem_cgroup *memcg) { int nid; for_each_node(nid) { struct lruvec *lruvec = get_lruvec(memcg, nid); lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); } } void lru_gen_release_memcg(struct mem_cgroup *memcg) { int gen; int nid; for_each_node(nid) { struct pglist_data *pgdat = NODE_DATA(nid); struct lruvec *lruvec = get_lruvec(memcg, nid); spin_lock(&pgdat->memcg_lru.lock); VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); gen = lruvec->lrugen.gen; hlist_nulls_del_rcu(&lruvec->lrugen.list); pgdat->memcg_lru.nr_memcgs[gen]--; if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); spin_unlock(&pgdat->memcg_lru.lock); } } void lru_gen_soft_reclaim(struct lruvec *lruvec) { /* see the comment on MEMCG_NR_GENS */ if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD) lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); } #else /* !CONFIG_MEMCG */ static int lru_gen_memcg_seg(struct lruvec *lruvec) { return 0; } #endif /****************************************************************************** * the eviction ******************************************************************************/ static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx) { bool success; int gen = folio_lru_gen(folio); int type = folio_is_file_lru(folio); int zone = folio_zonenum(folio); int delta = folio_nr_pages(folio); int refs = folio_lru_refs(folio); int tier = lru_tier_from_refs(refs); struct lru_gen_folio *lrugen = &lruvec->lrugen; VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); /* unevictable */ if (!folio_evictable(folio)) { success = lru_gen_del_folio(lruvec, folio, true); VM_WARN_ON_ONCE_FOLIO(!success, folio); folio_set_unevictable(folio); lruvec_add_folio(lruvec, folio); __count_vm_events(UNEVICTABLE_PGCULLED, delta); return true; } /* dirty lazyfree */ if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) { success = lru_gen_del_folio(lruvec, folio, true); VM_WARN_ON_ONCE_FOLIO(!success, folio); folio_set_swapbacked(folio); lruvec_add_folio_tail(lruvec, folio); return true; } /* promoted */ if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { list_move(&folio->lru, &lrugen->folios[gen][type][zone]); return true; } /* protected */ if (tier > tier_idx) { int hist = lru_hist_from_seq(lrugen->min_seq[type]); gen = folio_inc_gen(lruvec, folio, false); list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); WRITE_ONCE(lrugen->protected[hist][type][tier - 1], lrugen->protected[hist][type][tier - 1] + delta); __mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta); return true; } /* waiting for writeback */ if (folio_test_locked(folio) || folio_test_writeback(folio) || (type == LRU_GEN_FILE && folio_test_dirty(folio))) { gen = folio_inc_gen(lruvec, folio, true); list_move(&folio->lru, &lrugen->folios[gen][type][zone]); return true; } return false; } static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) { bool success; /* swapping inhibited */ if (!(sc->gfp_mask & __GFP_IO) && (folio_test_dirty(folio) || (folio_test_anon(folio) && !folio_test_swapcache(folio)))) return false; /* raced with release_pages() */ if (!folio_try_get(folio)) return false; /* raced with another isolation */ if (!folio_test_clear_lru(folio)) { folio_put(folio); return false; } /* see the comment on MAX_NR_TIERS */ if (!folio_test_referenced(folio)) set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0); /* for shrink_folio_list() */ folio_clear_reclaim(folio); folio_clear_referenced(folio); success = lru_gen_del_folio(lruvec, folio, true); VM_WARN_ON_ONCE_FOLIO(!success, folio); return true; } static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, int type, int tier, struct list_head *list) { int gen, zone; enum vm_event_item item; int sorted = 0; int scanned = 0; int isolated = 0; int remaining = MAX_LRU_BATCH; struct lru_gen_folio *lrugen = &lruvec->lrugen; struct mem_cgroup *memcg = lruvec_memcg(lruvec); VM_WARN_ON_ONCE(!list_empty(list)); if (get_nr_gens(lruvec, type) == MIN_NR_GENS) return 0; gen = lru_gen_from_seq(lrugen->min_seq[type]); for (zone = sc->reclaim_idx; zone >= 0; zone--) { LIST_HEAD(moved); int skipped = 0; struct list_head *head = &lrugen->folios[gen][type][zone]; while (!list_empty(head)) { struct folio *folio = lru_to_folio(head); int delta = folio_nr_pages(folio); VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); scanned += delta; if (sort_folio(lruvec, folio, tier)) sorted += delta; else if (isolate_folio(lruvec, folio, sc)) { list_add(&folio->lru, list); isolated += delta; } else { list_move(&folio->lru, &moved); skipped += delta; } if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH) break; } if (skipped) { list_splice(&moved, head); __count_zid_vm_events(PGSCAN_SKIP, zone, skipped); } if (!remaining || isolated >= MIN_LRU_BATCH) break; } item = PGSCAN_KSWAPD + reclaimer_offset(); if (!cgroup_reclaim(sc)) { __count_vm_events(item, isolated); __count_vm_events(PGREFILL, sorted); } __count_memcg_events(memcg, item, isolated); __count_memcg_events(memcg, PGREFILL, sorted); __count_vm_events(PGSCAN_ANON + type, isolated); /* * There might not be eligible folios due to reclaim_idx. Check the * remaining to prevent livelock if it's not making progress. */ return isolated || !remaining ? scanned : 0; } static int get_tier_idx(struct lruvec *lruvec, int type) { int tier; struct ctrl_pos sp, pv; /* * To leave a margin for fluctuations, use a larger gain factor (1:2). * This value is chosen because any other tier would have at least twice * as many refaults as the first tier. */ read_ctrl_pos(lruvec, type, 0, 1, &sp); for (tier = 1; tier < MAX_NR_TIERS; tier++) { read_ctrl_pos(lruvec, type, tier, 2, &pv); if (!positive_ctrl_err(&sp, &pv)) break; } return tier - 1; } static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx) { int type, tier; struct ctrl_pos sp, pv; int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness }; /* * Compare the first tier of anon with that of file to determine which * type to scan. Also need to compare other tiers of the selected type * with the first tier of the other type to determine the last tier (of * the selected type) to evict. */ read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp); read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv); type = positive_ctrl_err(&sp, &pv); read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp); for (tier = 1; tier < MAX_NR_TIERS; tier++) { read_ctrl_pos(lruvec, type, tier, gain[type], &pv); if (!positive_ctrl_err(&sp, &pv)) break; } *tier_idx = tier - 1; return type; } static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, int *type_scanned, struct list_head *list) { int i; int type; int scanned; int tier = -1; DEFINE_MIN_SEQ(lruvec); /* * Try to make the obvious choice first. When anon and file are both * available from the same generation, interpret swappiness 1 as file * first and 200 as anon first. */ if (!swappiness) type = LRU_GEN_FILE; else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE]) type = LRU_GEN_ANON; else if (swappiness == 1) type = LRU_GEN_FILE; else if (swappiness == 200) type = LRU_GEN_ANON; else type = get_type_to_scan(lruvec, swappiness, &tier); for (i = !swappiness; i < ANON_AND_FILE; i++) { if (tier < 0) tier = get_tier_idx(lruvec, type); scanned = scan_folios(lruvec, sc, type, tier, list); if (scanned) break; type = !type; tier = -1; } *type_scanned = type; return scanned; } static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) { int type; int scanned; int reclaimed; LIST_HEAD(list); LIST_HEAD(clean); struct folio *folio; struct folio *next; enum vm_event_item item; struct reclaim_stat stat; struct lru_gen_mm_walk *walk; bool skip_retry = false; struct mem_cgroup *memcg = lruvec_memcg(lruvec); struct pglist_data *pgdat = lruvec_pgdat(lruvec); spin_lock_irq(&lruvec->lru_lock); scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); scanned += try_to_inc_min_seq(lruvec, swappiness); if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS) scanned = 0; spin_unlock_irq(&lruvec->lru_lock); if (list_empty(&list)) return scanned; retry: reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); sc->nr_reclaimed += reclaimed; list_for_each_entry_safe_reverse(folio, next, &list, lru) { if (!folio_evictable(folio)) { list_del(&folio->lru); folio_putback_lru(folio); continue; } if (folio_test_reclaim(folio) && (folio_test_dirty(folio) || folio_test_writeback(folio))) { /* restore LRU_REFS_FLAGS cleared by isolate_folio() */ if (folio_test_workingset(folio)) folio_set_referenced(folio); continue; } if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) || folio_mapped(folio) || folio_test_locked(folio) || folio_test_dirty(folio) || folio_test_writeback(folio)) { /* don't add rejected folios to the oldest generation */ set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, BIT(PG_active)); continue; } /* retry folios that may have missed folio_rotate_reclaimable() */ list_move(&folio->lru, &clean); sc->nr_scanned -= folio_nr_pages(folio); } spin_lock_irq(&lruvec->lru_lock); move_folios_to_lru(lruvec, &list); walk = current->reclaim_state->mm_walk; if (walk && walk->batched) reset_batch_size(lruvec, walk); item = PGSTEAL_KSWAPD + reclaimer_offset(); if (!cgroup_reclaim(sc)) __count_vm_events(item, reclaimed); __count_memcg_events(memcg, item, reclaimed); __count_vm_events(PGSTEAL_ANON + type, reclaimed); spin_unlock_irq(&lruvec->lru_lock); mem_cgroup_uncharge_list(&list); free_unref_page_list(&list); INIT_LIST_HEAD(&list); list_splice_init(&clean, &list); if (!list_empty(&list)) { skip_retry = true; goto retry; } return scanned; } static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan) { int gen, type, zone; unsigned long old = 0; unsigned long young = 0; unsigned long total = 0; struct lru_gen_folio *lrugen = &lruvec->lrugen; struct mem_cgroup *memcg = lruvec_memcg(lruvec); DEFINE_MIN_SEQ(lruvec); /* whether this lruvec is completely out of cold folios */ if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) { *nr_to_scan = 0; return true; } for (type = !can_swap; type < ANON_AND_FILE; type++) { unsigned long seq; for (seq = min_seq[type]; seq <= max_seq; seq++) { unsigned long size = 0; gen = lru_gen_from_seq(seq); for (zone = 0; zone < MAX_NR_ZONES; zone++) size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); total += size; if (seq == max_seq) young += size; else if (seq + MIN_NR_GENS == max_seq) old += size; } } /* try to scrape all its memory if this memcg was deleted */ *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total; /* * The aging tries to be lazy to reduce the overhead, while the eviction * stalls when the number of generations reaches MIN_NR_GENS. Hence, the * ideal number of generations is MIN_NR_GENS+1. */ if (min_seq[!can_swap] + MIN_NR_GENS < max_seq) return false; /* * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1) * of the total number of pages for each generation. A reasonable range * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The * aging cares about the upper bound of hot pages, while the eviction * cares about the lower bound of cold pages. */ if (young * MIN_NR_GENS > total) return true; if (old * (MIN_NR_GENS + 2) < total) return true; return false; } /* * For future optimizations: * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg * reclaim. */ static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap) { unsigned long nr_to_scan; struct mem_cgroup *memcg = lruvec_memcg(lruvec); DEFINE_MAX_SEQ(lruvec); if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) return 0; if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan)) return nr_to_scan; /* skip the aging path at the default priority */ if (sc->priority == DEF_PRIORITY) return nr_to_scan; /* skip this lruvec as it's low on cold folios */ return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0; } static unsigned long get_nr_to_reclaim(struct scan_control *sc) { /* don't abort memcg reclaim to ensure fairness */ if (!global_reclaim(sc)) return -1; return max(sc->nr_to_reclaim, compact_gap(sc->order)); } static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) { long nr_to_scan; unsigned long scanned = 0; unsigned long nr_to_reclaim = get_nr_to_reclaim(sc); int swappiness = get_swappiness(lruvec, sc); /* clean file folios are more likely to exist */ if (swappiness && !(sc->gfp_mask & __GFP_IO)) swappiness = 1; while (true) { int delta; nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); if (nr_to_scan <= 0) break; delta = evict_folios(lruvec, sc, swappiness); if (!delta) break; scanned += delta; if (scanned >= nr_to_scan) break; if (sc->nr_reclaimed >= nr_to_reclaim) break; cond_resched(); } /* whether try_to_inc_max_seq() was successful */ return nr_to_scan < 0; } static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) { bool success; unsigned long scanned = sc->nr_scanned; unsigned long reclaimed = sc->nr_reclaimed; int seg = lru_gen_memcg_seg(lruvec); struct mem_cgroup *memcg = lruvec_memcg(lruvec); struct pglist_data *pgdat = lruvec_pgdat(lruvec); /* see the comment on MEMCG_NR_GENS */ if (!lruvec_is_sizable(lruvec, sc)) return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; mem_cgroup_calculate_protection(NULL, memcg); if (mem_cgroup_below_min(NULL, memcg)) return MEMCG_LRU_YOUNG; if (mem_cgroup_below_low(NULL, memcg)) { /* see the comment on MEMCG_NR_GENS */ if (seg != MEMCG_LRU_TAIL) return MEMCG_LRU_TAIL; memcg_memory_event(memcg, MEMCG_LOW); } success = try_to_shrink_lruvec(lruvec, sc); shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); if (!sc->proactive) vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, sc->nr_reclaimed - reclaimed); sc->nr_reclaimed += current->reclaim_state->reclaimed_slab; current->reclaim_state->reclaimed_slab = 0; return success ? MEMCG_LRU_YOUNG : 0; } #ifdef CONFIG_MEMCG static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) { int op; int gen; int bin; int first_bin; struct lruvec *lruvec; struct lru_gen_folio *lrugen; struct mem_cgroup *memcg; const struct hlist_nulls_node *pos; unsigned long nr_to_reclaim = get_nr_to_reclaim(sc); bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); restart: op = 0; memcg = NULL; gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); rcu_read_lock(); hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { if (op) lru_gen_rotate_memcg(lruvec, op); mem_cgroup_put(memcg); lruvec = container_of(lrugen, struct lruvec, lrugen); memcg = lruvec_memcg(lruvec); if (!mem_cgroup_tryget(memcg)) { op = 0; memcg = NULL; continue; } rcu_read_unlock(); op = shrink_one(lruvec, sc); rcu_read_lock(); if (sc->nr_reclaimed >= nr_to_reclaim) break; } rcu_read_unlock(); if (op) lru_gen_rotate_memcg(lruvec, op); mem_cgroup_put(memcg); if (sc->nr_reclaimed >= nr_to_reclaim) return; /* restart if raced with lru_gen_rotate_memcg() */ if (gen != get_nulls_value(pos)) goto restart; /* try the rest of the bins of the current generation */ bin = get_memcg_bin(bin + 1); if (bin != first_bin) goto restart; } static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) { struct blk_plug plug; VM_WARN_ON_ONCE(global_reclaim(sc)); VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); lru_add_drain(); blk_start_plug(&plug); set_mm_walk(NULL, sc->proactive); if (try_to_shrink_lruvec(lruvec, sc)) lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); clear_mm_walk(); blk_finish_plug(&plug); } #else /* !CONFIG_MEMCG */ static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) { BUILD_BUG(); } static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) { BUILD_BUG(); } #endif static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) { int priority; unsigned long reclaimable; struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) return; /* * Determine the initial priority based on ((total / MEMCG_NR_GENS) >> * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the * estimated reclaimed_to_scanned_ratio = inactive / total. */ reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); if (get_swappiness(lruvec, sc)) reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); reclaimable /= MEMCG_NR_GENS; /* round down reclaimable and round up sc->nr_to_reclaim */ priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); sc->priority = clamp(priority, 0, DEF_PRIORITY); } static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) { struct blk_plug plug; unsigned long reclaimed = sc->nr_reclaimed; VM_WARN_ON_ONCE(!global_reclaim(sc)); /* * Unmapped clean folios are already prioritized. Scanning for more of * them is likely futile and can cause high reclaim latency when there * is a large number of memcgs. */ if (!sc->may_writepage || !sc->may_unmap) goto done; lru_add_drain(); blk_start_plug(&plug); set_mm_walk(pgdat, sc->proactive); set_initial_priority(pgdat, sc); if (current_is_kswapd()) sc->nr_reclaimed = 0; if (mem_cgroup_disabled()) shrink_one(&pgdat->__lruvec, sc); else shrink_many(pgdat, sc); if (current_is_kswapd()) sc->nr_reclaimed += reclaimed; clear_mm_walk(); blk_finish_plug(&plug); done: /* kswapd should never fail */ pgdat->kswapd_failures = 0; } /****************************************************************************** * state change ******************************************************************************/ static bool __maybe_unused state_is_valid(struct lruvec *lruvec) { struct lru_gen_folio *lrugen = &lruvec->lrugen; if (lrugen->enabled) { enum lru_list lru; for_each_evictable_lru(lru) { if (!list_empty(&lruvec->lists[lru])) return false; } } else { int gen, type, zone; for_each_gen_type_zone(gen, type, zone) { if (!list_empty(&lrugen->folios[gen][type][zone])) return false; } } return true; } static bool fill_evictable(struct lruvec *lruvec) { enum lru_list lru; int remaining = MAX_LRU_BATCH; for_each_evictable_lru(lru) { int type = is_file_lru(lru); bool active = is_active_lru(lru); struct list_head *head = &lruvec->lists[lru]; while (!list_empty(head)) { bool success; struct folio *folio = lru_to_folio(head); VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); lruvec_del_folio(lruvec, folio); success = lru_gen_add_folio(lruvec, folio, false); VM_WARN_ON_ONCE(!success); if (!--remaining) return false; } } return true; } static bool drain_evictable(struct lruvec *lruvec) { int gen, type, zone; int remaining = MAX_LRU_BATCH; for_each_gen_type_zone(gen, type, zone) { struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; while (!list_empty(head)) { bool success; struct folio *folio = lru_to_folio(head); VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); success = lru_gen_del_folio(lruvec, folio, false); VM_WARN_ON_ONCE(!success); lruvec_add_folio(lruvec, folio); if (!--remaining) return false; } } return true; } static void lru_gen_change_state(bool enabled) { static DEFINE_MUTEX(state_mutex); struct mem_cgroup *memcg; cgroup_lock(); cpus_read_lock(); get_online_mems(); mutex_lock(&state_mutex); if (enabled == lru_gen_enabled()) goto unlock; if (enabled) static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); else static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); memcg = mem_cgroup_iter(NULL, NULL, NULL); do { int nid; for_each_node(nid) { struct lruvec *lruvec = get_lruvec(memcg, nid); spin_lock_irq(&lruvec->lru_lock); VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); VM_WARN_ON_ONCE(!state_is_valid(lruvec)); lruvec->lrugen.enabled = enabled; while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { spin_unlock_irq(&lruvec->lru_lock); cond_resched(); spin_lock_irq(&lruvec->lru_lock); } spin_unlock_irq(&lruvec->lru_lock); } cond_resched(); } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); unlock: mutex_unlock(&state_mutex); put_online_mems(); cpus_read_unlock(); cgroup_unlock(); } /****************************************************************************** * sysfs interface ******************************************************************************/ static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); } /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t len) { unsigned int msecs; if (kstrtouint(buf, 0, &msecs)) return -EINVAL; WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); return len; } static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR( min_ttl_ms, 0644, show_min_ttl, store_min_ttl ); static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { unsigned int caps = 0; if (get_cap(LRU_GEN_CORE)) caps |= BIT(LRU_GEN_CORE); if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK)) caps |= BIT(LRU_GEN_MM_WALK); if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) caps |= BIT(LRU_GEN_NONLEAF_YOUNG); return sysfs_emit(buf, "0x%04x\n", caps); } /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t len) { int i; unsigned int caps; if (tolower(*buf) == 'n') caps = 0; else if (tolower(*buf) == 'y') caps = -1; else if (kstrtouint(buf, 0, &caps)) return -EINVAL; for (i = 0; i < NR_LRU_GEN_CAPS; i++) { bool enabled = caps & BIT(i); if (i == LRU_GEN_CORE) lru_gen_change_state(enabled); else if (enabled) static_branch_enable(&lru_gen_caps[i]); else static_branch_disable(&lru_gen_caps[i]); } return len; } static struct kobj_attribute lru_gen_enabled_attr = __ATTR( enabled, 0644, show_enabled, store_enabled ); static struct attribute *lru_gen_attrs[] = { &lru_gen_min_ttl_attr.attr, &lru_gen_enabled_attr.attr, NULL }; static struct attribute_group lru_gen_attr_group = { .name = "lru_gen", .attrs = lru_gen_attrs, }; /****************************************************************************** * debugfs interface ******************************************************************************/ static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) { struct mem_cgroup *memcg; loff_t nr_to_skip = *pos; m->private = kvmalloc(PATH_MAX, GFP_KERNEL); if (!m->private) return ERR_PTR(-ENOMEM); memcg = mem_cgroup_iter(NULL, NULL, NULL); do { int nid; for_each_node_state(nid, N_MEMORY) { if (!nr_to_skip--) return get_lruvec(memcg, nid); } } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); return NULL; } static void lru_gen_seq_stop(struct seq_file *m, void *v) { if (!IS_ERR_OR_NULL(v)) mem_cgroup_iter_break(NULL, lruvec_memcg(v)); kvfree(m->private); m->private = NULL; } static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) { int nid = lruvec_pgdat(v)->node_id; struct mem_cgroup *memcg = lruvec_memcg(v); ++*pos; nid = next_memory_node(nid); if (nid == MAX_NUMNODES) { memcg = mem_cgroup_iter(NULL, memcg, NULL); if (!memcg) return NULL; nid = first_memory_node; } return get_lruvec(memcg, nid); } static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, unsigned long max_seq, unsigned long *min_seq, unsigned long seq) { int i; int type, tier; int hist = lru_hist_from_seq(seq); struct lru_gen_folio *lrugen = &lruvec->lrugen; for (tier = 0; tier < MAX_NR_TIERS; tier++) { seq_printf(m, " %10d", tier); for (type = 0; type < ANON_AND_FILE; type++) { const char *s = " "; unsigned long n[3] = {}; if (seq == max_seq) { s = "RT "; n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); n[1] = READ_ONCE(lrugen->avg_total[type][tier]); } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { s = "rep"; n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); if (tier) n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]); } for (i = 0; i < 3; i++) seq_printf(m, " %10lu%c", n[i], s[i]); } seq_putc(m, '\n'); } seq_puts(m, " "); for (i = 0; i < NR_MM_STATS; i++) { const char *s = " "; unsigned long n = 0; if (seq == max_seq && NR_HIST_GENS == 1) { s = "LOYNFA"; n = READ_ONCE(lruvec->mm_state.stats[hist][i]); } else if (seq != max_seq && NR_HIST_GENS > 1) { s = "loynfa"; n = READ_ONCE(lruvec->mm_state.stats[hist][i]); } seq_printf(m, " %10lu%c", n, s[i]); } seq_putc(m, '\n'); } /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ static int lru_gen_seq_show(struct seq_file *m, void *v) { unsigned long seq; bool full = !debugfs_real_fops(m->file)->write; struct lruvec *lruvec = v; struct lru_gen_folio *lrugen = &lruvec->lrugen; int nid = lruvec_pgdat(lruvec)->node_id; struct mem_cgroup *memcg = lruvec_memcg(lruvec); DEFINE_MAX_SEQ(lruvec); DEFINE_MIN_SEQ(lruvec); if (nid == first_memory_node) { const char *path = memcg ? m->private : ""; #ifdef CONFIG_MEMCG if (memcg) cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); #endif seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); } seq_printf(m, " node %5d\n", nid); if (!full) seq = min_seq[LRU_GEN_ANON]; else if (max_seq >= MAX_NR_GENS) seq = max_seq - MAX_NR_GENS + 1; else seq = 0; for (; seq <= max_seq; seq++) { int type, zone; int gen = lru_gen_from_seq(seq); unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); for (type = 0; type < ANON_AND_FILE; type++) { unsigned long size = 0; char mark = full && seq < min_seq[type] ? 'x' : ' '; for (zone = 0; zone < MAX_NR_ZONES; zone++) size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); seq_printf(m, " %10lu%c", size, mark); } seq_putc(m, '\n'); if (full) lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); } return 0; } static const struct seq_operations lru_gen_seq_ops = { .start = lru_gen_seq_start, .stop = lru_gen_seq_stop, .next = lru_gen_seq_next, .show = lru_gen_seq_show, }; static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, bool can_swap, bool force_scan) { DEFINE_MAX_SEQ(lruvec); DEFINE_MIN_SEQ(lruvec); if (seq < max_seq) return 0; if (seq > max_seq) return -EINVAL; if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq) return -ERANGE; try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan); return 0; } static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, int swappiness, unsigned long nr_to_reclaim) { DEFINE_MAX_SEQ(lruvec); if (seq + MIN_NR_GENS > max_seq) return -EINVAL; sc->nr_reclaimed = 0; while (!signal_pending(current)) { DEFINE_MIN_SEQ(lruvec); if (seq < min_seq[!swappiness]) return 0; if (sc->nr_reclaimed >= nr_to_reclaim) return 0; if (!evict_folios(lruvec, sc, swappiness)) return 0; cond_resched(); } return -EINTR; } static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, struct scan_control *sc, int swappiness, unsigned long opt) { struct lruvec *lruvec; int err = -EINVAL; struct mem_cgroup *memcg = NULL; if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) return -EINVAL; if (!mem_cgroup_disabled()) { rcu_read_lock(); memcg = mem_cgroup_from_id(memcg_id); if (!mem_cgroup_tryget(memcg)) memcg = NULL; rcu_read_unlock(); if (!memcg) return -EINVAL; } if (memcg_id != mem_cgroup_id(memcg)) goto done; lruvec = get_lruvec(memcg, nid); if (swappiness < 0) swappiness = get_swappiness(lruvec, sc); else if (swappiness > 200) goto done; switch (cmd) { case '+': err = run_aging(lruvec, seq, sc, swappiness, opt); break; case '-': err = run_eviction(lruvec, seq, sc, swappiness, opt); break; } done: mem_cgroup_put(memcg); return err; } /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, size_t len, loff_t *pos) { void *buf; char *cur, *next; unsigned int flags; struct blk_plug plug; int err = -EINVAL; struct scan_control sc = { .may_writepage = true, .may_unmap = true, .may_swap = true, .reclaim_idx = MAX_NR_ZONES - 1, .gfp_mask = GFP_KERNEL, }; buf = kvmalloc(len + 1, GFP_KERNEL); if (!buf) return -ENOMEM; if (copy_from_user(buf, src, len)) { kvfree(buf); return -EFAULT; } set_task_reclaim_state(current, &sc.reclaim_state); flags = memalloc_noreclaim_save(); blk_start_plug(&plug); if (!set_mm_walk(NULL, true)) { err = -ENOMEM; goto done; } next = buf; next[len] = '\0'; while ((cur = strsep(&next, ",;\n"))) { int n; int end; char cmd; unsigned int memcg_id; unsigned int nid; unsigned long seq; unsigned int swappiness = -1; unsigned long opt = -1; cur = skip_spaces(cur); if (!*cur) continue; n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, &seq, &end, &swappiness, &end, &opt, &end); if (n < 4 || cur[end]) { err = -EINVAL; break; } err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); if (err) break; } done: clear_mm_walk(); blk_finish_plug(&plug); memalloc_noreclaim_restore(flags); set_task_reclaim_state(current, NULL); kvfree(buf); return err ? : len; } static int lru_gen_seq_open(struct inode *inode, struct file *file) { return seq_open(file, &lru_gen_seq_ops); } static const struct file_operations lru_gen_rw_fops = { .open = lru_gen_seq_open, .read = seq_read, .write = lru_gen_seq_write, .llseek = seq_lseek, .release = seq_release, }; static const struct file_operations lru_gen_ro_fops = { .open = lru_gen_seq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; /****************************************************************************** * initialization ******************************************************************************/ void lru_gen_init_lruvec(struct lruvec *lruvec) { int i; int gen, type, zone; struct lru_gen_folio *lrugen = &lruvec->lrugen; lrugen->max_seq = MIN_NR_GENS + 1; lrugen->enabled = lru_gen_enabled(); for (i = 0; i <= MIN_NR_GENS + 1; i++) lrugen->timestamps[i] = jiffies; for_each_gen_type_zone(gen, type, zone) INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); lruvec->mm_state.seq = MIN_NR_GENS; init_waitqueue_head(&lruvec->mm_state.wait); } #ifdef CONFIG_MEMCG void lru_gen_init_pgdat(struct pglist_data *pgdat) { int i, j; spin_lock_init(&pgdat->memcg_lru.lock); for (i = 0; i < MEMCG_NR_GENS; i++) { for (j = 0; j < MEMCG_NR_BINS; j++) INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); } } void lru_gen_init_memcg(struct mem_cgroup *memcg) { INIT_LIST_HEAD(&memcg->mm_list.fifo); spin_lock_init(&memcg->mm_list.lock); } void lru_gen_exit_memcg(struct mem_cgroup *memcg) { int i; int nid; VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo)); for_each_node(nid) { struct lruvec *lruvec = get_lruvec(memcg, nid); VM_WARN_ON_ONCE(lruvec->mm_state.nr_walkers); VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, sizeof(lruvec->lrugen.nr_pages))); lruvec->lrugen.list.next = LIST_POISON1; for (i = 0; i < NR_BLOOM_FILTERS; i++) { bitmap_free(lruvec->mm_state.filters[i]); lruvec->mm_state.filters[i] = NULL; } } } #endif /* CONFIG_MEMCG */ static int __init init_lru_gen(void) { BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) pr_err("lru_gen: failed to create sysfs group\n"); debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); return 0; }; late_initcall(init_lru_gen); #else /* !CONFIG_LRU_GEN */ static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) { } static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) { } static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) { } #endif /* CONFIG_LRU_GEN */ static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) { unsigned long nr[NR_LRU_LISTS]; unsigned long targets[NR_LRU_LISTS]; unsigned long nr_to_scan; enum lru_list lru; unsigned long nr_reclaimed = 0; unsigned long nr_to_reclaim = sc->nr_to_reclaim; bool proportional_reclaim; struct blk_plug plug; if (lru_gen_enabled() && !global_reclaim(sc)) { lru_gen_shrink_lruvec(lruvec, sc); return; } get_scan_count(lruvec, sc, nr); /* Record the original scan target for proportional adjustments later */ memcpy(targets, nr, sizeof(nr)); /* * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal * event that can occur when there is little memory pressure e.g. * multiple streaming readers/writers. Hence, we do not abort scanning * when the requested number of pages are reclaimed when scanning at * DEF_PRIORITY on the assumption that the fact we are direct * reclaiming implies that kswapd is not keeping up and it is best to * do a batch of work at once. For memcg reclaim one check is made to * abort proportional reclaim if either the file or anon lru has already * dropped to zero at the first pass. */ proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && sc->priority == DEF_PRIORITY); blk_start_plug(&plug); while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || nr[LRU_INACTIVE_FILE]) { unsigned long nr_anon, nr_file, percentage; unsigned long nr_scanned; for_each_evictable_lru(lru) { if (nr[lru]) { nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); nr[lru] -= nr_to_scan; nr_reclaimed += shrink_list(lru, nr_to_scan, lruvec, sc); } } cond_resched(); if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) continue; /* * For kswapd and memcg, reclaim at least the number of pages * requested. Ensure that the anon and file LRUs are scanned * proportionally what was requested by get_scan_count(). We * stop reclaiming one LRU and reduce the amount scanning * proportional to the original scan target. */ nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; /* * It's just vindictive to attack the larger once the smaller * has gone to zero. And given the way we stop scanning the * smaller below, this makes sure that we only make one nudge * towards proportionality once we've got nr_to_reclaim. */ if (!nr_file || !nr_anon) break; if (nr_file > nr_anon) { unsigned long scan_target = targets[LRU_INACTIVE_ANON] + targets[LRU_ACTIVE_ANON] + 1; lru = LRU_BASE; percentage = nr_anon * 100 / scan_target; } else { unsigned long scan_target = targets[LRU_INACTIVE_FILE] + targets[LRU_ACTIVE_FILE] + 1; lru = LRU_FILE; percentage = nr_file * 100 / scan_target; } /* Stop scanning the smaller of the LRU */ nr[lru] = 0; nr[lru + LRU_ACTIVE] = 0; /* * Recalculate the other LRU scan count based on its original * scan target and the percentage scanning already complete */ lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; nr_scanned = targets[lru] - nr[lru]; nr[lru] = targets[lru] * (100 - percentage) / 100; nr[lru] -= min(nr[lru], nr_scanned); lru += LRU_ACTIVE; nr_scanned = targets[lru] - nr[lru]; nr[lru] = targets[lru] * (100 - percentage) / 100; nr[lru] -= min(nr[lru], nr_scanned); } blk_finish_plug(&plug); sc->nr_reclaimed += nr_reclaimed; /* * Even if we did not try to evict anon pages at all, we want to * rebalance the anon lru active/inactive ratio. */ if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && inactive_is_low(lruvec, LRU_INACTIVE_ANON)) shrink_active_list(SWAP_CLUSTER_MAX, lruvec, sc, LRU_ACTIVE_ANON); } /* Use reclaim/compaction for costly allocs or under memory pressure */ static bool in_reclaim_compaction(struct scan_control *sc) { if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && (sc->order > PAGE_ALLOC_COSTLY_ORDER || sc->priority < DEF_PRIORITY - 2)) return true; return false; } /* * Reclaim/compaction is used for high-order allocation requests. It reclaims * order-0 pages before compacting the zone. should_continue_reclaim() returns * true if more pages should be reclaimed such that when the page allocator * calls try_to_compact_pages() that it will have enough free pages to succeed. * It will give up earlier than that if there is difficulty reclaiming pages. */ static inline bool should_continue_reclaim(struct pglist_data *pgdat, unsigned long nr_reclaimed, struct scan_control *sc) { unsigned long pages_for_compaction; unsigned long inactive_lru_pages; int z; /* If not in reclaim/compaction mode, stop */ if (!in_reclaim_compaction(sc)) return false; /* * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX * number of pages that were scanned. This will return to the caller * with the risk reclaim/compaction and the resulting allocation attempt * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL * allocations through requiring that the full LRU list has been scanned * first, by assuming that zero delta of sc->nr_scanned means full LRU * scan, but that approximation was wrong, and there were corner cases * where always a non-zero amount of pages were scanned. */ if (!nr_reclaimed) return false; /* If compaction would go ahead or the allocation would succeed, stop */ for (z = 0; z <= sc->reclaim_idx; z++) { struct zone *zone = &pgdat->node_zones[z]; if (!managed_zone(zone)) continue; switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { case COMPACT_SUCCESS: case COMPACT_CONTINUE: return false; default: /* check next zone */ ; } } /* * If we have not reclaimed enough pages for compaction and the * inactive lists are large enough, continue reclaiming */ pages_for_compaction = compact_gap(sc->order); inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); return inactive_lru_pages > pages_for_compaction; } static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) { struct mem_cgroup *target_memcg = sc->target_mem_cgroup; struct mem_cgroup *memcg; memcg = mem_cgroup_iter(target_memcg, NULL, NULL); do { struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); unsigned long reclaimed; unsigned long scanned; /* * This loop can become CPU-bound when target memcgs * aren't eligible for reclaim - either because they * don't have any reclaimable pages, or because their * memory is explicitly protected. Avoid soft lockups. */ cond_resched(); mem_cgroup_calculate_protection(target_memcg, memcg); if (mem_cgroup_below_min(target_memcg, memcg)) { /* * Hard protection. * If there is no reclaimable memory, OOM. */ continue; } else if (mem_cgroup_below_low(target_memcg, memcg)) { /* * Soft protection. * Respect the protection only as long as * there is an unprotected supply * of reclaimable memory from other cgroups. */ if (!sc->memcg_low_reclaim) { sc->memcg_low_skipped = 1; continue; } memcg_memory_event(memcg, MEMCG_LOW); } reclaimed = sc->nr_reclaimed; scanned = sc->nr_scanned; shrink_lruvec(lruvec, sc); shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); /* Record the group's reclaim efficiency */ if (!sc->proactive) vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, sc->nr_reclaimed - reclaimed); } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); } static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) { struct reclaim_state *reclaim_state = current->reclaim_state; unsigned long nr_reclaimed, nr_scanned; struct lruvec *target_lruvec; bool reclaimable = false; if (lru_gen_enabled() && global_reclaim(sc)) { lru_gen_shrink_node(pgdat, sc); return; } target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); again: memset(&sc->nr, 0, sizeof(sc->nr)); nr_reclaimed = sc->nr_reclaimed; nr_scanned = sc->nr_scanned; prepare_scan_count(pgdat, sc); shrink_node_memcgs(pgdat, sc); if (reclaim_state) { sc->nr_reclaimed += reclaim_state->reclaimed_slab; reclaim_state->reclaimed_slab = 0; } /* Record the subtree's reclaim efficiency */ if (!sc->proactive) vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, sc->nr_scanned - nr_scanned, sc->nr_reclaimed - nr_reclaimed); if (sc->nr_reclaimed - nr_reclaimed) reclaimable = true; if (current_is_kswapd()) { /* * If reclaim is isolating dirty pages under writeback, * it implies that the long-lived page allocation rate * is exceeding the page laundering rate. Either the * global limits are not being effective at throttling * processes due to the page distribution throughout * zones or there is heavy usage of a slow backing * device. The only option is to throttle from reclaim * context which is not ideal as there is no guarantee * the dirtying process is throttled in the same way * balance_dirty_pages() manages. * * Once a node is flagged PGDAT_WRITEBACK, kswapd will * count the number of pages under pages flagged for * immediate reclaim and stall if any are encountered * in the nr_immediate check below. */ if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) set_bit(PGDAT_WRITEBACK, &pgdat->flags); /* Allow kswapd to start writing pages during reclaim.*/ if (sc->nr.unqueued_dirty == sc->nr.file_taken) set_bit(PGDAT_DIRTY, &pgdat->flags); /* * If kswapd scans pages marked for immediate * reclaim and under writeback (nr_immediate), it * implies that pages are cycling through the LRU * faster than they are written so forcibly stall * until some pages complete writeback. */ if (sc->nr.immediate) reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); } /* * Tag a node/memcg as congested if all the dirty pages were marked * for writeback and immediate reclaim (counted in nr.congested). * * Legacy memcg will stall in page writeback so avoid forcibly * stalling in reclaim_throttle(). */ if ((current_is_kswapd() || (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && sc->nr.dirty && sc->nr.dirty == sc->nr.congested) set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); /* * Stall direct reclaim for IO completions if the lruvec is * node is congested. Allow kswapd to continue until it * starts encountering unqueued dirty pages or cycling through * the LRU too quickly. */ if (!current_is_kswapd() && current_may_throttle() && !sc->hibernation_mode && test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, sc)) goto again; /* * Kswapd gives up on balancing particular nodes after too * many failures to reclaim anything from them and goes to * sleep. On reclaim progress, reset the failure counter. A * successful direct reclaim run will revive a dormant kswapd. */ if (reclaimable) pgdat->kswapd_failures = 0; } /* * Returns true if compaction should go ahead for a costly-order request, or * the allocation would already succeed without compaction. Return false if we * should reclaim first. */ static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) { unsigned long watermark; enum compact_result suitable; suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); if (suitable == COMPACT_SUCCESS) /* Allocation should succeed already. Don't reclaim. */ return true; if (suitable == COMPACT_SKIPPED) /* Compaction cannot yet proceed. Do reclaim. */ return false; /* * Compaction is already possible, but it takes time to run and there * are potentially other callers using the pages just freed. So proceed * with reclaim to make a buffer of free pages available to give * compaction a reasonable chance of completing and allocating the page. * Note that we won't actually reclaim the whole buffer in one attempt * as the target watermark in should_continue_reclaim() is lower. But if * we are already above the high+gap watermark, don't reclaim at all. */ watermark = high_wmark_pages(zone) + compact_gap(sc->order); return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); } static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) { /* * If reclaim is making progress greater than 12% efficiency then * wake all the NOPROGRESS throttled tasks. */ if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { wait_queue_head_t *wqh; wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; if (waitqueue_active(wqh)) wake_up(wqh); return; } /* * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages * under writeback and marked for immediate reclaim at the tail of the * LRU. */ if (current_is_kswapd() || cgroup_reclaim(sc)) return; /* Throttle if making no progress at high prioities. */ if (sc->priority == 1 && !sc->nr_reclaimed) reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); } /* * This is the direct reclaim path, for page-allocating processes. We only * try to reclaim pages from zones which will satisfy the caller's allocation * request. * * If a zone is deemed to be full of pinned pages then just give it a light * scan then give up on it. */ static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) { struct zoneref *z; struct zone *zone; unsigned long nr_soft_reclaimed; unsigned long nr_soft_scanned; gfp_t orig_mask; pg_data_t *last_pgdat = NULL; pg_data_t *first_pgdat = NULL; /* * If the number of buffer_heads in the machine exceeds the maximum * allowed level, force direct reclaim to scan the highmem zone as * highmem pages could be pinning lowmem pages storing buffer_heads */ orig_mask = sc->gfp_mask; if (buffer_heads_over_limit) { sc->gfp_mask |= __GFP_HIGHMEM; sc->reclaim_idx = gfp_zone(sc->gfp_mask); } for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, sc->nodemask) { /* * Take care memory controller reclaiming has small influence * to global LRU. */ if (!cgroup_reclaim(sc)) { if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) continue; /* * If we already have plenty of memory free for * compaction in this zone, don't free any more. * Even though compaction is invoked for any * non-zero order, only frequent costly order * reclamation is disruptive enough to become a * noticeable problem, like transparent huge * page allocations. */ if (IS_ENABLED(CONFIG_COMPACTION) && sc->order > PAGE_ALLOC_COSTLY_ORDER && compaction_ready(zone, sc)) { sc->compaction_ready = true; continue; } /* * Shrink each node in the zonelist once. If the * zonelist is ordered by zone (not the default) then a * node may be shrunk multiple times but in that case * the user prefers lower zones being preserved. */ if (zone->zone_pgdat == last_pgdat) continue; /* * This steals pages from memory cgroups over softlimit * and returns the number of reclaimed pages and * scanned pages. This works for global memory pressure * and balancing, not for a memcg's limit. */ nr_soft_scanned = 0; nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, sc->order, sc->gfp_mask, &nr_soft_scanned); sc->nr_reclaimed += nr_soft_reclaimed; sc->nr_scanned += nr_soft_scanned; /* need some check for avoid more shrink_zone() */ } if (!first_pgdat) first_pgdat = zone->zone_pgdat; /* See comment about same check for global reclaim above */ if (zone->zone_pgdat == last_pgdat) continue; last_pgdat = zone->zone_pgdat; shrink_node(zone->zone_pgdat, sc); } if (first_pgdat) consider_reclaim_throttle(first_pgdat, sc); /* * Restore to original mask to avoid the impact on the caller if we * promoted it to __GFP_HIGHMEM. */ sc->gfp_mask = orig_mask; } static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) { struct lruvec *target_lruvec; unsigned long refaults; if (lru_gen_enabled()) return; target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); target_lruvec->refaults[WORKINGSET_ANON] = refaults; refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); target_lruvec->refaults[WORKINGSET_FILE] = refaults; } /* * This is the main entry point to direct page reclaim. * * If a full scan of the inactive list fails to free enough memory then we * are "out of memory" and something needs to be killed. * * If the caller is !__GFP_FS then the probability of a failure is reasonably * high - the zone may be full of dirty or under-writeback pages, which this * caller can't do much about. We kick the writeback threads and take explicit * naps in the hope that some of these pages can be written. But if the * allocating task holds filesystem locks which prevent writeout this might not * work, and the allocation attempt will fail. * * returns: 0, if no pages reclaimed * else, the number of pages reclaimed */ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, struct scan_control *sc) { int initial_priority = sc->priority; pg_data_t *last_pgdat; struct zoneref *z; struct zone *zone; retry: delayacct_freepages_start(); if (!cgroup_reclaim(sc)) __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); do { if (!sc->proactive) vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, sc->priority); sc->nr_scanned = 0; shrink_zones(zonelist, sc); if (sc->nr_reclaimed >= sc->nr_to_reclaim) break; if (sc->compaction_ready) break; /* * If we're getting trouble reclaiming, start doing * writepage even in laptop mode. */ if (sc->priority < DEF_PRIORITY - 2) sc->may_writepage = 1; } while (--sc->priority >= 0); last_pgdat = NULL; for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, sc->nodemask) { if (zone->zone_pgdat == last_pgdat) continue; last_pgdat = zone->zone_pgdat; snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); if (cgroup_reclaim(sc)) { struct lruvec *lruvec; lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, zone->zone_pgdat); clear_bit(LRUVEC_CONGESTED, &lruvec->flags); } } delayacct_freepages_end(); if (sc->nr_reclaimed) return sc->nr_reclaimed; /* Aborted reclaim to try compaction? don't OOM, then */ if (sc->compaction_ready) return 1; /* * We make inactive:active ratio decisions based on the node's * composition of memory, but a restrictive reclaim_idx or a * memory.low cgroup setting can exempt large amounts of * memory from reclaim. Neither of which are very common, so * instead of doing costly eligibility calculations of the * entire cgroup subtree up front, we assume the estimates are * good, and retry with forcible deactivation if that fails. */ if (sc->skipped_deactivate) { sc->priority = initial_priority; sc->force_deactivate = 1; sc->skipped_deactivate = 0; goto retry; } /* Untapped cgroup reserves? Don't OOM, retry. */ if (sc->memcg_low_skipped) { sc->priority = initial_priority; sc->force_deactivate = 0; sc->memcg_low_reclaim = 1; sc->memcg_low_skipped = 0; goto retry; } return 0; } static bool allow_direct_reclaim(pg_data_t *pgdat) { struct zone *zone; unsigned long pfmemalloc_reserve = 0; unsigned long free_pages = 0; int i; bool wmark_ok; if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) return true; for (i = 0; i <= ZONE_NORMAL; i++) { zone = &pgdat->node_zones[i]; if (!managed_zone(zone)) continue; if (!zone_reclaimable_pages(zone)) continue; pfmemalloc_reserve += min_wmark_pages(zone); free_pages += zone_page_state(zone, NR_FREE_PAGES); } /* If there are no reserves (unexpected config) then do not throttle */ if (!pfmemalloc_reserve) return true; wmark_ok = free_pages > pfmemalloc_reserve / 2; /* kswapd must be awake if processes are being throttled */ if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); wake_up_interruptible(&pgdat->kswapd_wait); } return wmark_ok; } /* * Throttle direct reclaimers if backing storage is backed by the network * and the PFMEMALLOC reserve for the preferred node is getting dangerously * depleted. kswapd will continue to make progress and wake the processes * when the low watermark is reached. * * Returns true if a fatal signal was delivered during throttling. If this * happens, the page allocator should not consider triggering the OOM killer. */ static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, nodemask_t *nodemask) { struct zoneref *z; struct zone *zone; pg_data_t *pgdat = NULL; /* * Kernel threads should not be throttled as they may be indirectly * responsible for cleaning pages necessary for reclaim to make forward * progress. kjournald for example may enter direct reclaim while * committing a transaction where throttling it could forcing other * processes to block on log_wait_commit(). */ if (current->flags & PF_KTHREAD) goto out; /* * If a fatal signal is pending, this process should not throttle. * It should return quickly so it can exit and free its memory */ if (fatal_signal_pending(current)) goto out; /* * Check if the pfmemalloc reserves are ok by finding the first node * with a usable ZONE_NORMAL or lower zone. The expectation is that * GFP_KERNEL will be required for allocating network buffers when * swapping over the network so ZONE_HIGHMEM is unusable. * * Throttling is based on the first usable node and throttled processes * wait on a queue until kswapd makes progress and wakes them. There * is an affinity then between processes waking up and where reclaim * progress has been made assuming the process wakes on the same node. * More importantly, processes running on remote nodes will not compete * for remote pfmemalloc reserves and processes on different nodes * should make reasonable progress. */ for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) { if (zone_idx(zone) > ZONE_NORMAL) continue; /* Throttle based on the first usable node */ pgdat = zone->zone_pgdat; if (allow_direct_reclaim(pgdat)) goto out; break; } /* If no zone was usable by the allocation flags then do not throttle */ if (!pgdat) goto out; /* Account for the throttling */ count_vm_event(PGSCAN_DIRECT_THROTTLE); /* * If the caller cannot enter the filesystem, it's possible that it * is due to the caller holding an FS lock or performing a journal * transaction in the case of a filesystem like ext[3|4]. In this case, * it is not safe to block on pfmemalloc_wait as kswapd could be * blocked waiting on the same lock. Instead, throttle for up to a * second before continuing. */ if (!(gfp_mask & __GFP_FS)) wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, allow_direct_reclaim(pgdat), HZ); else /* Throttle until kswapd wakes the process */ wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, allow_direct_reclaim(pgdat)); if (fatal_signal_pending(current)) return true; out: return false; } unsigned long try_to_free_pages(struct zonelist *zonelist, int order, gfp_t gfp_mask, nodemask_t *nodemask) { unsigned long nr_reclaimed; struct scan_control sc = { .nr_to_reclaim = SWAP_CLUSTER_MAX, .gfp_mask = current_gfp_context(gfp_mask), .reclaim_idx = gfp_zone(gfp_mask), .order = order, .nodemask = nodemask, .priority = DEF_PRIORITY, .may_writepage = !laptop_mode, .may_unmap = 1, .may_swap = 1, }; /* * scan_control uses s8 fields for order, priority, and reclaim_idx. * Confirm they are large enough for max values. */ BUILD_BUG_ON(MAX_ORDER > S8_MAX); BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); /* * Do not enter reclaim if fatal signal was delivered while throttled. * 1 is returned so that the page allocator does not OOM kill at this * point. */ if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) return 1; set_task_reclaim_state(current, &sc.reclaim_state); trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); nr_reclaimed = do_try_to_free_pages(zonelist, &sc); trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); set_task_reclaim_state(current, NULL); return nr_reclaimed; } #ifdef CONFIG_MEMCG /* Only used by soft limit reclaim. Do not reuse for anything else. */ unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, gfp_t gfp_mask, bool noswap, pg_data_t *pgdat, unsigned long *nr_scanned) { struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); struct scan_control sc = { .nr_to_reclaim = SWAP_CLUSTER_MAX, .target_mem_cgroup = memcg, .may_writepage = !laptop_mode, .may_unmap = 1, .reclaim_idx = MAX_NR_ZONES - 1, .may_swap = !noswap, }; WARN_ON_ONCE(!current->reclaim_state); sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, sc.gfp_mask); /* * NOTE: Although we can get the priority field, using it * here is not a good idea, since it limits the pages we can scan. * if we don't reclaim here, the shrink_node from balance_pgdat * will pick up pages from other mem cgroup's as well. We hack * the priority and make it zero. */ shrink_lruvec(lruvec, &sc); trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); *nr_scanned = sc.nr_scanned; return sc.nr_reclaimed; } unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, unsigned long nr_pages, gfp_t gfp_mask, unsigned int reclaim_options) { unsigned long nr_reclaimed; unsigned int noreclaim_flag; struct scan_control sc = { .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), .reclaim_idx = MAX_NR_ZONES - 1, .target_mem_cgroup = memcg, .priority = DEF_PRIORITY, .may_writepage = !laptop_mode, .may_unmap = 1, .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), }; /* * Traverse the ZONELIST_FALLBACK zonelist of the current node to put * equal pressure on all the nodes. This is based on the assumption that * the reclaim does not bail out early. */ struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); set_task_reclaim_state(current, &sc.reclaim_state); trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); noreclaim_flag = memalloc_noreclaim_save(); nr_reclaimed = do_try_to_free_pages(zonelist, &sc); memalloc_noreclaim_restore(noreclaim_flag); trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); set_task_reclaim_state(current, NULL); return nr_reclaimed; } #endif static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) { struct mem_cgroup *memcg; struct lruvec *lruvec; if (lru_gen_enabled()) { lru_gen_age_node(pgdat, sc); return; } if (!can_age_anon_pages(pgdat, sc)) return; lruvec = mem_cgroup_lruvec(NULL, pgdat); if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) return; memcg = mem_cgroup_iter(NULL, NULL, NULL); do { lruvec = mem_cgroup_lruvec(memcg, pgdat); shrink_active_list(SWAP_CLUSTER_MAX, lruvec, sc, LRU_ACTIVE_ANON); memcg = mem_cgroup_iter(NULL, memcg, NULL); } while (memcg); } static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) { int i; struct zone *zone; /* * Check for watermark boosts top-down as the higher zones * are more likely to be boosted. Both watermarks and boosts * should not be checked at the same time as reclaim would * start prematurely when there is no boosting and a lower * zone is balanced. */ for (i = highest_zoneidx; i >= 0; i--) { zone = pgdat->node_zones + i; if (!managed_zone(zone)) continue; if (zone->watermark_boost) return true; } return false; } /* * Returns true if there is an eligible zone balanced for the request order * and highest_zoneidx */ static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) { int i; unsigned long mark = -1; struct zone *zone; /* * Check watermarks bottom-up as lower zones are more likely to * meet watermarks. */ for (i = 0; i <= highest_zoneidx; i++) { zone = pgdat->node_zones + i; if (!managed_zone(zone)) continue; if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) mark = wmark_pages(zone, WMARK_PROMO); else mark = high_wmark_pages(zone); if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) return true; } /* * If a node has no managed zone within highest_zoneidx, it does not * need balancing by definition. This can happen if a zone-restricted * allocation tries to wake a remote kswapd. */ if (mark == -1) return true; return false; } /* Clear pgdat state for congested, dirty or under writeback. */ static void clear_pgdat_congested(pg_data_t *pgdat) { struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); clear_bit(LRUVEC_CONGESTED, &lruvec->flags); clear_bit(PGDAT_DIRTY, &pgdat->flags); clear_bit(PGDAT_WRITEBACK, &pgdat->flags); } /* * Prepare kswapd for sleeping. This verifies that there are no processes * waiting in throttle_direct_reclaim() and that watermarks have been met. * * Returns true if kswapd is ready to sleep */ static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int highest_zoneidx) { /* * The throttled processes are normally woken up in balance_pgdat() as * soon as allow_direct_reclaim() is true. But there is a potential * race between when kswapd checks the watermarks and a process gets * throttled. There is also a potential race if processes get * throttled, kswapd wakes, a large process exits thereby balancing the * zones, which causes kswapd to exit balance_pgdat() before reaching * the wake up checks. If kswapd is going to sleep, no process should * be sleeping on pfmemalloc_wait, so wake them now if necessary. If * the wake up is premature, processes will wake kswapd and get * throttled again. The difference from wake ups in balance_pgdat() is * that here we are under prepare_to_wait(). */ if (waitqueue_active(&pgdat->pfmemalloc_wait)) wake_up_all(&pgdat->pfmemalloc_wait); /* Hopeless node, leave it to direct reclaim */ if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) return true; if (pgdat_balanced(pgdat, order, highest_zoneidx)) { clear_pgdat_congested(pgdat); return true; } return false; } /* * kswapd shrinks a node of pages that are at or below the highest usable * zone that is currently unbalanced. * * Returns true if kswapd scanned at least the requested number of pages to * reclaim or if the lack of progress was due to pages under writeback. * This is used to determine if the scanning priority needs to be raised. */ static bool kswapd_shrink_node(pg_data_t *pgdat, struct scan_control *sc) { struct zone *zone; int z; /* Reclaim a number of pages proportional to the number of zones */ sc->nr_to_reclaim = 0; for (z = 0; z <= sc->reclaim_idx; z++) { zone = pgdat->node_zones + z; if (!managed_zone(zone)) continue; sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); } /* * Historically care was taken to put equal pressure on all zones but * now pressure is applied based on node LRU order. */ shrink_node(pgdat, sc); /* * Fragmentation may mean that the system cannot be rebalanced for * high-order allocations. If twice the allocation size has been * reclaimed then recheck watermarks only at order-0 to prevent * excessive reclaim. Assume that a process requested a high-order * can direct reclaim/compact. */ if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) sc->order = 0; return sc->nr_scanned >= sc->nr_to_reclaim; } /* Page allocator PCP high watermark is lowered if reclaim is active. */ static inline void update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) { int i; struct zone *zone; for (i = 0; i <= highest_zoneidx; i++) { zone = pgdat->node_zones + i; if (!managed_zone(zone)) continue; if (active) set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); else clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); } } static inline void set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) { update_reclaim_active(pgdat, highest_zoneidx, true); } static inline void clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) { update_reclaim_active(pgdat, highest_zoneidx, false); } /* * For kswapd, balance_pgdat() will reclaim pages across a node from zones * that are eligible for use by the caller until at least one zone is * balanced. * * Returns the order kswapd finished reclaiming at. * * kswapd scans the zones in the highmem->normal->dma direction. It skips * zones which have free_pages > high_wmark_pages(zone), but once a zone is * found to have free_pages <= high_wmark_pages(zone), any page in that zone * or lower is eligible for reclaim until at least one usable zone is * balanced. */ static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) { int i; unsigned long nr_soft_reclaimed; unsigned long nr_soft_scanned; unsigned long pflags; unsigned long nr_boost_reclaim; unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; bool boosted; struct zone *zone; struct scan_control sc = { .gfp_mask = GFP_KERNEL, .order = order, .may_unmap = 1, }; set_task_reclaim_state(current, &sc.reclaim_state); psi_memstall_enter(&pflags); __fs_reclaim_acquire(_THIS_IP_); count_vm_event(PAGEOUTRUN); /* * Account for the reclaim boost. Note that the zone boost is left in * place so that parallel allocations that are near the watermark will * stall or direct reclaim until kswapd is finished. */ nr_boost_reclaim = 0; for (i = 0; i <= highest_zoneidx; i++) { zone = pgdat->node_zones + i; if (!managed_zone(zone)) continue; nr_boost_reclaim += zone->watermark_boost; zone_boosts[i] = zone->watermark_boost; } boosted = nr_boost_reclaim; restart: set_reclaim_active(pgdat, highest_zoneidx); sc.priority = DEF_PRIORITY; do { unsigned long nr_reclaimed = sc.nr_reclaimed; bool raise_priority = true; bool balanced; bool ret; sc.reclaim_idx = highest_zoneidx; /* * If the number of buffer_heads exceeds the maximum allowed * then consider reclaiming from all zones. This has a dual * purpose -- on 64-bit systems it is expected that * buffer_heads are stripped during active rotation. On 32-bit * systems, highmem pages can pin lowmem memory and shrinking * buffers can relieve lowmem pressure. Reclaim may still not * go ahead if all eligible zones for the original allocation * request are balanced to avoid excessive reclaim from kswapd. */ if (buffer_heads_over_limit) { for (i = MAX_NR_ZONES - 1; i >= 0; i--) { zone = pgdat->node_zones + i; if (!managed_zone(zone)) continue; sc.reclaim_idx = i; break; } } /* * If the pgdat is imbalanced then ignore boosting and preserve * the watermarks for a later time and restart. Note that the * zone watermarks will be still reset at the end of balancing * on the grounds that the normal reclaim should be enough to * re-evaluate if boosting is required when kswapd next wakes. */ balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); if (!balanced && nr_boost_reclaim) { nr_boost_reclaim = 0; goto restart; } /* * If boosting is not active then only reclaim if there are no * eligible zones. Note that sc.reclaim_idx is not used as * buffer_heads_over_limit may have adjusted it. */ if (!nr_boost_reclaim && balanced) goto out; /* Limit the priority of boosting to avoid reclaim writeback */ if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) raise_priority = false; /* * Do not writeback or swap pages for boosted reclaim. The * intent is to relieve pressure not issue sub-optimal IO * from reclaim context. If no pages are reclaimed, the * reclaim will be aborted. */ sc.may_writepage = !laptop_mode && !nr_boost_reclaim; sc.may_swap = !nr_boost_reclaim; /* * Do some background aging, to give pages a chance to be * referenced before reclaiming. All pages are rotated * regardless of classzone as this is about consistent aging. */ kswapd_age_node(pgdat, &sc); /* * If we're getting trouble reclaiming, start doing writepage * even in laptop mode. */ if (sc.priority < DEF_PRIORITY - 2) sc.may_writepage = 1; /* Call soft limit reclaim before calling shrink_node. */ sc.nr_scanned = 0; nr_soft_scanned = 0; nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, sc.gfp_mask, &nr_soft_scanned); sc.nr_reclaimed += nr_soft_reclaimed; /* * There should be no need to raise the scanning priority if * enough pages are already being scanned that that high * watermark would be met at 100% efficiency. */ if (kswapd_shrink_node(pgdat, &sc)) raise_priority = false; /* * If the low watermark is met there is no need for processes * to be throttled on pfmemalloc_wait as they should not be * able to safely make forward progress. Wake them */ if (waitqueue_active(&pgdat->pfmemalloc_wait) && allow_direct_reclaim(pgdat)) wake_up_all(&pgdat->pfmemalloc_wait); /* Check if kswapd should be suspending */ __fs_reclaim_release(_THIS_IP_); ret = try_to_freeze(); __fs_reclaim_acquire(_THIS_IP_); if (ret || kthread_should_stop()) break; /* * Raise priority if scanning rate is too low or there was no * progress in reclaiming pages */ nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); /* * If reclaim made no progress for a boost, stop reclaim as * IO cannot be queued and it could be an infinite loop in * extreme circumstances. */ if (nr_boost_reclaim && !nr_reclaimed) break; if (raise_priority || !nr_reclaimed) sc.priority--; } while (sc.priority >= 1); if (!sc.nr_reclaimed) pgdat->kswapd_failures++; out: clear_reclaim_active(pgdat, highest_zoneidx); /* If reclaim was boosted, account for the reclaim done in this pass */ if (boosted) { unsigned long flags; for (i = 0; i <= highest_zoneidx; i++) { if (!zone_boosts[i]) continue; /* Increments are under the zone lock */ zone = pgdat->node_zones + i; spin_lock_irqsave(&zone->lock, flags); zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); spin_unlock_irqrestore(&zone->lock, flags); } /* * As there is now likely space, wakeup kcompact to defragment * pageblocks. */ wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); } snapshot_refaults(NULL, pgdat); __fs_reclaim_release(_THIS_IP_); psi_memstall_leave(&pflags); set_task_reclaim_state(current, NULL); /* * Return the order kswapd stopped reclaiming at as * prepare_kswapd_sleep() takes it into account. If another caller * entered the allocator slow path while kswapd was awake, order will * remain at the higher level. */ return sc.order; } /* * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is * not a valid index then either kswapd runs for first time or kswapd couldn't * sleep after previous reclaim attempt (node is still unbalanced). In that * case return the zone index of the previous kswapd reclaim cycle. */ static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, enum zone_type prev_highest_zoneidx) { enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; } static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, unsigned int highest_zoneidx) { long remaining = 0; DEFINE_WAIT(wait); if (freezing(current) || kthread_should_stop()) return; prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); /* * Try to sleep for a short interval. Note that kcompactd will only be * woken if it is possible to sleep for a short interval. This is * deliberate on the assumption that if reclaim cannot keep an * eligible zone balanced that it's also unlikely that compaction will * succeed. */ if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { /* * Compaction records what page blocks it recently failed to * isolate pages from and skips them in the future scanning. * When kswapd is going to sleep, it is reasonable to assume * that pages and compaction may succeed so reset the cache. */ reset_isolation_suitable(pgdat); /* * We have freed the memory, now we should compact it to make * allocation of the requested order possible. */ wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); remaining = schedule_timeout(HZ/10); /* * If woken prematurely then reset kswapd_highest_zoneidx and * order. The values will either be from a wakeup request or * the previous request that slept prematurely. */ if (remaining) { WRITE_ONCE(pgdat->kswapd_highest_zoneidx, kswapd_highest_zoneidx(pgdat, highest_zoneidx)); if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) WRITE_ONCE(pgdat->kswapd_order, reclaim_order); } finish_wait(&pgdat->kswapd_wait, &wait); prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); } /* * After a short sleep, check if it was a premature sleep. If not, then * go fully to sleep until explicitly woken up. */ if (!remaining && prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { trace_mm_vmscan_kswapd_sleep(pgdat->node_id); /* * vmstat counters are not perfectly accurate and the estimated * value for counters such as NR_FREE_PAGES can deviate from the * true value by nr_online_cpus * threshold. To avoid the zone * watermarks being breached while under pressure, we reduce the * per-cpu vmstat threshold while kswapd is awake and restore * them before going back to sleep. */ set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); if (!kthread_should_stop()) schedule(); set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); } else { if (remaining) count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); else count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); } finish_wait(&pgdat->kswapd_wait, &wait); } /* * The background pageout daemon, started as a kernel thread * from the init process. * * This basically trickles out pages so that we have _some_ * free memory available even if there is no other activity * that frees anything up. This is needed for things like routing * etc, where we otherwise might have all activity going on in * asynchronous contexts that cannot page things out. * * If there are applications that are active memory-allocators * (most normal use), this basically shouldn't matter. */ static int kswapd(void *p) { unsigned int alloc_order, reclaim_order; unsigned int highest_zoneidx = MAX_NR_ZONES - 1; pg_data_t *pgdat = (pg_data_t *)p; struct task_struct *tsk = current; const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); if (!cpumask_empty(cpumask)) set_cpus_allowed_ptr(tsk, cpumask); /* * Tell the memory management that we're a "memory allocator", * and that if we need more memory we should get access to it * regardless (see "__alloc_pages()"). "kswapd" should * never get caught in the normal page freeing logic. * * (Kswapd normally doesn't need memory anyway, but sometimes * you need a small amount of memory in order to be able to * page out something else, and this flag essentially protects * us from recursively trying to free more memory as we're * trying to free the first piece of memory in the first place). */ tsk->flags |= PF_MEMALLOC | PF_KSWAPD; set_freezable(); WRITE_ONCE(pgdat->kswapd_order, 0); WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); atomic_set(&pgdat->nr_writeback_throttled, 0); for ( ; ; ) { bool ret; alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); highest_zoneidx = kswapd_highest_zoneidx(pgdat, highest_zoneidx); kswapd_try_sleep: kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, highest_zoneidx); /* Read the new order and highest_zoneidx */ alloc_order = READ_ONCE(pgdat->kswapd_order); highest_zoneidx = kswapd_highest_zoneidx(pgdat, highest_zoneidx); WRITE_ONCE(pgdat->kswapd_order, 0); WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); ret = try_to_freeze(); if (kthread_should_stop()) break; /* * We can speed up thawing tasks if we don't call balance_pgdat * after returning from the refrigerator */ if (ret) continue; /* * Reclaim begins at the requested order but if a high-order * reclaim fails then kswapd falls back to reclaiming for * order-0. If that happens, kswapd will consider sleeping * for the order it finished reclaiming at (reclaim_order) * but kcompactd is woken to compact for the original * request (alloc_order). */ trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, alloc_order); reclaim_order = balance_pgdat(pgdat, alloc_order, highest_zoneidx); if (reclaim_order < alloc_order) goto kswapd_try_sleep; } tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); return 0; } /* * A zone is low on free memory or too fragmented for high-order memory. If * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim * has failed or is not needed, still wake up kcompactd if only compaction is * needed. */ void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, enum zone_type highest_zoneidx) { pg_data_t *pgdat; enum zone_type curr_idx; if (!managed_zone(zone)) return; if (!cpuset_zone_allowed(zone, gfp_flags)) return; pgdat = zone->zone_pgdat; curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); if (READ_ONCE(pgdat->kswapd_order) < order) WRITE_ONCE(pgdat->kswapd_order, order); if (!waitqueue_active(&pgdat->kswapd_wait)) return; /* Hopeless node, leave it to direct reclaim if possible */ if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || (pgdat_balanced(pgdat, order, highest_zoneidx) && !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { /* * There may be plenty of free memory available, but it's too * fragmented for high-order allocations. Wake up kcompactd * and rely on compaction_suitable() to determine if it's * needed. If it fails, it will defer subsequent attempts to * ratelimit its work. */ if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) wakeup_kcompactd(pgdat, order, highest_zoneidx); return; } trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, gfp_flags); wake_up_interruptible(&pgdat->kswapd_wait); } #ifdef CONFIG_HIBERNATION /* * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of * freed pages. * * Rather than trying to age LRUs the aim is to preserve the overall * LRU order by reclaiming preferentially * inactive > active > active referenced > active mapped */ unsigned long shrink_all_memory(unsigned long nr_to_reclaim) { struct scan_control sc = { .nr_to_reclaim = nr_to_reclaim, .gfp_mask = GFP_HIGHUSER_MOVABLE, .reclaim_idx = MAX_NR_ZONES - 1, .priority = DEF_PRIORITY, .may_writepage = 1, .may_unmap = 1, .may_swap = 1, .hibernation_mode = 1, }; struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); unsigned long nr_reclaimed; unsigned int noreclaim_flag; fs_reclaim_acquire(sc.gfp_mask); noreclaim_flag = memalloc_noreclaim_save(); set_task_reclaim_state(current, &sc.reclaim_state); nr_reclaimed = do_try_to_free_pages(zonelist, &sc); set_task_reclaim_state(current, NULL); memalloc_noreclaim_restore(noreclaim_flag); fs_reclaim_release(sc.gfp_mask); return nr_reclaimed; } #endif /* CONFIG_HIBERNATION */ /* * This kswapd start function will be called by init and node-hot-add. */ void kswapd_run(int nid) { pg_data_t *pgdat = NODE_DATA(nid); pgdat_kswapd_lock(pgdat); if (!pgdat->kswapd) { pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); if (IS_ERR(pgdat->kswapd)) { /* failure at boot is fatal */ BUG_ON(system_state < SYSTEM_RUNNING); pr_err("Failed to start kswapd on node %d\n", nid); pgdat->kswapd = NULL; } } pgdat_kswapd_unlock(pgdat); } /* * Called by memory hotplug when all memory in a node is offlined. Caller must * be holding mem_hotplug_begin/done(). */ void kswapd_stop(int nid) { pg_data_t *pgdat = NODE_DATA(nid); struct task_struct *kswapd; pgdat_kswapd_lock(pgdat); kswapd = pgdat->kswapd; if (kswapd) { kthread_stop(kswapd); pgdat->kswapd = NULL; } pgdat_kswapd_unlock(pgdat); } static int __init kswapd_init(void) { int nid; swap_setup(); for_each_node_state(nid, N_MEMORY) kswapd_run(nid); return 0; } module_init(kswapd_init) #ifdef CONFIG_NUMA /* * Node reclaim mode * * If non-zero call node_reclaim when the number of free pages falls below * the watermarks. */ int node_reclaim_mode __read_mostly; /* * Priority for NODE_RECLAIM. This determines the fraction of pages * of a node considered for each zone_reclaim. 4 scans 1/16th of * a zone. */ #define NODE_RECLAIM_PRIORITY 4 /* * Percentage of pages in a zone that must be unmapped for node_reclaim to * occur. */ int sysctl_min_unmapped_ratio = 1; /* * If the number of slab pages in a zone grows beyond this percentage then * slab reclaim needs to occur. */ int sysctl_min_slab_ratio = 5; static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) { unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + node_page_state(pgdat, NR_ACTIVE_FILE); /* * It's possible for there to be more file mapped pages than * accounted for by the pages on the file LRU lists because * tmpfs pages accounted for as ANON can also be FILE_MAPPED */ return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; } /* Work out how many page cache pages we can reclaim in this reclaim_mode */ static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) { unsigned long nr_pagecache_reclaimable; unsigned long delta = 0; /* * If RECLAIM_UNMAP is set, then all file pages are considered * potentially reclaimable. Otherwise, we have to worry about * pages like swapcache and node_unmapped_file_pages() provides * a better estimate */ if (node_reclaim_mode & RECLAIM_UNMAP) nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); else nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); /* If we can't clean pages, remove dirty pages from consideration */ if (!(node_reclaim_mode & RECLAIM_WRITE)) delta += node_page_state(pgdat, NR_FILE_DIRTY); /* Watch for any possible underflows due to delta */ if (unlikely(delta > nr_pagecache_reclaimable)) delta = nr_pagecache_reclaimable; return nr_pagecache_reclaimable - delta; } /* * Try to free up some pages from this node through reclaim. */ static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) { /* Minimum pages needed in order to stay on node */ const unsigned long nr_pages = 1 << order; struct task_struct *p = current; unsigned int noreclaim_flag; struct scan_control sc = { .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), .gfp_mask = current_gfp_context(gfp_mask), .order = order, .priority = NODE_RECLAIM_PRIORITY, .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), .may_swap = 1, .reclaim_idx = gfp_zone(gfp_mask), }; unsigned long pflags; trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, sc.gfp_mask); cond_resched(); psi_memstall_enter(&pflags); fs_reclaim_acquire(sc.gfp_mask); /* * We need to be able to allocate from the reserves for RECLAIM_UNMAP */ noreclaim_flag = memalloc_noreclaim_save(); set_task_reclaim_state(p, &sc.reclaim_state); if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { /* * Free memory by calling shrink node with increasing * priorities until we have enough memory freed. */ do { shrink_node(pgdat, &sc); } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); } set_task_reclaim_state(p, NULL); memalloc_noreclaim_restore(noreclaim_flag); fs_reclaim_release(sc.gfp_mask); psi_memstall_leave(&pflags); trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); return sc.nr_reclaimed >= nr_pages; } int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) { int ret; /* * Node reclaim reclaims unmapped file backed pages and * slab pages if we are over the defined limits. * * A small portion of unmapped file backed pages is needed for * file I/O otherwise pages read by file I/O will be immediately * thrown out if the node is overallocated. So we do not reclaim * if less than a specified percentage of the node is used by * unmapped file backed pages. */ if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= pgdat->min_slab_pages) return NODE_RECLAIM_FULL; /* * Do not scan if the allocation should not be delayed. */ if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) return NODE_RECLAIM_NOSCAN; /* * Only run node reclaim on the local node or on nodes that do not * have associated processors. This will favor the local processor * over remote processors and spread off node memory allocations * as wide as possible. */ if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) return NODE_RECLAIM_NOSCAN; if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) return NODE_RECLAIM_NOSCAN; ret = __node_reclaim(pgdat, gfp_mask, order); clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); if (!ret) count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); return ret; } #endif void check_move_unevictable_pages(struct pagevec *pvec) { struct folio_batch fbatch; unsigned i; folio_batch_init(&fbatch); for (i = 0; i < pvec->nr; i++) { struct page *page = pvec->pages[i]; if (PageTransTail(page)) continue; folio_batch_add(&fbatch, page_folio(page)); } check_move_unevictable_folios(&fbatch); } EXPORT_SYMBOL_GPL(check_move_unevictable_pages); /** * check_move_unevictable_folios - Move evictable folios to appropriate zone * lru list * @fbatch: Batch of lru folios to check. * * Checks folios for evictability, if an evictable folio is in the unevictable * lru list, moves it to the appropriate evictable lru list. This function * should be only used for lru folios. */ void check_move_unevictable_folios(struct folio_batch *fbatch) { struct lruvec *lruvec = NULL; int pgscanned = 0; int pgrescued = 0; int i; for (i = 0; i < fbatch->nr; i++) { struct folio *folio = fbatch->folios[i]; int nr_pages = folio_nr_pages(folio); pgscanned += nr_pages; /* block memcg migration while the folio moves between lrus */ if (!folio_test_clear_lru(folio)) continue; lruvec = folio_lruvec_relock_irq(folio, lruvec); if (folio_evictable(folio) && folio_test_unevictable(folio)) { lruvec_del_folio(lruvec, folio); folio_clear_unevictable(folio); lruvec_add_folio(lruvec, folio); pgrescued += nr_pages; } folio_set_lru(folio); } if (lruvec) { __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); unlock_page_lruvec_irq(lruvec); } else if (pgscanned) { count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); } } EXPORT_SYMBOL_GPL(check_move_unevictable_folios);