// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc * Copyright 2007-2010 Johannes Berg * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright(c) 2015 - 2017 Intel Deutschland GmbH * Copyright (C) 2018-2022 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ieee80211_i.h" #include "driver-ops.h" #include "led.h" #include "mesh.h" #include "wep.h" #include "wpa.h" #include "tkip.h" #include "wme.h" #include "rate.h" /* * monitor mode reception * * This function cleans up the SKB, i.e. it removes all the stuff * only useful for monitoring. */ static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, unsigned int present_fcs_len, unsigned int rtap_space) { struct ieee80211_hdr *hdr; unsigned int hdrlen; __le16 fc; if (present_fcs_len) __pskb_trim(skb, skb->len - present_fcs_len); __pskb_pull(skb, rtap_space); hdr = (void *)skb->data; fc = hdr->frame_control; /* * Remove the HT-Control field (if present) on management * frames after we've sent the frame to monitoring. We * (currently) don't need it, and don't properly parse * frames with it present, due to the assumption of a * fixed management header length. */ if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) return skb; hdrlen = ieee80211_hdrlen(fc); hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); if (!pskb_may_pull(skb, hdrlen)) { dev_kfree_skb(skb); return NULL; } memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, hdrlen - IEEE80211_HT_CTL_LEN); __pskb_pull(skb, IEEE80211_HT_CTL_LEN); return skb; } static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, unsigned int rtap_space) { struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_hdr *hdr; hdr = (void *)(skb->data + rtap_space); if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC | RX_FLAG_ONLY_MONITOR | RX_FLAG_NO_PSDU)) return true; if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) return true; if (ieee80211_is_ctl(hdr->frame_control) && !ieee80211_is_pspoll(hdr->frame_control) && !ieee80211_is_back_req(hdr->frame_control)) return true; return false; } static int ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, struct ieee80211_rx_status *status, struct sk_buff *skb) { int len; /* always present fields */ len = sizeof(struct ieee80211_radiotap_header) + 8; /* allocate extra bitmaps */ if (status->chains) len += 4 * hweight8(status->chains); /* vendor presence bitmap */ if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) len += 4; if (ieee80211_have_rx_timestamp(status)) { len = ALIGN(len, 8); len += 8; } if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) len += 1; /* antenna field, if we don't have per-chain info */ if (!status->chains) len += 1; /* padding for RX_FLAGS if necessary */ len = ALIGN(len, 2); if (status->encoding == RX_ENC_HT) /* HT info */ len += 3; if (status->flag & RX_FLAG_AMPDU_DETAILS) { len = ALIGN(len, 4); len += 8; } if (status->encoding == RX_ENC_VHT) { len = ALIGN(len, 2); len += 12; } if (local->hw.radiotap_timestamp.units_pos >= 0) { len = ALIGN(len, 8); len += 12; } if (status->encoding == RX_ENC_HE && status->flag & RX_FLAG_RADIOTAP_HE) { len = ALIGN(len, 2); len += 12; BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); } if (status->encoding == RX_ENC_HE && status->flag & RX_FLAG_RADIOTAP_HE_MU) { len = ALIGN(len, 2); len += 12; BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); } if (status->flag & RX_FLAG_NO_PSDU) len += 1; if (status->flag & RX_FLAG_RADIOTAP_LSIG) { len = ALIGN(len, 2); len += 4; BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); } if (status->chains) { /* antenna and antenna signal fields */ len += 2 * hweight8(status->chains); } if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { struct ieee80211_vendor_radiotap *rtap; int vendor_data_offset = 0; /* * The position to look at depends on the existence (or non- * existence) of other elements, so take that into account... */ if (status->flag & RX_FLAG_RADIOTAP_HE) vendor_data_offset += sizeof(struct ieee80211_radiotap_he); if (status->flag & RX_FLAG_RADIOTAP_HE_MU) vendor_data_offset += sizeof(struct ieee80211_radiotap_he_mu); if (status->flag & RX_FLAG_RADIOTAP_LSIG) vendor_data_offset += sizeof(struct ieee80211_radiotap_lsig); rtap = (void *)&skb->data[vendor_data_offset]; /* alignment for fixed 6-byte vendor data header */ len = ALIGN(len, 2); /* vendor data header */ len += 6; if (WARN_ON(rtap->align == 0)) rtap->align = 1; len = ALIGN(len, rtap->align); len += rtap->len + rtap->pad; } return len; } static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb) { skb_queue_tail(&sdata->skb_queue, skb); ieee80211_queue_work(&sdata->local->hw, &sdata->work); if (sta) sta->deflink.rx_stats.packets++; } static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb) { skb->protocol = 0; __ieee80211_queue_skb_to_iface(sdata, sta, skb); } static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, int rtap_space) { struct { struct ieee80211_hdr_3addr hdr; u8 category; u8 action_code; } __packed __aligned(2) action; if (!sdata) return; BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); if (skb->len < rtap_space + sizeof(action) + VHT_MUMIMO_GROUPS_DATA_LEN) return; if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) return; skb_copy_bits(skb, rtap_space, &action, sizeof(action)); if (!ieee80211_is_action(action.hdr.frame_control)) return; if (action.category != WLAN_CATEGORY_VHT) return; if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) return; if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) return; skb = skb_copy(skb, GFP_ATOMIC); if (!skb) return; ieee80211_queue_skb_to_iface(sdata, NULL, skb); } /* * ieee80211_add_rx_radiotap_header - add radiotap header * * add a radiotap header containing all the fields which the hardware provided. */ static void ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, struct sk_buff *skb, struct ieee80211_rate *rate, int rtap_len, bool has_fcs) { struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_radiotap_header *rthdr; unsigned char *pos; __le32 *it_present; u32 it_present_val; u16 rx_flags = 0; u16 channel_flags = 0; int mpdulen, chain; unsigned long chains = status->chains; struct ieee80211_vendor_radiotap rtap = {}; struct ieee80211_radiotap_he he = {}; struct ieee80211_radiotap_he_mu he_mu = {}; struct ieee80211_radiotap_lsig lsig = {}; if (status->flag & RX_FLAG_RADIOTAP_HE) { he = *(struct ieee80211_radiotap_he *)skb->data; skb_pull(skb, sizeof(he)); WARN_ON_ONCE(status->encoding != RX_ENC_HE); } if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; skb_pull(skb, sizeof(he_mu)); } if (status->flag & RX_FLAG_RADIOTAP_LSIG) { lsig = *(struct ieee80211_radiotap_lsig *)skb->data; skb_pull(skb, sizeof(lsig)); } if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { rtap = *(struct ieee80211_vendor_radiotap *)skb->data; /* rtap.len and rtap.pad are undone immediately */ skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); } mpdulen = skb->len; if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) mpdulen += FCS_LEN; rthdr = skb_push(skb, rtap_len); memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); it_present = &rthdr->it_present; /* radiotap header, set always present flags */ rthdr->it_len = cpu_to_le16(rtap_len); it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | BIT(IEEE80211_RADIOTAP_CHANNEL) | BIT(IEEE80211_RADIOTAP_RX_FLAGS); if (!status->chains) it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { it_present_val |= BIT(IEEE80211_RADIOTAP_EXT) | BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); put_unaligned_le32(it_present_val, it_present); it_present++; it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); } if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | BIT(IEEE80211_RADIOTAP_EXT); put_unaligned_le32(it_present_val, it_present); it_present++; it_present_val = rtap.present; } put_unaligned_le32(it_present_val, it_present); /* This references through an offset into it_optional[] rather * than via it_present otherwise later uses of pos will cause * the compiler to think we have walked past the end of the * struct member. */ pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional]; /* the order of the following fields is important */ /* IEEE80211_RADIOTAP_TSFT */ if (ieee80211_have_rx_timestamp(status)) { /* padding */ while ((pos - (u8 *)rthdr) & 7) *pos++ = 0; put_unaligned_le64( ieee80211_calculate_rx_timestamp(local, status, mpdulen, 0), pos); rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT)); pos += 8; } /* IEEE80211_RADIOTAP_FLAGS */ if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) *pos |= IEEE80211_RADIOTAP_F_FCS; if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) *pos |= IEEE80211_RADIOTAP_F_BADFCS; if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; pos++; /* IEEE80211_RADIOTAP_RATE */ if (!rate || status->encoding != RX_ENC_LEGACY) { /* * Without rate information don't add it. If we have, * MCS information is a separate field in radiotap, * added below. The byte here is needed as padding * for the channel though, so initialise it to 0. */ *pos = 0; } else { int shift = 0; rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE)); if (status->bw == RATE_INFO_BW_10) shift = 1; else if (status->bw == RATE_INFO_BW_5) shift = 2; *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); } pos++; /* IEEE80211_RADIOTAP_CHANNEL */ /* TODO: frequency offset in KHz */ put_unaligned_le16(status->freq, pos); pos += 2; if (status->bw == RATE_INFO_BW_10) channel_flags |= IEEE80211_CHAN_HALF; else if (status->bw == RATE_INFO_BW_5) channel_flags |= IEEE80211_CHAN_QUARTER; if (status->band == NL80211_BAND_5GHZ || status->band == NL80211_BAND_6GHZ) channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; else if (status->encoding != RX_ENC_LEGACY) channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; else if (rate && rate->flags & IEEE80211_RATE_ERP_G) channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; else if (rate) channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; else channel_flags |= IEEE80211_CHAN_2GHZ; put_unaligned_le16(channel_flags, pos); pos += 2; /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { *pos = status->signal; rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL)); pos++; } /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ if (!status->chains) { /* IEEE80211_RADIOTAP_ANTENNA */ *pos = status->antenna; pos++; } /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ /* IEEE80211_RADIOTAP_RX_FLAGS */ /* ensure 2 byte alignment for the 2 byte field as required */ if ((pos - (u8 *)rthdr) & 1) *pos++ = 0; if (status->flag & RX_FLAG_FAILED_PLCP_CRC) rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; put_unaligned_le16(rx_flags, pos); pos += 2; if (status->encoding == RX_ENC_HT) { unsigned int stbc; rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS)); *pos = local->hw.radiotap_mcs_details; if (status->enc_flags & RX_ENC_FLAG_HT_GF) *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FMT; if (status->enc_flags & RX_ENC_FLAG_LDPC) *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FEC; pos++; *pos = 0; if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) *pos |= IEEE80211_RADIOTAP_MCS_SGI; if (status->bw == RATE_INFO_BW_40) *pos |= IEEE80211_RADIOTAP_MCS_BW_40; if (status->enc_flags & RX_ENC_FLAG_HT_GF) *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; if (status->enc_flags & RX_ENC_FLAG_LDPC) *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; pos++; *pos++ = status->rate_idx; } if (status->flag & RX_FLAG_AMPDU_DETAILS) { u16 flags = 0; /* ensure 4 byte alignment */ while ((pos - (u8 *)rthdr) & 3) pos++; rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS)); put_unaligned_le32(status->ampdu_reference, pos); pos += 4; if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; if (status->flag & RX_FLAG_AMPDU_IS_LAST) flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; if (status->flag & RX_FLAG_AMPDU_EOF_BIT) flags |= IEEE80211_RADIOTAP_AMPDU_EOF; put_unaligned_le16(flags, pos); pos += 2; if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) *pos++ = status->ampdu_delimiter_crc; else *pos++ = 0; *pos++ = 0; } if (status->encoding == RX_ENC_VHT) { u16 known = local->hw.radiotap_vht_details; rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT)); put_unaligned_le16(known, pos); pos += 2; /* flags */ if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; /* in VHT, STBC is binary */ if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; if (status->enc_flags & RX_ENC_FLAG_BF) *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; pos++; /* bandwidth */ switch (status->bw) { case RATE_INFO_BW_80: *pos++ = 4; break; case RATE_INFO_BW_160: *pos++ = 11; break; case RATE_INFO_BW_40: *pos++ = 1; break; default: *pos++ = 0; } /* MCS/NSS */ *pos = (status->rate_idx << 4) | status->nss; pos += 4; /* coding field */ if (status->enc_flags & RX_ENC_FLAG_LDPC) *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; pos++; /* group ID */ pos++; /* partial_aid */ pos += 2; } if (local->hw.radiotap_timestamp.units_pos >= 0) { u16 accuracy = 0; u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP)); /* ensure 8 byte alignment */ while ((pos - (u8 *)rthdr) & 7) pos++; put_unaligned_le64(status->device_timestamp, pos); pos += sizeof(u64); if (local->hw.radiotap_timestamp.accuracy >= 0) { accuracy = local->hw.radiotap_timestamp.accuracy; flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; } put_unaligned_le16(accuracy, pos); pos += sizeof(u16); *pos++ = local->hw.radiotap_timestamp.units_pos; *pos++ = flags; } if (status->encoding == RX_ENC_HE && status->flag & RX_FLAG_RADIOTAP_HE) { #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { he.data6 |= HE_PREP(DATA6_NSTS, FIELD_GET(RX_ENC_FLAG_STBC_MASK, status->enc_flags)); he.data3 |= HE_PREP(DATA3_STBC, 1); } else { he.data6 |= HE_PREP(DATA6_NSTS, status->nss); } #define CHECK_GI(s) \ BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ (int)NL80211_RATE_INFO_HE_GI_##s) CHECK_GI(0_8); CHECK_GI(1_6); CHECK_GI(3_2); he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); he.data3 |= HE_PREP(DATA3_CODING, !!(status->enc_flags & RX_ENC_FLAG_LDPC)); he.data5 |= HE_PREP(DATA5_GI, status->he_gi); switch (status->bw) { case RATE_INFO_BW_20: he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); break; case RATE_INFO_BW_40: he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); break; case RATE_INFO_BW_80: he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); break; case RATE_INFO_BW_160: he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); break; case RATE_INFO_BW_HE_RU: #define CHECK_RU_ALLOC(s) \ BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) CHECK_RU_ALLOC(26); CHECK_RU_ALLOC(52); CHECK_RU_ALLOC(106); CHECK_RU_ALLOC(242); CHECK_RU_ALLOC(484); CHECK_RU_ALLOC(996); CHECK_RU_ALLOC(2x996); he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, status->he_ru + 4); break; default: WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); } /* ensure 2 byte alignment */ while ((pos - (u8 *)rthdr) & 1) pos++; rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE)); memcpy(pos, &he, sizeof(he)); pos += sizeof(he); } if (status->encoding == RX_ENC_HE && status->flag & RX_FLAG_RADIOTAP_HE_MU) { /* ensure 2 byte alignment */ while ((pos - (u8 *)rthdr) & 1) pos++; rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU)); memcpy(pos, &he_mu, sizeof(he_mu)); pos += sizeof(he_mu); } if (status->flag & RX_FLAG_NO_PSDU) { rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU)); *pos++ = status->zero_length_psdu_type; } if (status->flag & RX_FLAG_RADIOTAP_LSIG) { /* ensure 2 byte alignment */ while ((pos - (u8 *)rthdr) & 1) pos++; rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG)); memcpy(pos, &lsig, sizeof(lsig)); pos += sizeof(lsig); } for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { *pos++ = status->chain_signal[chain]; *pos++ = chain; } if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { /* ensure 2 byte alignment for the vendor field as required */ if ((pos - (u8 *)rthdr) & 1) *pos++ = 0; *pos++ = rtap.oui[0]; *pos++ = rtap.oui[1]; *pos++ = rtap.oui[2]; *pos++ = rtap.subns; put_unaligned_le16(rtap.len, pos); pos += 2; /* align the actual payload as requested */ while ((pos - (u8 *)rthdr) & (rtap.align - 1)) *pos++ = 0; /* data (and possible padding) already follows */ } } static struct sk_buff * ieee80211_make_monitor_skb(struct ieee80211_local *local, struct sk_buff **origskb, struct ieee80211_rate *rate, int rtap_space, bool use_origskb) { struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); int rt_hdrlen, needed_headroom; struct sk_buff *skb; /* room for the radiotap header based on driver features */ rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); needed_headroom = rt_hdrlen - rtap_space; if (use_origskb) { /* only need to expand headroom if necessary */ skb = *origskb; *origskb = NULL; /* * This shouldn't trigger often because most devices have an * RX header they pull before we get here, and that should * be big enough for our radiotap information. We should * probably export the length to drivers so that we can have * them allocate enough headroom to start with. */ if (skb_headroom(skb) < needed_headroom && pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { dev_kfree_skb(skb); return NULL; } } else { /* * Need to make a copy and possibly remove radiotap header * and FCS from the original. */ skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD, 0, GFP_ATOMIC); if (!skb) return NULL; } /* prepend radiotap information */ ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); skb_reset_mac_header(skb); skb->ip_summed = CHECKSUM_UNNECESSARY; skb->pkt_type = PACKET_OTHERHOST; skb->protocol = htons(ETH_P_802_2); return skb; } /* * This function copies a received frame to all monitor interfaces and * returns a cleaned-up SKB that no longer includes the FCS nor the * radiotap header the driver might have added. */ static struct sk_buff * ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, struct ieee80211_rate *rate) { struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); struct ieee80211_sub_if_data *sdata; struct sk_buff *monskb = NULL; int present_fcs_len = 0; unsigned int rtap_space = 0; struct ieee80211_sub_if_data *monitor_sdata = rcu_dereference(local->monitor_sdata); bool only_monitor = false; unsigned int min_head_len; if (status->flag & RX_FLAG_RADIOTAP_HE) rtap_space += sizeof(struct ieee80211_radiotap_he); if (status->flag & RX_FLAG_RADIOTAP_HE_MU) rtap_space += sizeof(struct ieee80211_radiotap_he_mu); if (status->flag & RX_FLAG_RADIOTAP_LSIG) rtap_space += sizeof(struct ieee80211_radiotap_lsig); if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { struct ieee80211_vendor_radiotap *rtap = (void *)(origskb->data + rtap_space); rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; } min_head_len = rtap_space; /* * First, we may need to make a copy of the skb because * (1) we need to modify it for radiotap (if not present), and * (2) the other RX handlers will modify the skb we got. * * We don't need to, of course, if we aren't going to return * the SKB because it has a bad FCS/PLCP checksum. */ if (!(status->flag & RX_FLAG_NO_PSDU)) { if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { /* driver bug */ WARN_ON(1); dev_kfree_skb(origskb); return NULL; } present_fcs_len = FCS_LEN; } /* also consider the hdr->frame_control */ min_head_len += 2; } /* ensure that the expected data elements are in skb head */ if (!pskb_may_pull(origskb, min_head_len)) { dev_kfree_skb(origskb); return NULL; } only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { if (only_monitor) { dev_kfree_skb(origskb); return NULL; } return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); } ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { bool last_monitor = list_is_last(&sdata->u.mntr.list, &local->mon_list); if (!monskb) monskb = ieee80211_make_monitor_skb(local, &origskb, rate, rtap_space, only_monitor && last_monitor); if (monskb) { struct sk_buff *skb; if (last_monitor) { skb = monskb; monskb = NULL; } else { skb = skb_clone(monskb, GFP_ATOMIC); } if (skb) { skb->dev = sdata->dev; dev_sw_netstats_rx_add(skb->dev, skb->len); netif_receive_skb(skb); } } if (last_monitor) break; } /* this happens if last_monitor was erroneously false */ dev_kfree_skb(monskb); /* ditto */ if (!origskb) return NULL; return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); } static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); int tid, seqno_idx, security_idx; /* does the frame have a qos control field? */ if (ieee80211_is_data_qos(hdr->frame_control)) { u8 *qc = ieee80211_get_qos_ctl(hdr); /* frame has qos control */ tid = *qc & IEEE80211_QOS_CTL_TID_MASK; if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) status->rx_flags |= IEEE80211_RX_AMSDU; seqno_idx = tid; security_idx = tid; } else { /* * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): * * Sequence numbers for management frames, QoS data * frames with a broadcast/multicast address in the * Address 1 field, and all non-QoS data frames sent * by QoS STAs are assigned using an additional single * modulo-4096 counter, [...] * * We also use that counter for non-QoS STAs. */ seqno_idx = IEEE80211_NUM_TIDS; security_idx = 0; if (ieee80211_is_mgmt(hdr->frame_control)) security_idx = IEEE80211_NUM_TIDS; tid = 0; } rx->seqno_idx = seqno_idx; rx->security_idx = security_idx; /* Set skb->priority to 1d tag if highest order bit of TID is not set. * For now, set skb->priority to 0 for other cases. */ rx->skb->priority = (tid > 7) ? 0 : tid; } /** * DOC: Packet alignment * * Drivers always need to pass packets that are aligned to two-byte boundaries * to the stack. * * Additionally, should, if possible, align the payload data in a way that * guarantees that the contained IP header is aligned to a four-byte * boundary. In the case of regular frames, this simply means aligning the * payload to a four-byte boundary (because either the IP header is directly * contained, or IV/RFC1042 headers that have a length divisible by four are * in front of it). If the payload data is not properly aligned and the * architecture doesn't support efficient unaligned operations, mac80211 * will align the data. * * With A-MSDU frames, however, the payload data address must yield two modulo * four because there are 14-byte 802.3 headers within the A-MSDU frames that * push the IP header further back to a multiple of four again. Thankfully, the * specs were sane enough this time around to require padding each A-MSDU * subframe to a length that is a multiple of four. * * Padding like Atheros hardware adds which is between the 802.11 header and * the payload is not supported, the driver is required to move the 802.11 * header to be directly in front of the payload in that case. */ static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) { #ifdef CONFIG_MAC80211_VERBOSE_DEBUG WARN_ON_ONCE((unsigned long)rx->skb->data & 1); #endif } /* rx handlers */ static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; if (is_multicast_ether_addr(hdr->addr1)) return 0; return ieee80211_is_robust_mgmt_frame(skb); } static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; if (!is_multicast_ether_addr(hdr->addr1)) return 0; return ieee80211_is_robust_mgmt_frame(skb); } /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) { struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; struct ieee80211_mmie *mmie; struct ieee80211_mmie_16 *mmie16; if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) return -1; if (!ieee80211_is_robust_mgmt_frame(skb) && !ieee80211_is_beacon(hdr->frame_control)) return -1; /* not a robust management frame */ mmie = (struct ieee80211_mmie *) (skb->data + skb->len - sizeof(*mmie)); if (mmie->element_id == WLAN_EID_MMIE && mmie->length == sizeof(*mmie) - 2) return le16_to_cpu(mmie->key_id); mmie16 = (struct ieee80211_mmie_16 *) (skb->data + skb->len - sizeof(*mmie16)); if (skb->len >= 24 + sizeof(*mmie16) && mmie16->element_id == WLAN_EID_MMIE && mmie16->length == sizeof(*mmie16) - 2) return le16_to_cpu(mmie16->key_id); return -1; } static int ieee80211_get_keyid(struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; __le16 fc = hdr->frame_control; int hdrlen = ieee80211_hdrlen(fc); u8 keyid; /* WEP, TKIP, CCMP and GCMP */ if (unlikely(skb->len < hdrlen + IEEE80211_WEP_IV_LEN)) return -EINVAL; skb_copy_bits(skb, hdrlen + 3, &keyid, 1); keyid >>= 6; return keyid; } static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; char *dev_addr = rx->sdata->vif.addr; if (ieee80211_is_data(hdr->frame_control)) { if (is_multicast_ether_addr(hdr->addr1)) { if (ieee80211_has_tods(hdr->frame_control) || !ieee80211_has_fromds(hdr->frame_control)) return RX_DROP_MONITOR; if (ether_addr_equal(hdr->addr3, dev_addr)) return RX_DROP_MONITOR; } else { if (!ieee80211_has_a4(hdr->frame_control)) return RX_DROP_MONITOR; if (ether_addr_equal(hdr->addr4, dev_addr)) return RX_DROP_MONITOR; } } /* If there is not an established peer link and this is not a peer link * establisment frame, beacon or probe, drop the frame. */ if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { struct ieee80211_mgmt *mgmt; if (!ieee80211_is_mgmt(hdr->frame_control)) return RX_DROP_MONITOR; if (ieee80211_is_action(hdr->frame_control)) { u8 category; /* make sure category field is present */ if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) return RX_DROP_MONITOR; mgmt = (struct ieee80211_mgmt *)hdr; category = mgmt->u.action.category; if (category != WLAN_CATEGORY_MESH_ACTION && category != WLAN_CATEGORY_SELF_PROTECTED) return RX_DROP_MONITOR; return RX_CONTINUE; } if (ieee80211_is_probe_req(hdr->frame_control) || ieee80211_is_probe_resp(hdr->frame_control) || ieee80211_is_beacon(hdr->frame_control) || ieee80211_is_auth(hdr->frame_control)) return RX_CONTINUE; return RX_DROP_MONITOR; } return RX_CONTINUE; } static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, int index) { struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; struct sk_buff *tail = skb_peek_tail(frames); struct ieee80211_rx_status *status; if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) return true; if (!tail) return false; status = IEEE80211_SKB_RXCB(tail); if (status->flag & RX_FLAG_AMSDU_MORE) return false; return true; } static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, struct tid_ampdu_rx *tid_agg_rx, int index, struct sk_buff_head *frames) { struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; struct sk_buff *skb; struct ieee80211_rx_status *status; lockdep_assert_held(&tid_agg_rx->reorder_lock); if (skb_queue_empty(skb_list)) goto no_frame; if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { __skb_queue_purge(skb_list); goto no_frame; } /* release frames from the reorder ring buffer */ tid_agg_rx->stored_mpdu_num--; while ((skb = __skb_dequeue(skb_list))) { status = IEEE80211_SKB_RXCB(skb); status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; __skb_queue_tail(frames, skb); } no_frame: tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); } static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, struct tid_ampdu_rx *tid_agg_rx, u16 head_seq_num, struct sk_buff_head *frames) { int index; lockdep_assert_held(&tid_agg_rx->reorder_lock); while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, frames); } } /* * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If * the skb was added to the buffer longer than this time ago, the earlier * frames that have not yet been received are assumed to be lost and the skb * can be released for processing. This may also release other skb's from the * reorder buffer if there are no additional gaps between the frames. * * Callers must hold tid_agg_rx->reorder_lock. */ #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, struct tid_ampdu_rx *tid_agg_rx, struct sk_buff_head *frames) { int index, i, j; lockdep_assert_held(&tid_agg_rx->reorder_lock); /* release the buffer until next missing frame */ index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && tid_agg_rx->stored_mpdu_num) { /* * No buffers ready to be released, but check whether any * frames in the reorder buffer have timed out. */ int skipped = 1; for (j = (index + 1) % tid_agg_rx->buf_size; j != index; j = (j + 1) % tid_agg_rx->buf_size) { if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { skipped++; continue; } if (skipped && !time_after(jiffies, tid_agg_rx->reorder_time[j] + HT_RX_REORDER_BUF_TIMEOUT)) goto set_release_timer; /* don't leave incomplete A-MSDUs around */ for (i = (index + 1) % tid_agg_rx->buf_size; i != j; i = (i + 1) % tid_agg_rx->buf_size) __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); ht_dbg_ratelimited(sdata, "release an RX reorder frame due to timeout on earlier frames\n"); ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, frames); /* * Increment the head seq# also for the skipped slots. */ tid_agg_rx->head_seq_num = (tid_agg_rx->head_seq_num + skipped) & IEEE80211_SN_MASK; skipped = 0; } } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, frames); index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; } if (tid_agg_rx->stored_mpdu_num) { j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; for (; j != (index - 1) % tid_agg_rx->buf_size; j = (j + 1) % tid_agg_rx->buf_size) { if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) break; } set_release_timer: if (!tid_agg_rx->removed) mod_timer(&tid_agg_rx->reorder_timer, tid_agg_rx->reorder_time[j] + 1 + HT_RX_REORDER_BUF_TIMEOUT); } else { del_timer(&tid_agg_rx->reorder_timer); } } /* * As this function belongs to the RX path it must be under * rcu_read_lock protection. It returns false if the frame * can be processed immediately, true if it was consumed. */ static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, struct tid_ampdu_rx *tid_agg_rx, struct sk_buff *skb, struct sk_buff_head *frames) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); u16 sc = le16_to_cpu(hdr->seq_ctrl); u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; u16 head_seq_num, buf_size; int index; bool ret = true; spin_lock(&tid_agg_rx->reorder_lock); /* * Offloaded BA sessions have no known starting sequence number so pick * one from first Rxed frame for this tid after BA was started. */ if (unlikely(tid_agg_rx->auto_seq)) { tid_agg_rx->auto_seq = false; tid_agg_rx->ssn = mpdu_seq_num; tid_agg_rx->head_seq_num = mpdu_seq_num; } buf_size = tid_agg_rx->buf_size; head_seq_num = tid_agg_rx->head_seq_num; /* * If the current MPDU's SN is smaller than the SSN, it shouldn't * be reordered. */ if (unlikely(!tid_agg_rx->started)) { if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { ret = false; goto out; } tid_agg_rx->started = true; } /* frame with out of date sequence number */ if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { dev_kfree_skb(skb); goto out; } /* * If frame the sequence number exceeds our buffering window * size release some previous frames to make room for this one. */ if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { head_seq_num = ieee80211_sn_inc( ieee80211_sn_sub(mpdu_seq_num, buf_size)); /* release stored frames up to new head to stack */ ieee80211_release_reorder_frames(sdata, tid_agg_rx, head_seq_num, frames); } /* Now the new frame is always in the range of the reordering buffer */ index = mpdu_seq_num % tid_agg_rx->buf_size; /* check if we already stored this frame */ if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { dev_kfree_skb(skb); goto out; } /* * If the current MPDU is in the right order and nothing else * is stored we can process it directly, no need to buffer it. * If it is first but there's something stored, we may be able * to release frames after this one. */ if (mpdu_seq_num == tid_agg_rx->head_seq_num && tid_agg_rx->stored_mpdu_num == 0) { if (!(status->flag & RX_FLAG_AMSDU_MORE)) tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); ret = false; goto out; } /* put the frame in the reordering buffer */ __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); if (!(status->flag & RX_FLAG_AMSDU_MORE)) { tid_agg_rx->reorder_time[index] = jiffies; tid_agg_rx->stored_mpdu_num++; ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); } out: spin_unlock(&tid_agg_rx->reorder_lock); return ret; } /* * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns * true if the MPDU was buffered, false if it should be processed. */ static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) { struct sk_buff *skb = rx->skb; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct sta_info *sta = rx->sta; struct tid_ampdu_rx *tid_agg_rx; u16 sc; u8 tid, ack_policy; if (!ieee80211_is_data_qos(hdr->frame_control) || is_multicast_ether_addr(hdr->addr1)) goto dont_reorder; /* * filter the QoS data rx stream according to * STA/TID and check if this STA/TID is on aggregation */ if (!sta) goto dont_reorder; ack_policy = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_ACK_POLICY_MASK; tid = ieee80211_get_tid(hdr); tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); if (!tid_agg_rx) { if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, WLAN_BACK_RECIPIENT, WLAN_REASON_QSTA_REQUIRE_SETUP); goto dont_reorder; } /* qos null data frames are excluded */ if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) goto dont_reorder; /* not part of a BA session */ if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK) goto dont_reorder; /* new, potentially un-ordered, ampdu frame - process it */ /* reset session timer */ if (tid_agg_rx->timeout) tid_agg_rx->last_rx = jiffies; /* if this mpdu is fragmented - terminate rx aggregation session */ sc = le16_to_cpu(hdr->seq_ctrl); if (sc & IEEE80211_SCTL_FRAG) { ieee80211_queue_skb_to_iface(rx->sdata, NULL, skb); return; } /* * No locking needed -- we will only ever process one * RX packet at a time, and thus own tid_agg_rx. All * other code manipulating it needs to (and does) make * sure that we cannot get to it any more before doing * anything with it. */ if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, frames)) return; dont_reorder: __skb_queue_tail(frames, skb); } static ieee80211_rx_result debug_noinline ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); if (status->flag & RX_FLAG_DUP_VALIDATED) return RX_CONTINUE; /* * Drop duplicate 802.11 retransmissions * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") */ if (rx->skb->len < 24) return RX_CONTINUE; if (ieee80211_is_ctl(hdr->frame_control) || ieee80211_is_any_nullfunc(hdr->frame_control) || is_multicast_ether_addr(hdr->addr1)) return RX_CONTINUE; if (!rx->sta) return RX_CONTINUE; if (unlikely(ieee80211_has_retry(hdr->frame_control) && rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); rx->sta->deflink.rx_stats.num_duplicates++; return RX_DROP_UNUSABLE; } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; } return RX_CONTINUE; } static ieee80211_rx_result debug_noinline ieee80211_rx_h_check(struct ieee80211_rx_data *rx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; /* Drop disallowed frame classes based on STA auth/assoc state; * IEEE 802.11, Chap 5.5. * * mac80211 filters only based on association state, i.e. it drops * Class 3 frames from not associated stations. hostapd sends * deauth/disassoc frames when needed. In addition, hostapd is * responsible for filtering on both auth and assoc states. */ if (ieee80211_vif_is_mesh(&rx->sdata->vif)) return ieee80211_rx_mesh_check(rx); if (unlikely((ieee80211_is_data(hdr->frame_control) || ieee80211_is_pspoll(hdr->frame_control)) && rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && rx->sdata->vif.type != NL80211_IFTYPE_OCB && (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { /* * accept port control frames from the AP even when it's not * yet marked ASSOC to prevent a race where we don't set the * assoc bit quickly enough before it sends the first frame */ if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && ieee80211_is_data_present(hdr->frame_control)) { unsigned int hdrlen; __be16 ethertype; hdrlen = ieee80211_hdrlen(hdr->frame_control); if (rx->skb->len < hdrlen + 8) return RX_DROP_MONITOR; skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); if (ethertype == rx->sdata->control_port_protocol) return RX_CONTINUE; } if (rx->sdata->vif.type == NL80211_IFTYPE_AP && cfg80211_rx_spurious_frame(rx->sdata->dev, hdr->addr2, GFP_ATOMIC)) return RX_DROP_UNUSABLE; return RX_DROP_MONITOR; } return RX_CONTINUE; } static ieee80211_rx_result debug_noinline ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) { struct ieee80211_local *local; struct ieee80211_hdr *hdr; struct sk_buff *skb; local = rx->local; skb = rx->skb; hdr = (struct ieee80211_hdr *) skb->data; if (!local->pspolling) return RX_CONTINUE; if (!ieee80211_has_fromds(hdr->frame_control)) /* this is not from AP */ return RX_CONTINUE; if (!ieee80211_is_data(hdr->frame_control)) return RX_CONTINUE; if (!ieee80211_has_moredata(hdr->frame_control)) { /* AP has no more frames buffered for us */ local->pspolling = false; return RX_CONTINUE; } /* more data bit is set, let's request a new frame from the AP */ ieee80211_send_pspoll(local, rx->sdata); return RX_CONTINUE; } static void sta_ps_start(struct sta_info *sta) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; struct ps_data *ps; int tid; if (sta->sdata->vif.type == NL80211_IFTYPE_AP || sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) ps = &sdata->bss->ps; else return; atomic_inc(&ps->num_sta_ps); set_sta_flag(sta, WLAN_STA_PS_STA); if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", sta->sta.addr, sta->sta.aid); ieee80211_clear_fast_xmit(sta); if (!sta->sta.txq[0]) return; for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { struct ieee80211_txq *txq = sta->sta.txq[tid]; struct txq_info *txqi = to_txq_info(txq); spin_lock(&local->active_txq_lock[txq->ac]); if (!list_empty(&txqi->schedule_order)) list_del_init(&txqi->schedule_order); spin_unlock(&local->active_txq_lock[txq->ac]); if (txq_has_queue(txq)) set_bit(tid, &sta->txq_buffered_tids); else clear_bit(tid, &sta->txq_buffered_tids); } } static void sta_ps_end(struct sta_info *sta) { ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", sta->sta.addr, sta->sta.aid); if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { /* * Clear the flag only if the other one is still set * so that the TX path won't start TX'ing new frames * directly ... In the case that the driver flag isn't * set ieee80211_sta_ps_deliver_wakeup() will clear it. */ clear_sta_flag(sta, WLAN_STA_PS_STA); ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", sta->sta.addr, sta->sta.aid); return; } set_sta_flag(sta, WLAN_STA_PS_DELIVER); clear_sta_flag(sta, WLAN_STA_PS_STA); ieee80211_sta_ps_deliver_wakeup(sta); } int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); bool in_ps; WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); /* Don't let the same PS state be set twice */ in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); if ((start && in_ps) || (!start && !in_ps)) return -EINVAL; if (start) sta_ps_start(sta); else sta_ps_end(sta); return 0; } EXPORT_SYMBOL(ieee80211_sta_ps_transition); void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); if (test_sta_flag(sta, WLAN_STA_SP)) return; if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) ieee80211_sta_ps_deliver_poll_response(sta); else set_sta_flag(sta, WLAN_STA_PSPOLL); } EXPORT_SYMBOL(ieee80211_sta_pspoll); void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); int ac = ieee80211_ac_from_tid(tid); /* * If this AC is not trigger-enabled do nothing unless the * driver is calling us after it already checked. * * NB: This could/should check a separate bitmap of trigger- * enabled queues, but for now we only implement uAPSD w/o * TSPEC changes to the ACs, so they're always the same. */ if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && tid != IEEE80211_NUM_TIDS) return; /* if we are in a service period, do nothing */ if (test_sta_flag(sta, WLAN_STA_SP)) return; if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) ieee80211_sta_ps_deliver_uapsd(sta); else set_sta_flag(sta, WLAN_STA_UAPSD); } EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); static ieee80211_rx_result debug_noinline ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) { struct ieee80211_sub_if_data *sdata = rx->sdata; struct ieee80211_hdr *hdr = (void *)rx->skb->data; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); if (!rx->sta) return RX_CONTINUE; if (sdata->vif.type != NL80211_IFTYPE_AP && sdata->vif.type != NL80211_IFTYPE_AP_VLAN) return RX_CONTINUE; /* * The device handles station powersave, so don't do anything about * uAPSD and PS-Poll frames (the latter shouldn't even come up from * it to mac80211 since they're handled.) */ if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) return RX_CONTINUE; /* * Don't do anything if the station isn't already asleep. In * the uAPSD case, the station will probably be marked asleep, * in the PS-Poll case the station must be confused ... */ if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) return RX_CONTINUE; if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { ieee80211_sta_pspoll(&rx->sta->sta); /* Free PS Poll skb here instead of returning RX_DROP that would * count as an dropped frame. */ dev_kfree_skb(rx->skb); return RX_QUEUED; } else if (!ieee80211_has_morefrags(hdr->frame_control) && !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && ieee80211_has_pm(hdr->frame_control) && (ieee80211_is_data_qos(hdr->frame_control) || ieee80211_is_qos_nullfunc(hdr->frame_control))) { u8 tid = ieee80211_get_tid(hdr); ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); } return RX_CONTINUE; } static ieee80211_rx_result debug_noinline ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) { struct sta_info *sta = rx->sta; struct sk_buff *skb = rx->skb; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; int i; if (!sta) return RX_CONTINUE; /* * Update last_rx only for IBSS packets which are for the current * BSSID and for station already AUTHORIZED to avoid keeping the * current IBSS network alive in cases where other STAs start * using different BSSID. This will also give the station another * chance to restart the authentication/authorization in case * something went wrong the first time. */ if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, NL80211_IFTYPE_ADHOC); if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { sta->deflink.rx_stats.last_rx = jiffies; if (ieee80211_is_data(hdr->frame_control) && !is_multicast_ether_addr(hdr->addr1)) sta->deflink.rx_stats.last_rate = sta_stats_encode_rate(status); } } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { sta->deflink.rx_stats.last_rx = jiffies; } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) && !is_multicast_ether_addr(hdr->addr1)) { /* * Mesh beacons will update last_rx when if they are found to * match the current local configuration when processed. */ sta->deflink.rx_stats.last_rx = jiffies; if (ieee80211_is_data(hdr->frame_control)) sta->deflink.rx_stats.last_rate = sta_stats_encode_rate(status); } sta->deflink.rx_stats.fragments++; u64_stats_update_begin(&rx->sta->deflink.rx_stats.syncp); sta->deflink.rx_stats.bytes += rx->skb->len; u64_stats_update_end(&rx->sta->deflink.rx_stats.syncp); if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { sta->deflink.rx_stats.last_signal = status->signal; ewma_signal_add(&sta->deflink.rx_stats_avg.signal, -status->signal); } if (status->chains) { sta->deflink.rx_stats.chains = status->chains; for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { int signal = status->chain_signal[i]; if (!(status->chains & BIT(i))) continue; sta->deflink.rx_stats.chain_signal_last[i] = signal; ewma_signal_add(&sta->deflink.rx_stats_avg.chain_signal[i], -signal); } } if (ieee80211_is_s1g_beacon(hdr->frame_control)) return RX_CONTINUE; /* * Change STA power saving mode only at the end of a frame * exchange sequence, and only for a data or management * frame as specified in IEEE 802.11-2016 11.2.3.2 */ if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && !ieee80211_has_morefrags(hdr->frame_control) && !is_multicast_ether_addr(hdr->addr1) && (ieee80211_is_mgmt(hdr->frame_control) || ieee80211_is_data(hdr->frame_control)) && !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && (rx->sdata->vif.type == NL80211_IFTYPE_AP || rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { if (test_sta_flag(sta, WLAN_STA_PS_STA)) { if (!ieee80211_has_pm(hdr->frame_control)) sta_ps_end(sta); } else { if (ieee80211_has_pm(hdr->frame_control)) sta_ps_start(sta); } } /* mesh power save support */ if (ieee80211_vif_is_mesh(&rx->sdata->vif)) ieee80211_mps_rx_h_sta_process(sta, hdr); /* * Drop (qos-)data::nullfunc frames silently, since they * are used only to control station power saving mode. */ if (ieee80211_is_any_nullfunc(hdr->frame_control)) { I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); /* * If we receive a 4-addr nullfunc frame from a STA * that was not moved to a 4-addr STA vlan yet send * the event to userspace and for older hostapd drop * the frame to the monitor interface. */ if (ieee80211_has_a4(hdr->frame_control) && (rx->sdata->vif.type == NL80211_IFTYPE_AP || (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !rx->sdata->u.vlan.sta))) { if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) cfg80211_rx_unexpected_4addr_frame( rx->sdata->dev, sta->sta.addr, GFP_ATOMIC); return RX_DROP_MONITOR; } /* * Update counter and free packet here to avoid * counting this as a dropped packed. */ sta->deflink.rx_stats.packets++; dev_kfree_skb(rx->skb); return RX_QUEUED; } return RX_CONTINUE; } /* ieee80211_rx_h_sta_process */ static struct ieee80211_key * ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) { struct ieee80211_key *key = NULL; struct ieee80211_sub_if_data *sdata = rx->sdata; int idx2; /* Make sure key gets set if either BIGTK key index is set so that * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected * Beacon frames and Beacon frames that claim to use another BIGTK key * index (i.e., a key that we do not have). */ if (idx < 0) { idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; idx2 = idx + 1; } else { if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) idx2 = idx + 1; else idx2 = idx - 1; } if (rx->sta) key = rcu_dereference(rx->sta->deflink.gtk[idx]); if (!key) key = rcu_dereference(sdata->deflink.gtk[idx]); if (!key && rx->sta) key = rcu_dereference(rx->sta->deflink.gtk[idx2]); if (!key) key = rcu_dereference(sdata->deflink.gtk[idx2]); return key; } static ieee80211_rx_result debug_noinline ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) { struct sk_buff *skb = rx->skb; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; int keyidx; ieee80211_rx_result result = RX_DROP_UNUSABLE; struct ieee80211_key *sta_ptk = NULL; struct ieee80211_key *ptk_idx = NULL; int mmie_keyidx = -1; __le16 fc; if (ieee80211_is_ext(hdr->frame_control)) return RX_CONTINUE; /* * Key selection 101 * * There are five types of keys: * - GTK (group keys) * - IGTK (group keys for management frames) * - BIGTK (group keys for Beacon frames) * - PTK (pairwise keys) * - STK (station-to-station pairwise keys) * * When selecting a key, we have to distinguish between multicast * (including broadcast) and unicast frames, the latter can only * use PTKs and STKs while the former always use GTKs, IGTKs, and * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, * then unicast frames can also use key indices like GTKs. Hence, if we * don't have a PTK/STK we check the key index for a WEP key. * * Note that in a regular BSS, multicast frames are sent by the * AP only, associated stations unicast the frame to the AP first * which then multicasts it on their behalf. * * There is also a slight problem in IBSS mode: GTKs are negotiated * with each station, that is something we don't currently handle. * The spec seems to expect that one negotiates the same key with * every station but there's no such requirement; VLANs could be * possible. */ /* start without a key */ rx->key = NULL; fc = hdr->frame_control; if (rx->sta) { int keyid = rx->sta->ptk_idx; sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); if (ieee80211_has_protected(fc) && !(status->flag & RX_FLAG_IV_STRIPPED)) { keyid = ieee80211_get_keyid(rx->skb); if (unlikely(keyid < 0)) return RX_DROP_UNUSABLE; ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); } } if (!ieee80211_has_protected(fc)) mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { rx->key = ptk_idx ? ptk_idx : sta_ptk; if ((status->flag & RX_FLAG_DECRYPTED) && (status->flag & RX_FLAG_IV_STRIPPED)) return RX_CONTINUE; /* Skip decryption if the frame is not protected. */ if (!ieee80211_has_protected(fc)) return RX_CONTINUE; } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { /* Broadcast/multicast robust management frame / BIP */ if ((status->flag & RX_FLAG_DECRYPTED) && (status->flag & RX_FLAG_IV_STRIPPED)) return RX_CONTINUE; if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + NUM_DEFAULT_BEACON_KEYS) { cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, skb->data, skb->len); return RX_DROP_MONITOR; /* unexpected BIP keyidx */ } rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); if (!rx->key) return RX_CONTINUE; /* Beacon protection not in use */ } else if (mmie_keyidx >= 0) { /* Broadcast/multicast robust management frame / BIP */ if ((status->flag & RX_FLAG_DECRYPTED) && (status->flag & RX_FLAG_IV_STRIPPED)) return RX_CONTINUE; if (mmie_keyidx < NUM_DEFAULT_KEYS || mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) return RX_DROP_MONITOR; /* unexpected BIP keyidx */ if (rx->sta) { if (ieee80211_is_group_privacy_action(skb) && test_sta_flag(rx->sta, WLAN_STA_MFP)) return RX_DROP_MONITOR; rx->key = rcu_dereference(rx->sta->deflink.gtk[mmie_keyidx]); } if (!rx->key) rx->key = rcu_dereference(rx->sdata->deflink.gtk[mmie_keyidx]); } else if (!ieee80211_has_protected(fc)) { /* * The frame was not protected, so skip decryption. However, we * need to set rx->key if there is a key that could have been * used so that the frame may be dropped if encryption would * have been expected. */ struct ieee80211_key *key = NULL; struct ieee80211_sub_if_data *sdata = rx->sdata; int i; if (ieee80211_is_beacon(fc)) { key = ieee80211_rx_get_bigtk(rx, -1); } else if (ieee80211_is_mgmt(fc) && is_multicast_ether_addr(hdr->addr1)) { key = rcu_dereference(rx->sdata->deflink.default_mgmt_key); } else { if (rx->sta) { for (i = 0; i < NUM_DEFAULT_KEYS; i++) { key = rcu_dereference(rx->sta->deflink.gtk[i]); if (key) break; } } if (!key) { for (i = 0; i < NUM_DEFAULT_KEYS; i++) { key = rcu_dereference(sdata->deflink.gtk[i]); if (key) break; } } } if (key) rx->key = key; return RX_CONTINUE; } else { /* * The device doesn't give us the IV so we won't be * able to look up the key. That's ok though, we * don't need to decrypt the frame, we just won't * be able to keep statistics accurate. * Except for key threshold notifications, should * we somehow allow the driver to tell us which key * the hardware used if this flag is set? */ if ((status->flag & RX_FLAG_DECRYPTED) && (status->flag & RX_FLAG_IV_STRIPPED)) return RX_CONTINUE; keyidx = ieee80211_get_keyid(rx->skb); if (unlikely(keyidx < 0)) return RX_DROP_UNUSABLE; /* check per-station GTK first, if multicast packet */ if (is_multicast_ether_addr(hdr->addr1) && rx->sta) rx->key = rcu_dereference(rx->sta->deflink.gtk[keyidx]); /* if not found, try default key */ if (!rx->key) { if (is_multicast_ether_addr(hdr->addr1)) rx->key = rcu_dereference(rx->sdata->deflink.gtk[keyidx]); if (!rx->key) rx->key = rcu_dereference(rx->sdata->keys[keyidx]); /* * RSNA-protected unicast frames should always be * sent with pairwise or station-to-station keys, * but for WEP we allow using a key index as well. */ if (rx->key && rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && !is_multicast_ether_addr(hdr->addr1)) rx->key = NULL; } } if (rx->key) { if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) return RX_DROP_MONITOR; /* TODO: add threshold stuff again */ } else { return RX_DROP_MONITOR; } switch (rx->key->conf.cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: result = ieee80211_crypto_wep_decrypt(rx); break; case WLAN_CIPHER_SUITE_TKIP: result = ieee80211_crypto_tkip_decrypt(rx); break; case WLAN_CIPHER_SUITE_CCMP: result = ieee80211_crypto_ccmp_decrypt( rx, IEEE80211_CCMP_MIC_LEN); break; case WLAN_CIPHER_SUITE_CCMP_256: result = ieee80211_crypto_ccmp_decrypt( rx, IEEE80211_CCMP_256_MIC_LEN); break; case WLAN_CIPHER_SUITE_AES_CMAC: result = ieee80211_crypto_aes_cmac_decrypt(rx); break; case WLAN_CIPHER_SUITE_BIP_CMAC_256: result = ieee80211_crypto_aes_cmac_256_decrypt(rx); break; case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: result = ieee80211_crypto_aes_gmac_decrypt(rx); break; case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: result = ieee80211_crypto_gcmp_decrypt(rx); break; default: result = RX_DROP_UNUSABLE; } /* the hdr variable is invalid after the decrypt handlers */ /* either the frame has been decrypted or will be dropped */ status->flag |= RX_FLAG_DECRYPTED; if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE)) cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, skb->data, skb->len); return result; } void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache) { int i; for (i = 0; i < ARRAY_SIZE(cache->entries); i++) skb_queue_head_init(&cache->entries[i].skb_list); } void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache) { int i; for (i = 0; i < ARRAY_SIZE(cache->entries); i++) __skb_queue_purge(&cache->entries[i].skb_list); } static inline struct ieee80211_fragment_entry * ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache, unsigned int frag, unsigned int seq, int rx_queue, struct sk_buff **skb) { struct ieee80211_fragment_entry *entry; entry = &cache->entries[cache->next++]; if (cache->next >= IEEE80211_FRAGMENT_MAX) cache->next = 0; __skb_queue_purge(&entry->skb_list); __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ *skb = NULL; entry->first_frag_time = jiffies; entry->seq = seq; entry->rx_queue = rx_queue; entry->last_frag = frag; entry->check_sequential_pn = false; entry->extra_len = 0; return entry; } static inline struct ieee80211_fragment_entry * ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache, unsigned int frag, unsigned int seq, int rx_queue, struct ieee80211_hdr *hdr) { struct ieee80211_fragment_entry *entry; int i, idx; idx = cache->next; for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { struct ieee80211_hdr *f_hdr; struct sk_buff *f_skb; idx--; if (idx < 0) idx = IEEE80211_FRAGMENT_MAX - 1; entry = &cache->entries[idx]; if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || entry->rx_queue != rx_queue || entry->last_frag + 1 != frag) continue; f_skb = __skb_peek(&entry->skb_list); f_hdr = (struct ieee80211_hdr *) f_skb->data; /* * Check ftype and addresses are equal, else check next fragment */ if (((hdr->frame_control ^ f_hdr->frame_control) & cpu_to_le16(IEEE80211_FCTL_FTYPE)) || !ether_addr_equal(hdr->addr1, f_hdr->addr1) || !ether_addr_equal(hdr->addr2, f_hdr->addr2)) continue; if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { __skb_queue_purge(&entry->skb_list); continue; } return entry; } return NULL; } static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc) { return rx->key && (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && ieee80211_has_protected(fc); } static ieee80211_rx_result debug_noinline ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) { struct ieee80211_fragment_cache *cache = &rx->sdata->frags; struct ieee80211_hdr *hdr; u16 sc; __le16 fc; unsigned int frag, seq; struct ieee80211_fragment_entry *entry; struct sk_buff *skb; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); hdr = (struct ieee80211_hdr *)rx->skb->data; fc = hdr->frame_control; if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc)) return RX_CONTINUE; sc = le16_to_cpu(hdr->seq_ctrl); frag = sc & IEEE80211_SCTL_FRAG; if (rx->sta) cache = &rx->sta->frags; if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) goto out; if (is_multicast_ether_addr(hdr->addr1)) return RX_DROP_MONITOR; I802_DEBUG_INC(rx->local->rx_handlers_fragments); if (skb_linearize(rx->skb)) return RX_DROP_UNUSABLE; /* * skb_linearize() might change the skb->data and * previously cached variables (in this case, hdr) need to * be refreshed with the new data. */ hdr = (struct ieee80211_hdr *)rx->skb->data; seq = (sc & IEEE80211_SCTL_SEQ) >> 4; if (frag == 0) { /* This is the first fragment of a new frame. */ entry = ieee80211_reassemble_add(cache, frag, seq, rx->seqno_idx, &(rx->skb)); if (requires_sequential_pn(rx, fc)) { int queue = rx->security_idx; /* Store CCMP/GCMP PN so that we can verify that the * next fragment has a sequential PN value. */ entry->check_sequential_pn = true; entry->is_protected = true; entry->key_color = rx->key->color; memcpy(entry->last_pn, rx->key->u.ccmp.rx_pn[queue], IEEE80211_CCMP_PN_LEN); BUILD_BUG_ON(offsetof(struct ieee80211_key, u.ccmp.rx_pn) != offsetof(struct ieee80211_key, u.gcmp.rx_pn)); BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != sizeof(rx->key->u.gcmp.rx_pn[queue])); BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); } else if (rx->key && (ieee80211_has_protected(fc) || (status->flag & RX_FLAG_DECRYPTED))) { entry->is_protected = true; entry->key_color = rx->key->color; } return RX_QUEUED; } /* This is a fragment for a frame that should already be pending in * fragment cache. Add this fragment to the end of the pending entry. */ entry = ieee80211_reassemble_find(cache, frag, seq, rx->seqno_idx, hdr); if (!entry) { I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); return RX_DROP_MONITOR; } /* "The receiver shall discard MSDUs and MMPDUs whose constituent * MPDU PN values are not incrementing in steps of 1." * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) */ if (entry->check_sequential_pn) { int i; u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; if (!requires_sequential_pn(rx, fc)) return RX_DROP_UNUSABLE; /* Prevent mixed key and fragment cache attacks */ if (entry->key_color != rx->key->color) return RX_DROP_UNUSABLE; memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { pn[i]++; if (pn[i]) break; } rpn = rx->ccm_gcm.pn; if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) return RX_DROP_UNUSABLE; memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); } else if (entry->is_protected && (!rx->key || (!ieee80211_has_protected(fc) && !(status->flag & RX_FLAG_DECRYPTED)) || rx->key->color != entry->key_color)) { /* Drop this as a mixed key or fragment cache attack, even * if for TKIP Michael MIC should protect us, and WEP is a * lost cause anyway. */ return RX_DROP_UNUSABLE; } else if (entry->is_protected && rx->key && entry->key_color != rx->key->color && (status->flag & RX_FLAG_DECRYPTED)) { return RX_DROP_UNUSABLE; } skb_pull(rx->skb, ieee80211_hdrlen(fc)); __skb_queue_tail(&entry->skb_list, rx->skb); entry->last_frag = frag; entry->extra_len += rx->skb->len; if (ieee80211_has_morefrags(fc)) { rx->skb = NULL; return RX_QUEUED; } rx->skb = __skb_dequeue(&entry->skb_list); if (skb_tailroom(rx->skb) < entry->extra_len) { I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, GFP_ATOMIC))) { I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); __skb_queue_purge(&entry->skb_list); return RX_DROP_UNUSABLE; } } while ((skb = __skb_dequeue(&entry->skb_list))) { skb_put_data(rx->skb, skb->data, skb->len); dev_kfree_skb(skb); } out: ieee80211_led_rx(rx->local); if (rx->sta) rx->sta->deflink.rx_stats.packets++; return RX_CONTINUE; } static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) { if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) return -EACCES; return 0; } static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) { struct ieee80211_hdr *hdr = (void *)rx->skb->data; struct sk_buff *skb = rx->skb; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); /* * Pass through unencrypted frames if the hardware has * decrypted them already. */ if (status->flag & RX_FLAG_DECRYPTED) return 0; /* check mesh EAPOL frames first */ if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) && ieee80211_is_data(fc))) { struct ieee80211s_hdr *mesh_hdr; u16 hdr_len = ieee80211_hdrlen(fc); u16 ethertype_offset; __be16 ethertype; if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr)) goto drop_check; /* make sure fixed part of mesh header is there, also checks skb len */ if (!pskb_may_pull(rx->skb, hdr_len + 6)) goto drop_check; mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len); ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) + sizeof(rfc1042_header); if (skb_copy_bits(rx->skb, ethertype_offset, ðertype, 2) == 0 && ethertype == rx->sdata->control_port_protocol) return 0; } drop_check: /* Drop unencrypted frames if key is set. */ if (unlikely(!ieee80211_has_protected(fc) && !ieee80211_is_any_nullfunc(fc) && ieee80211_is_data(fc) && rx->key)) return -EACCES; return 0; } static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); __le16 fc = hdr->frame_control; /* * Pass through unencrypted frames if the hardware has * decrypted them already. */ if (status->flag & RX_FLAG_DECRYPTED) return 0; if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { if (unlikely(!ieee80211_has_protected(fc) && ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && rx->key)) { if (ieee80211_is_deauth(fc) || ieee80211_is_disassoc(fc)) cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, rx->skb->data, rx->skb->len); return -EACCES; } /* BIP does not use Protected field, so need to check MMIE */ if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && ieee80211_get_mmie_keyidx(rx->skb) < 0)) { if (ieee80211_is_deauth(fc) || ieee80211_is_disassoc(fc)) cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, rx->skb->data, rx->skb->len); return -EACCES; } if (unlikely(ieee80211_is_beacon(fc) && rx->key && ieee80211_get_mmie_keyidx(rx->skb) < 0)) { cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, rx->skb->data, rx->skb->len); return -EACCES; } /* * When using MFP, Action frames are not allowed prior to * having configured keys. */ if (unlikely(ieee80211_is_action(fc) && !rx->key && ieee80211_is_robust_mgmt_frame(rx->skb))) return -EACCES; } return 0; } static int __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) { struct ieee80211_sub_if_data *sdata = rx->sdata; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; bool check_port_control = false; struct ethhdr *ehdr; int ret; *port_control = false; if (ieee80211_has_a4(hdr->frame_control) && sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) return -1; if (sdata->vif.type == NL80211_IFTYPE_STATION && !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { if (!sdata->u.mgd.use_4addr) return -1; else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) check_port_control = true; } if (is_multicast_ether_addr(hdr->addr1) && sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) return -1; ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); if (ret < 0) return ret; ehdr = (struct ethhdr *) rx->skb->data; if (ehdr->h_proto == rx->sdata->control_port_protocol) *port_control = true; else if (check_port_control) return -1; return 0; } bool ieee80211_is_our_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr, int *out_link_id) { unsigned int link_id; /* non-MLO, or MLD address replaced by hardware */ if (ether_addr_equal(sdata->vif.addr, addr)) return true; if (!sdata->vif.valid_links) return false; for (link_id = 0; link_id < ARRAY_SIZE(sdata->vif.link_conf); link_id++) { struct ieee80211_bss_conf *conf; conf = rcu_dereference(sdata->vif.link_conf[link_id]); if (!conf) continue; if (ether_addr_equal(conf->addr, addr)) { if (out_link_id) *out_link_id = link_id; return true; } } return false; } /* * requires that rx->skb is a frame with ethernet header */ static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) { static const u8 pae_group_addr[ETH_ALEN] __aligned(2) = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; /* * Allow EAPOL frames to us/the PAE group address regardless of * whether the frame was encrypted or not, and always disallow * all other destination addresses for them. */ if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol)) return ieee80211_is_our_addr(rx->sdata, ehdr->h_dest, NULL) || ether_addr_equal(ehdr->h_dest, pae_group_addr); if (ieee80211_802_1x_port_control(rx) || ieee80211_drop_unencrypted(rx, fc)) return false; return true; } static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, struct ieee80211_rx_data *rx) { struct ieee80211_sub_if_data *sdata = rx->sdata; struct net_device *dev = sdata->dev; if (unlikely((skb->protocol == sdata->control_port_protocol || (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && !sdata->control_port_no_preauth)) && sdata->control_port_over_nl80211)) { struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); cfg80211_rx_control_port(dev, skb, noencrypt); dev_kfree_skb(skb); } else { struct ethhdr *ehdr = (void *)skb_mac_header(skb); memset(skb->cb, 0, sizeof(skb->cb)); /* * 802.1X over 802.11 requires that the authenticator address * be used for EAPOL frames. However, 802.1X allows the use of * the PAE group address instead. If the interface is part of * a bridge and we pass the frame with the PAE group address, * then the bridge will forward it to the network (even if the * client was not associated yet), which isn't supposed to * happen. * To avoid that, rewrite the destination address to our own * address, so that the authenticator (e.g. hostapd) will see * the frame, but bridge won't forward it anywhere else. Note * that due to earlier filtering, the only other address can * be the PAE group address, unless the hardware allowed them * through in 802.3 offloaded mode. */ if (unlikely(skb->protocol == sdata->control_port_protocol && !ether_addr_equal(ehdr->h_dest, sdata->vif.addr))) ether_addr_copy(ehdr->h_dest, sdata->vif.addr); /* deliver to local stack */ if (rx->list) list_add_tail(&skb->list, rx->list); else netif_receive_skb(skb); } } /* * requires that rx->skb is a frame with ethernet header */ static void ieee80211_deliver_skb(struct ieee80211_rx_data *rx) { struct ieee80211_sub_if_data *sdata = rx->sdata; struct net_device *dev = sdata->dev; struct sk_buff *skb, *xmit_skb; struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; struct sta_info *dsta; skb = rx->skb; xmit_skb = NULL; dev_sw_netstats_rx_add(dev, skb->len); if (rx->sta) { /* The seqno index has the same property as needed * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS * for non-QoS-data frames. Here we know it's a data * frame, so count MSDUs. */ u64_stats_update_begin(&rx->sta->deflink.rx_stats.syncp); rx->sta->deflink.rx_stats.msdu[rx->seqno_idx]++; u64_stats_update_end(&rx->sta->deflink.rx_stats.syncp); } if ((sdata->vif.type == NL80211_IFTYPE_AP || sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && ehdr->h_proto != rx->sdata->control_port_protocol && (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { if (is_multicast_ether_addr(ehdr->h_dest) && ieee80211_vif_get_num_mcast_if(sdata) != 0) { /* * send multicast frames both to higher layers in * local net stack and back to the wireless medium */ xmit_skb = skb_copy(skb, GFP_ATOMIC); if (!xmit_skb) net_info_ratelimited("%s: failed to clone multicast frame\n", dev->name); } else if (!is_multicast_ether_addr(ehdr->h_dest) && !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { dsta = sta_info_get(sdata, ehdr->h_dest); if (dsta) { /* * The destination station is associated to * this AP (in this VLAN), so send the frame * directly to it and do not pass it to local * net stack. */ xmit_skb = skb; skb = NULL; } } } #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS if (skb) { /* 'align' will only take the values 0 or 2 here since all * frames are required to be aligned to 2-byte boundaries * when being passed to mac80211; the code here works just * as well if that isn't true, but mac80211 assumes it can * access fields as 2-byte aligned (e.g. for ether_addr_equal) */ int align; align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; if (align) { if (WARN_ON(skb_headroom(skb) < 3)) { dev_kfree_skb(skb); skb = NULL; } else { u8 *data = skb->data; size_t len = skb_headlen(skb); skb->data -= align; memmove(skb->data, data, len); skb_set_tail_pointer(skb, len); } } } #endif if (skb) { skb->protocol = eth_type_trans(skb, dev); ieee80211_deliver_skb_to_local_stack(skb, rx); } if (xmit_skb) { /* * Send to wireless media and increase priority by 256 to * keep the received priority instead of reclassifying * the frame (see cfg80211_classify8021d). */ xmit_skb->priority += 256; xmit_skb->protocol = htons(ETH_P_802_3); skb_reset_network_header(xmit_skb); skb_reset_mac_header(xmit_skb); dev_queue_xmit(xmit_skb); } } static ieee80211_rx_result debug_noinline __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) { struct net_device *dev = rx->sdata->dev; struct sk_buff *skb = rx->skb; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; __le16 fc = hdr->frame_control; struct sk_buff_head frame_list; struct ethhdr ethhdr; const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; if (unlikely(ieee80211_has_a4(hdr->frame_control))) { check_da = NULL; check_sa = NULL; } else switch (rx->sdata->vif.type) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: check_da = NULL; break; case NL80211_IFTYPE_STATION: if (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) check_sa = NULL; break; case NL80211_IFTYPE_MESH_POINT: check_sa = NULL; break; default: break; } skb->dev = dev; __skb_queue_head_init(&frame_list); if (ieee80211_data_to_8023_exthdr(skb, ðhdr, rx->sdata->vif.addr, rx->sdata->vif.type, data_offset, true)) return RX_DROP_UNUSABLE; ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, rx->sdata->vif.type, rx->local->hw.extra_tx_headroom, check_da, check_sa); while (!skb_queue_empty(&frame_list)) { rx->skb = __skb_dequeue(&frame_list); if (!ieee80211_frame_allowed(rx, fc)) { dev_kfree_skb(rx->skb); continue; } ieee80211_deliver_skb(rx); } return RX_QUEUED; } static ieee80211_rx_result debug_noinline ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) { struct sk_buff *skb = rx->skb; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; __le16 fc = hdr->frame_control; if (!(status->rx_flags & IEEE80211_RX_AMSDU)) return RX_CONTINUE; if (unlikely(!ieee80211_is_data(fc))) return RX_CONTINUE; if (unlikely(!ieee80211_is_data_present(fc))) return RX_DROP_MONITOR; if (unlikely(ieee80211_has_a4(hdr->frame_control))) { switch (rx->sdata->vif.type) { case NL80211_IFTYPE_AP_VLAN: if (!rx->sdata->u.vlan.sta) return RX_DROP_UNUSABLE; break; case NL80211_IFTYPE_STATION: if (!rx->sdata->u.mgd.use_4addr) return RX_DROP_UNUSABLE; break; default: return RX_DROP_UNUSABLE; } } if (is_multicast_ether_addr(hdr->addr1)) return RX_DROP_UNUSABLE; if (rx->key) { /* * We should not receive A-MSDUs on pre-HT connections, * and HT connections cannot use old ciphers. Thus drop * them, as in those cases we couldn't even have SPP * A-MSDUs or such. */ switch (rx->key->conf.cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: case WLAN_CIPHER_SUITE_TKIP: return RX_DROP_UNUSABLE; default: break; } } return __ieee80211_rx_h_amsdu(rx, 0); } #ifdef CONFIG_MAC80211_MESH static ieee80211_rx_result ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) { struct ieee80211_hdr *fwd_hdr, *hdr; struct ieee80211_tx_info *info; struct ieee80211s_hdr *mesh_hdr; struct sk_buff *skb = rx->skb, *fwd_skb; struct ieee80211_local *local = rx->local; struct ieee80211_sub_if_data *sdata = rx->sdata; struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; u16 ac, q, hdrlen; int tailroom = 0; hdr = (struct ieee80211_hdr *) skb->data; hdrlen = ieee80211_hdrlen(hdr->frame_control); /* make sure fixed part of mesh header is there, also checks skb len */ if (!pskb_may_pull(rx->skb, hdrlen + 6)) return RX_DROP_MONITOR; mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); /* make sure full mesh header is there, also checks skb len */ if (!pskb_may_pull(rx->skb, hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) return RX_DROP_MONITOR; /* reload pointers */ hdr = (struct ieee80211_hdr *) skb->data; mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) return RX_DROP_MONITOR; /* frame is in RMC, don't forward */ if (ieee80211_is_data(hdr->frame_control) && is_multicast_ether_addr(hdr->addr1) && mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) return RX_DROP_MONITOR; if (!ieee80211_is_data(hdr->frame_control)) return RX_CONTINUE; if (!mesh_hdr->ttl) return RX_DROP_MONITOR; if (mesh_hdr->flags & MESH_FLAGS_AE) { struct mesh_path *mppath; char *proxied_addr; char *mpp_addr; if (is_multicast_ether_addr(hdr->addr1)) { mpp_addr = hdr->addr3; proxied_addr = mesh_hdr->eaddr1; } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6) { /* has_a4 already checked in ieee80211_rx_mesh_check */ mpp_addr = hdr->addr4; proxied_addr = mesh_hdr->eaddr2; } else { return RX_DROP_MONITOR; } rcu_read_lock(); mppath = mpp_path_lookup(sdata, proxied_addr); if (!mppath) { mpp_path_add(sdata, proxied_addr, mpp_addr); } else { spin_lock_bh(&mppath->state_lock); if (!ether_addr_equal(mppath->mpp, mpp_addr)) memcpy(mppath->mpp, mpp_addr, ETH_ALEN); mppath->exp_time = jiffies; spin_unlock_bh(&mppath->state_lock); } rcu_read_unlock(); } /* Frame has reached destination. Don't forward */ if (!is_multicast_ether_addr(hdr->addr1) && ether_addr_equal(sdata->vif.addr, hdr->addr3)) return RX_CONTINUE; ac = ieee802_1d_to_ac[skb->priority]; q = sdata->vif.hw_queue[ac]; if (ieee80211_queue_stopped(&local->hw, q)) { IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); return RX_DROP_MONITOR; } skb_set_queue_mapping(skb, ac); if (!--mesh_hdr->ttl) { if (!is_multicast_ether_addr(hdr->addr1)) IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); goto out; } if (!ifmsh->mshcfg.dot11MeshForwarding) goto out; if (sdata->crypto_tx_tailroom_needed_cnt) tailroom = IEEE80211_ENCRYPT_TAILROOM; fwd_skb = skb_copy_expand(skb, local->tx_headroom + IEEE80211_ENCRYPT_HEADROOM, tailroom, GFP_ATOMIC); if (!fwd_skb) goto out; fwd_skb->dev = sdata->dev; fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); info = IEEE80211_SKB_CB(fwd_skb); memset(info, 0, sizeof(*info)); info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; info->control.vif = &rx->sdata->vif; info->control.jiffies = jiffies; if (is_multicast_ether_addr(fwd_hdr->addr1)) { IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); /* update power mode indication when forwarding */ ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { /* mesh power mode flags updated in mesh_nexthop_lookup */ IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); } else { /* unable to resolve next hop */ mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, fwd_hdr->addr3, 0, WLAN_REASON_MESH_PATH_NOFORWARD, fwd_hdr->addr2); IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); kfree_skb(fwd_skb); return RX_DROP_MONITOR; } IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); ieee80211_add_pending_skb(local, fwd_skb); out: if (is_multicast_ether_addr(hdr->addr1)) return RX_CONTINUE; return RX_DROP_MONITOR; } #endif static ieee80211_rx_result debug_noinline ieee80211_rx_h_data(struct ieee80211_rx_data *rx) { struct ieee80211_sub_if_data *sdata = rx->sdata; struct ieee80211_local *local = rx->local; struct net_device *dev = sdata->dev; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; __le16 fc = hdr->frame_control; bool port_control; int err; if (unlikely(!ieee80211_is_data(hdr->frame_control))) return RX_CONTINUE; if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) return RX_DROP_MONITOR; /* * Send unexpected-4addr-frame event to hostapd. For older versions, * also drop the frame to cooked monitor interfaces. */ if (ieee80211_has_a4(hdr->frame_control) && sdata->vif.type == NL80211_IFTYPE_AP) { if (rx->sta && !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) cfg80211_rx_unexpected_4addr_frame( rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); return RX_DROP_MONITOR; } err = __ieee80211_data_to_8023(rx, &port_control); if (unlikely(err)) return RX_DROP_UNUSABLE; if (!ieee80211_frame_allowed(rx, fc)) return RX_DROP_MONITOR; /* directly handle TDLS channel switch requests/responses */ if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == cpu_to_be16(ETH_P_TDLS))) { struct ieee80211_tdls_data *tf = (void *)rx->skb->data; if (pskb_may_pull(rx->skb, offsetof(struct ieee80211_tdls_data, u)) && tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && tf->category == WLAN_CATEGORY_TDLS && (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { rx->skb->protocol = cpu_to_be16(ETH_P_TDLS); __ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); return RX_QUEUED; } } if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && unlikely(port_control) && sdata->bss) { sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); dev = sdata->dev; rx->sdata = sdata; } rx->skb->dev = dev; if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && !is_multicast_ether_addr( ((struct ethhdr *)rx->skb->data)->h_dest) && (!local->scanning && !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) mod_timer(&local->dynamic_ps_timer, jiffies + msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); ieee80211_deliver_skb(rx); return RX_QUEUED; } static ieee80211_rx_result debug_noinline ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) { struct sk_buff *skb = rx->skb; struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; struct tid_ampdu_rx *tid_agg_rx; u16 start_seq_num; u16 tid; if (likely(!ieee80211_is_ctl(bar->frame_control))) return RX_CONTINUE; if (ieee80211_is_back_req(bar->frame_control)) { struct { __le16 control, start_seq_num; } __packed bar_data; struct ieee80211_event event = { .type = BAR_RX_EVENT, }; if (!rx->sta) return RX_DROP_MONITOR; if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), &bar_data, sizeof(bar_data))) return RX_DROP_MONITOR; tid = le16_to_cpu(bar_data.control) >> 12; if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, WLAN_BACK_RECIPIENT, WLAN_REASON_QSTA_REQUIRE_SETUP); tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); if (!tid_agg_rx) return RX_DROP_MONITOR; start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; event.u.ba.tid = tid; event.u.ba.ssn = start_seq_num; event.u.ba.sta = &rx->sta->sta; /* reset session timer */ if (tid_agg_rx->timeout) mod_timer(&tid_agg_rx->session_timer, TU_TO_EXP_TIME(tid_agg_rx->timeout)); spin_lock(&tid_agg_rx->reorder_lock); /* release stored frames up to start of BAR */ ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, start_seq_num, frames); spin_unlock(&tid_agg_rx->reorder_lock); drv_event_callback(rx->local, rx->sdata, &event); kfree_skb(skb); return RX_QUEUED; } /* * After this point, we only want management frames, * so we can drop all remaining control frames to * cooked monitor interfaces. */ return RX_DROP_MONITOR; } static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_mgmt *resp; if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { /* Not to own unicast address */ return; } if (!ether_addr_equal(mgmt->sa, sdata->deflink.u.mgd.bssid) || !ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) { /* Not from the current AP or not associated yet. */ return; } if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { /* Too short SA Query request frame */ return; } skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); if (skb == NULL) return; skb_reserve(skb, local->hw.extra_tx_headroom); resp = skb_put_zero(skb, 24); memcpy(resp->da, mgmt->sa, ETH_ALEN); memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); memcpy(resp->bssid, sdata->deflink.u.mgd.bssid, ETH_ALEN); resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); resp->u.action.category = WLAN_CATEGORY_SA_QUERY; resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; memcpy(resp->u.action.u.sa_query.trans_id, mgmt->u.action.u.sa_query.trans_id, WLAN_SA_QUERY_TR_ID_LEN); ieee80211_tx_skb(sdata, skb); } static void ieee80211_rx_check_bss_color_collision(struct ieee80211_rx_data *rx) { struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; const struct element *ie; size_t baselen; if (!wiphy_ext_feature_isset(rx->local->hw.wiphy, NL80211_EXT_FEATURE_BSS_COLOR)) return; if (ieee80211_hw_check(&rx->local->hw, DETECTS_COLOR_COLLISION)) return; if (rx->sdata->vif.bss_conf.csa_active) return; baselen = mgmt->u.beacon.variable - rx->skb->data; if (baselen > rx->skb->len) return; ie = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, mgmt->u.beacon.variable, rx->skb->len - baselen); if (ie && ie->datalen >= sizeof(struct ieee80211_he_operation) && ie->datalen >= ieee80211_he_oper_size(ie->data + 1)) { struct ieee80211_bss_conf *bss_conf = &rx->sdata->vif.bss_conf; const struct ieee80211_he_operation *he_oper; u8 color; he_oper = (void *)(ie->data + 1); if (le32_get_bits(he_oper->he_oper_params, IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED)) return; color = le32_get_bits(he_oper->he_oper_params, IEEE80211_HE_OPERATION_BSS_COLOR_MASK); if (color == bss_conf->he_bss_color.color) ieeee80211_obss_color_collision_notify(&rx->sdata->vif, BIT_ULL(color), GFP_ATOMIC); } } static ieee80211_rx_result debug_noinline ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) { struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); if (ieee80211_is_s1g_beacon(mgmt->frame_control)) return RX_CONTINUE; /* * From here on, look only at management frames. * Data and control frames are already handled, * and unknown (reserved) frames are useless. */ if (rx->skb->len < 24) return RX_DROP_MONITOR; if (!ieee80211_is_mgmt(mgmt->frame_control)) return RX_DROP_MONITOR; if (rx->sdata->vif.type == NL80211_IFTYPE_AP && ieee80211_is_beacon(mgmt->frame_control) && !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { int sig = 0; /* sw bss color collision detection */ ieee80211_rx_check_bss_color_collision(rx); if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) sig = status->signal; cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, rx->skb->data, rx->skb->len, ieee80211_rx_status_to_khz(status), sig); rx->flags |= IEEE80211_RX_BEACON_REPORTED; } if (ieee80211_drop_unencrypted_mgmt(rx)) return RX_DROP_UNUSABLE; return RX_CONTINUE; } static bool ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx) { struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data; struct ieee80211_sub_if_data *sdata = rx->sdata; /* TWT actions are only supported in AP for the moment */ if (sdata->vif.type != NL80211_IFTYPE_AP) return false; if (!rx->local->ops->add_twt_setup) return false; if (!sdata->vif.bss_conf.twt_responder) return false; if (!rx->sta) return false; switch (mgmt->u.action.u.s1g.action_code) { case WLAN_S1G_TWT_SETUP: { struct ieee80211_twt_setup *twt; if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 1 + /* action code */ sizeof(struct ieee80211_twt_setup) + 2 /* TWT req_type agrt */) break; twt = (void *)mgmt->u.action.u.s1g.variable; if (twt->element_id != WLAN_EID_S1G_TWT) break; if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 4 + /* action code + token + tlv */ twt->length) break; return true; /* queue the frame */ } case WLAN_S1G_TWT_TEARDOWN: if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2) break; return true; /* queue the frame */ default: break; } return false; } static ieee80211_rx_result debug_noinline ieee80211_rx_h_action(struct ieee80211_rx_data *rx) { struct ieee80211_local *local = rx->local; struct ieee80211_sub_if_data *sdata = rx->sdata; struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); int len = rx->skb->len; if (!ieee80211_is_action(mgmt->frame_control)) return RX_CONTINUE; /* drop too small frames */ if (len < IEEE80211_MIN_ACTION_SIZE) return RX_DROP_UNUSABLE; if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) return RX_DROP_UNUSABLE; switch (mgmt->u.action.category) { case WLAN_CATEGORY_HT: /* reject HT action frames from stations not supporting HT */ if (!rx->sta->sta.deflink.ht_cap.ht_supported) goto invalid; if (sdata->vif.type != NL80211_IFTYPE_STATION && sdata->vif.type != NL80211_IFTYPE_MESH_POINT && sdata->vif.type != NL80211_IFTYPE_AP_VLAN && sdata->vif.type != NL80211_IFTYPE_AP && sdata->vif.type != NL80211_IFTYPE_ADHOC) break; /* verify action & smps_control/chanwidth are present */ if (len < IEEE80211_MIN_ACTION_SIZE + 2) goto invalid; switch (mgmt->u.action.u.ht_smps.action) { case WLAN_HT_ACTION_SMPS: { struct ieee80211_supported_band *sband; enum ieee80211_smps_mode smps_mode; struct sta_opmode_info sta_opmode = {}; if (sdata->vif.type != NL80211_IFTYPE_AP && sdata->vif.type != NL80211_IFTYPE_AP_VLAN) goto handled; /* convert to HT capability */ switch (mgmt->u.action.u.ht_smps.smps_control) { case WLAN_HT_SMPS_CONTROL_DISABLED: smps_mode = IEEE80211_SMPS_OFF; break; case WLAN_HT_SMPS_CONTROL_STATIC: smps_mode = IEEE80211_SMPS_STATIC; break; case WLAN_HT_SMPS_CONTROL_DYNAMIC: smps_mode = IEEE80211_SMPS_DYNAMIC; break; default: goto invalid; } /* if no change do nothing */ if (rx->sta->sta.smps_mode == smps_mode) goto handled; rx->sta->sta.smps_mode = smps_mode; sta_opmode.smps_mode = ieee80211_smps_mode_to_smps_mode(smps_mode); sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; sband = rx->local->hw.wiphy->bands[status->band]; rate_control_rate_update(local, sband, rx->sta, 0, IEEE80211_RC_SMPS_CHANGED); cfg80211_sta_opmode_change_notify(sdata->dev, rx->sta->addr, &sta_opmode, GFP_ATOMIC); goto handled; } case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { struct ieee80211_supported_band *sband; u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; enum ieee80211_sta_rx_bandwidth max_bw, new_bw; struct sta_opmode_info sta_opmode = {}; /* If it doesn't support 40 MHz it can't change ... */ if (!(rx->sta->sta.deflink.ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40)) goto handled; if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) max_bw = IEEE80211_STA_RX_BW_20; else max_bw = ieee80211_sta_cap_rx_bw(&rx->sta->deflink); /* set cur_max_bandwidth and recalc sta bw */ rx->sta->deflink.cur_max_bandwidth = max_bw; new_bw = ieee80211_sta_cur_vht_bw(&rx->sta->deflink); if (rx->sta->sta.deflink.bandwidth == new_bw) goto handled; rx->sta->sta.deflink.bandwidth = new_bw; sband = rx->local->hw.wiphy->bands[status->band]; sta_opmode.bw = ieee80211_sta_rx_bw_to_chan_width(&rx->sta->deflink); sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; rate_control_rate_update(local, sband, rx->sta, 0, IEEE80211_RC_BW_CHANGED); cfg80211_sta_opmode_change_notify(sdata->dev, rx->sta->addr, &sta_opmode, GFP_ATOMIC); goto handled; } default: goto invalid; } break; case WLAN_CATEGORY_PUBLIC: if (len < IEEE80211_MIN_ACTION_SIZE + 1) goto invalid; if (sdata->vif.type != NL80211_IFTYPE_STATION) break; if (!rx->sta) break; if (!ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) break; if (mgmt->u.action.u.ext_chan_switch.action_code != WLAN_PUB_ACTION_EXT_CHANSW_ANN) break; if (len < offsetof(struct ieee80211_mgmt, u.action.u.ext_chan_switch.variable)) goto invalid; goto queue; case WLAN_CATEGORY_VHT: if (sdata->vif.type != NL80211_IFTYPE_STATION && sdata->vif.type != NL80211_IFTYPE_MESH_POINT && sdata->vif.type != NL80211_IFTYPE_AP_VLAN && sdata->vif.type != NL80211_IFTYPE_AP && sdata->vif.type != NL80211_IFTYPE_ADHOC) break; /* verify action code is present */ if (len < IEEE80211_MIN_ACTION_SIZE + 1) goto invalid; switch (mgmt->u.action.u.vht_opmode_notif.action_code) { case WLAN_VHT_ACTION_OPMODE_NOTIF: { /* verify opmode is present */ if (len < IEEE80211_MIN_ACTION_SIZE + 2) goto invalid; goto queue; } case WLAN_VHT_ACTION_GROUPID_MGMT: { if (len < IEEE80211_MIN_ACTION_SIZE + 25) goto invalid; goto queue; } default: break; } break; case WLAN_CATEGORY_BACK: if (sdata->vif.type != NL80211_IFTYPE_STATION && sdata->vif.type != NL80211_IFTYPE_MESH_POINT && sdata->vif.type != NL80211_IFTYPE_AP_VLAN && sdata->vif.type != NL80211_IFTYPE_AP && sdata->vif.type != NL80211_IFTYPE_ADHOC) break; /* verify action_code is present */ if (len < IEEE80211_MIN_ACTION_SIZE + 1) break; switch (mgmt->u.action.u.addba_req.action_code) { case WLAN_ACTION_ADDBA_REQ: if (len < (IEEE80211_MIN_ACTION_SIZE + sizeof(mgmt->u.action.u.addba_req))) goto invalid; break; case WLAN_ACTION_ADDBA_RESP: if (len < (IEEE80211_MIN_ACTION_SIZE + sizeof(mgmt->u.action.u.addba_resp))) goto invalid; break; case WLAN_ACTION_DELBA: if (len < (IEEE80211_MIN_ACTION_SIZE + sizeof(mgmt->u.action.u.delba))) goto invalid; break; default: goto invalid; } goto queue; case WLAN_CATEGORY_SPECTRUM_MGMT: /* verify action_code is present */ if (len < IEEE80211_MIN_ACTION_SIZE + 1) break; switch (mgmt->u.action.u.measurement.action_code) { case WLAN_ACTION_SPCT_MSR_REQ: if (status->band != NL80211_BAND_5GHZ) break; if (len < (IEEE80211_MIN_ACTION_SIZE + sizeof(mgmt->u.action.u.measurement))) break; if (sdata->vif.type != NL80211_IFTYPE_STATION) break; ieee80211_process_measurement_req(sdata, mgmt, len); goto handled; case WLAN_ACTION_SPCT_CHL_SWITCH: { u8 *bssid; if (len < (IEEE80211_MIN_ACTION_SIZE + sizeof(mgmt->u.action.u.chan_switch))) break; if (sdata->vif.type != NL80211_IFTYPE_STATION && sdata->vif.type != NL80211_IFTYPE_ADHOC && sdata->vif.type != NL80211_IFTYPE_MESH_POINT) break; if (sdata->vif.type == NL80211_IFTYPE_STATION) bssid = sdata->deflink.u.mgd.bssid; else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) bssid = sdata->u.ibss.bssid; else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) bssid = mgmt->sa; else break; if (!ether_addr_equal(mgmt->bssid, bssid)) break; goto queue; } } break; case WLAN_CATEGORY_SELF_PROTECTED: if (len < (IEEE80211_MIN_ACTION_SIZE + sizeof(mgmt->u.action.u.self_prot.action_code))) break; switch (mgmt->u.action.u.self_prot.action_code) { case WLAN_SP_MESH_PEERING_OPEN: case WLAN_SP_MESH_PEERING_CLOSE: case WLAN_SP_MESH_PEERING_CONFIRM: if (!ieee80211_vif_is_mesh(&sdata->vif)) goto invalid; if (sdata->u.mesh.user_mpm) /* userspace handles this frame */ break; goto queue; case WLAN_SP_MGK_INFORM: case WLAN_SP_MGK_ACK: if (!ieee80211_vif_is_mesh(&sdata->vif)) goto invalid; break; } break; case WLAN_CATEGORY_MESH_ACTION: if (len < (IEEE80211_MIN_ACTION_SIZE + sizeof(mgmt->u.action.u.mesh_action.action_code))) break; if (!ieee80211_vif_is_mesh(&sdata->vif)) break; if (mesh_action_is_path_sel(mgmt) && !mesh_path_sel_is_hwmp(sdata)) break; goto queue; case WLAN_CATEGORY_S1G: switch (mgmt->u.action.u.s1g.action_code) { case WLAN_S1G_TWT_SETUP: case WLAN_S1G_TWT_TEARDOWN: if (ieee80211_process_rx_twt_action(rx)) goto queue; break; default: break; } break; } return RX_CONTINUE; invalid: status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; /* will return in the next handlers */ return RX_CONTINUE; handled: if (rx->sta) rx->sta->deflink.rx_stats.packets++; dev_kfree_skb(rx->skb); return RX_QUEUED; queue: ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); return RX_QUEUED; } static ieee80211_rx_result debug_noinline ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) { struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); int sig = 0; /* skip known-bad action frames and return them in the next handler */ if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) return RX_CONTINUE; /* * Getting here means the kernel doesn't know how to handle * it, but maybe userspace does ... include returned frames * so userspace can register for those to know whether ones * it transmitted were processed or returned. */ if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) sig = status->signal; if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev, ieee80211_rx_status_to_khz(status), sig, rx->skb->data, rx->skb->len, 0)) { if (rx->sta) rx->sta->deflink.rx_stats.packets++; dev_kfree_skb(rx->skb); return RX_QUEUED; } return RX_CONTINUE; } static ieee80211_rx_result debug_noinline ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) { struct ieee80211_sub_if_data *sdata = rx->sdata; struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; int len = rx->skb->len; if (!ieee80211_is_action(mgmt->frame_control)) return RX_CONTINUE; switch (mgmt->u.action.category) { case WLAN_CATEGORY_SA_QUERY: if (len < (IEEE80211_MIN_ACTION_SIZE + sizeof(mgmt->u.action.u.sa_query))) break; switch (mgmt->u.action.u.sa_query.action) { case WLAN_ACTION_SA_QUERY_REQUEST: if (sdata->vif.type != NL80211_IFTYPE_STATION) break; ieee80211_process_sa_query_req(sdata, mgmt, len); goto handled; } break; } return RX_CONTINUE; handled: if (rx->sta) rx->sta->deflink.rx_stats.packets++; dev_kfree_skb(rx->skb); return RX_QUEUED; } static ieee80211_rx_result debug_noinline ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) { struct ieee80211_local *local = rx->local; struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; struct sk_buff *nskb; struct ieee80211_sub_if_data *sdata = rx->sdata; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); if (!ieee80211_is_action(mgmt->frame_control)) return RX_CONTINUE; /* * For AP mode, hostapd is responsible for handling any action * frames that we didn't handle, including returning unknown * ones. For all other modes we will return them to the sender, * setting the 0x80 bit in the action category, as required by * 802.11-2012 9.24.4. * Newer versions of hostapd shall also use the management frame * registration mechanisms, but older ones still use cooked * monitor interfaces so push all frames there. */ if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && (sdata->vif.type == NL80211_IFTYPE_AP || sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) return RX_DROP_MONITOR; if (is_multicast_ether_addr(mgmt->da)) return RX_DROP_MONITOR; /* do not return rejected action frames */ if (mgmt->u.action.category & 0x80) return RX_DROP_UNUSABLE; nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, GFP_ATOMIC); if (nskb) { struct ieee80211_mgmt *nmgmt = (void *)nskb->data; nmgmt->u.action.category |= 0x80; memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); memset(nskb->cb, 0, sizeof(nskb->cb)); if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | IEEE80211_TX_INTFL_OFFCHAN_TX_OK | IEEE80211_TX_CTL_NO_CCK_RATE; if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) info->hw_queue = local->hw.offchannel_tx_hw_queue; } __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, status->band); } dev_kfree_skb(rx->skb); return RX_QUEUED; } static ieee80211_rx_result debug_noinline ieee80211_rx_h_ext(struct ieee80211_rx_data *rx) { struct ieee80211_sub_if_data *sdata = rx->sdata; struct ieee80211_hdr *hdr = (void *)rx->skb->data; if (!ieee80211_is_ext(hdr->frame_control)) return RX_CONTINUE; if (sdata->vif.type != NL80211_IFTYPE_STATION) return RX_DROP_MONITOR; /* for now only beacons are ext, so queue them */ ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); return RX_QUEUED; } static ieee80211_rx_result debug_noinline ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) { struct ieee80211_sub_if_data *sdata = rx->sdata; struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; __le16 stype; stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); if (!ieee80211_vif_is_mesh(&sdata->vif) && sdata->vif.type != NL80211_IFTYPE_ADHOC && sdata->vif.type != NL80211_IFTYPE_OCB && sdata->vif.type != NL80211_IFTYPE_STATION) return RX_DROP_MONITOR; switch (stype) { case cpu_to_le16(IEEE80211_STYPE_AUTH): case cpu_to_le16(IEEE80211_STYPE_BEACON): case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): /* process for all: mesh, mlme, ibss */ break; case cpu_to_le16(IEEE80211_STYPE_DEAUTH): if (is_multicast_ether_addr(mgmt->da) && !is_broadcast_ether_addr(mgmt->da)) return RX_DROP_MONITOR; /* process only for station/IBSS */ if (sdata->vif.type != NL80211_IFTYPE_STATION && sdata->vif.type != NL80211_IFTYPE_ADHOC) return RX_DROP_MONITOR; break; case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): case cpu_to_le16(IEEE80211_STYPE_DISASSOC): if (is_multicast_ether_addr(mgmt->da) && !is_broadcast_ether_addr(mgmt->da)) return RX_DROP_MONITOR; /* process only for station */ if (sdata->vif.type != NL80211_IFTYPE_STATION) return RX_DROP_MONITOR; break; case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): /* process only for ibss and mesh */ if (sdata->vif.type != NL80211_IFTYPE_ADHOC && sdata->vif.type != NL80211_IFTYPE_MESH_POINT) return RX_DROP_MONITOR; break; default: return RX_DROP_MONITOR; } ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); return RX_QUEUED; } static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, struct ieee80211_rate *rate) { struct ieee80211_sub_if_data *sdata; struct ieee80211_local *local = rx->local; struct sk_buff *skb = rx->skb, *skb2; struct net_device *prev_dev = NULL; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); int needed_headroom; /* * If cooked monitor has been processed already, then * don't do it again. If not, set the flag. */ if (rx->flags & IEEE80211_RX_CMNTR) goto out_free_skb; rx->flags |= IEEE80211_RX_CMNTR; /* If there are no cooked monitor interfaces, just free the SKB */ if (!local->cooked_mntrs) goto out_free_skb; /* vendor data is long removed here */ status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; /* room for the radiotap header based on driver features */ needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); if (skb_headroom(skb) < needed_headroom && pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) goto out_free_skb; /* prepend radiotap information */ ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, false); skb_reset_mac_header(skb); skb->ip_summed = CHECKSUM_UNNECESSARY; skb->pkt_type = PACKET_OTHERHOST; skb->protocol = htons(ETH_P_802_2); list_for_each_entry_rcu(sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(sdata)) continue; if (sdata->vif.type != NL80211_IFTYPE_MONITOR || !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) continue; if (prev_dev) { skb2 = skb_clone(skb, GFP_ATOMIC); if (skb2) { skb2->dev = prev_dev; netif_receive_skb(skb2); } } prev_dev = sdata->dev; dev_sw_netstats_rx_add(sdata->dev, skb->len); } if (prev_dev) { skb->dev = prev_dev; netif_receive_skb(skb); return; } out_free_skb: dev_kfree_skb(skb); } static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, ieee80211_rx_result res) { switch (res) { case RX_DROP_MONITOR: I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); if (rx->sta) rx->sta->deflink.rx_stats.dropped++; fallthrough; case RX_CONTINUE: { struct ieee80211_rate *rate = NULL; struct ieee80211_supported_band *sband; struct ieee80211_rx_status *status; status = IEEE80211_SKB_RXCB((rx->skb)); sband = rx->local->hw.wiphy->bands[status->band]; if (status->encoding == RX_ENC_LEGACY) rate = &sband->bitrates[status->rate_idx]; ieee80211_rx_cooked_monitor(rx, rate); break; } case RX_DROP_UNUSABLE: I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); if (rx->sta) rx->sta->deflink.rx_stats.dropped++; dev_kfree_skb(rx->skb); break; case RX_QUEUED: I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); break; } } static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) { ieee80211_rx_result res = RX_DROP_MONITOR; struct sk_buff *skb; #define CALL_RXH(rxh) \ do { \ res = rxh(rx); \ if (res != RX_CONTINUE) \ goto rxh_next; \ } while (0) /* Lock here to avoid hitting all of the data used in the RX * path (e.g. key data, station data, ...) concurrently when * a frame is released from the reorder buffer due to timeout * from the timer, potentially concurrently with RX from the * driver. */ spin_lock_bh(&rx->local->rx_path_lock); while ((skb = __skb_dequeue(frames))) { /* * all the other fields are valid across frames * that belong to an aMPDU since they are on the * same TID from the same station */ rx->skb = skb; CALL_RXH(ieee80211_rx_h_check_more_data); CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); CALL_RXH(ieee80211_rx_h_sta_process); CALL_RXH(ieee80211_rx_h_decrypt); CALL_RXH(ieee80211_rx_h_defragment); CALL_RXH(ieee80211_rx_h_michael_mic_verify); /* must be after MMIC verify so header is counted in MPDU mic */ #ifdef CONFIG_MAC80211_MESH if (ieee80211_vif_is_mesh(&rx->sdata->vif)) CALL_RXH(ieee80211_rx_h_mesh_fwding); #endif CALL_RXH(ieee80211_rx_h_amsdu); CALL_RXH(ieee80211_rx_h_data); /* special treatment -- needs the queue */ res = ieee80211_rx_h_ctrl(rx, frames); if (res != RX_CONTINUE) goto rxh_next; CALL_RXH(ieee80211_rx_h_mgmt_check); CALL_RXH(ieee80211_rx_h_action); CALL_RXH(ieee80211_rx_h_userspace_mgmt); CALL_RXH(ieee80211_rx_h_action_post_userspace); CALL_RXH(ieee80211_rx_h_action_return); CALL_RXH(ieee80211_rx_h_ext); CALL_RXH(ieee80211_rx_h_mgmt); rxh_next: ieee80211_rx_handlers_result(rx, res); #undef CALL_RXH } spin_unlock_bh(&rx->local->rx_path_lock); } static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) { struct sk_buff_head reorder_release; ieee80211_rx_result res = RX_DROP_MONITOR; __skb_queue_head_init(&reorder_release); #define CALL_RXH(rxh) \ do { \ res = rxh(rx); \ if (res != RX_CONTINUE) \ goto rxh_next; \ } while (0) CALL_RXH(ieee80211_rx_h_check_dup); CALL_RXH(ieee80211_rx_h_check); ieee80211_rx_reorder_ampdu(rx, &reorder_release); ieee80211_rx_handlers(rx, &reorder_release); return; rxh_next: ieee80211_rx_handlers_result(rx, res); #undef CALL_RXH } /* * This function makes calls into the RX path, therefore * it has to be invoked under RCU read lock. */ void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) { struct sk_buff_head frames; struct ieee80211_rx_data rx = { .sta = sta, .sdata = sta->sdata, .local = sta->local, /* This is OK -- must be QoS data frame */ .security_idx = tid, .seqno_idx = tid, .link_id = -1, }; struct tid_ampdu_rx *tid_agg_rx; tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); if (!tid_agg_rx) return; __skb_queue_head_init(&frames); spin_lock(&tid_agg_rx->reorder_lock); ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); spin_unlock(&tid_agg_rx->reorder_lock); if (!skb_queue_empty(&frames)) { struct ieee80211_event event = { .type = BA_FRAME_TIMEOUT, .u.ba.tid = tid, .u.ba.sta = &sta->sta, }; drv_event_callback(rx.local, rx.sdata, &event); } ieee80211_rx_handlers(&rx, &frames); } void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, u16 ssn, u64 filtered, u16 received_mpdus) { struct sta_info *sta; struct tid_ampdu_rx *tid_agg_rx; struct sk_buff_head frames; struct ieee80211_rx_data rx = { /* This is OK -- must be QoS data frame */ .security_idx = tid, .seqno_idx = tid, .link_id = -1, }; int i, diff; if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) return; __skb_queue_head_init(&frames); sta = container_of(pubsta, struct sta_info, sta); rx.sta = sta; rx.sdata = sta->sdata; rx.local = sta->local; rcu_read_lock(); tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); if (!tid_agg_rx) goto out; spin_lock_bh(&tid_agg_rx->reorder_lock); if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { int release; /* release all frames in the reorder buffer */ release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % IEEE80211_SN_MODULO; ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, release, &frames); /* update ssn to match received ssn */ tid_agg_rx->head_seq_num = ssn; } else { ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, &frames); } /* handle the case that received ssn is behind the mac ssn. * it can be tid_agg_rx->buf_size behind and still be valid */ diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; if (diff >= tid_agg_rx->buf_size) { tid_agg_rx->reorder_buf_filtered = 0; goto release; } filtered = filtered >> diff; ssn += diff; /* update bitmap */ for (i = 0; i < tid_agg_rx->buf_size; i++) { int index = (ssn + i) % tid_agg_rx->buf_size; tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); if (filtered & BIT_ULL(i)) tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); } /* now process also frames that the filter marking released */ ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); release: spin_unlock_bh(&tid_agg_rx->reorder_lock); ieee80211_rx_handlers(&rx, &frames); out: rcu_read_unlock(); } EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); /* main receive path */ static inline int ieee80211_bssid_match(const u8 *raddr, const u8 *addr) { return ether_addr_equal(raddr, addr) || is_broadcast_ether_addr(raddr); } static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) { struct ieee80211_sub_if_data *sdata = rx->sdata; struct sk_buff *skb = rx->skb; struct ieee80211_hdr *hdr = (void *)skb->data; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); bool multicast = is_multicast_ether_addr(hdr->addr1) || ieee80211_is_s1g_beacon(hdr->frame_control); switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: if (!bssid && !sdata->u.mgd.use_4addr) return false; if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) return false; if (multicast) return true; return ieee80211_is_our_addr(sdata, hdr->addr1, &rx->link_id); case NL80211_IFTYPE_ADHOC: if (!bssid) return false; if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) || !is_valid_ether_addr(hdr->addr2)) return false; if (ieee80211_is_beacon(hdr->frame_control)) return true; if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) return false; if (!multicast && !ether_addr_equal(sdata->vif.addr, hdr->addr1)) return false; if (!rx->sta) { int rate_idx; if (status->encoding != RX_ENC_LEGACY) rate_idx = 0; /* TODO: HT/VHT rates */ else rate_idx = status->rate_idx; ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, BIT(rate_idx)); } return true; case NL80211_IFTYPE_OCB: if (!bssid) return false; if (!ieee80211_is_data_present(hdr->frame_control)) return false; if (!is_broadcast_ether_addr(bssid)) return false; if (!multicast && !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) return false; if (!rx->sta) { int rate_idx; if (status->encoding != RX_ENC_LEGACY) rate_idx = 0; /* TODO: HT rates */ else rate_idx = status->rate_idx; ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, BIT(rate_idx)); } return true; case NL80211_IFTYPE_MESH_POINT: if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) return false; if (multicast) return true; return ether_addr_equal(sdata->vif.addr, hdr->addr1); case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_AP: if (!bssid) return ieee80211_is_our_addr(sdata, hdr->addr1, &rx->link_id); if (!is_broadcast_ether_addr(bssid) && !ieee80211_is_our_addr(sdata, bssid, NULL)) { /* * Accept public action frames even when the * BSSID doesn't match, this is used for P2P * and location updates. Note that mac80211 * itself never looks at these frames. */ if (!multicast && !ieee80211_is_our_addr(sdata, hdr->addr1, &rx->link_id)) return false; if (ieee80211_is_public_action(hdr, skb->len)) return true; return ieee80211_is_beacon(hdr->frame_control); } if (!ieee80211_has_tods(hdr->frame_control)) { /* ignore data frames to TDLS-peers */ if (ieee80211_is_data(hdr->frame_control)) return false; /* ignore action frames to TDLS-peers */ if (ieee80211_is_action(hdr->frame_control) && !is_broadcast_ether_addr(bssid) && !ether_addr_equal(bssid, hdr->addr1)) return false; } /* * 802.11-2016 Table 9-26 says that for data frames, A1 must be * the BSSID - we've checked that already but may have accepted * the wildcard (ff:ff:ff:ff:ff:ff). * * It also says: * The BSSID of the Data frame is determined as follows: * a) If the STA is contained within an AP or is associated * with an AP, the BSSID is the address currently in use * by the STA contained in the AP. * * So we should not accept data frames with an address that's * multicast. * * Accepting it also opens a security problem because stations * could encrypt it with the GTK and inject traffic that way. */ if (ieee80211_is_data(hdr->frame_control) && multicast) return false; return true; case NL80211_IFTYPE_P2P_DEVICE: return ieee80211_is_public_action(hdr, skb->len) || ieee80211_is_probe_req(hdr->frame_control) || ieee80211_is_probe_resp(hdr->frame_control) || ieee80211_is_beacon(hdr->frame_control); case NL80211_IFTYPE_NAN: /* Currently no frames on NAN interface are allowed */ return false; default: break; } WARN_ON_ONCE(1); return false; } void ieee80211_check_fast_rx(struct sta_info *sta) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_key *key; struct ieee80211_fast_rx fastrx = { .dev = sdata->dev, .vif_type = sdata->vif.type, .control_port_protocol = sdata->control_port_protocol, }, *old, *new = NULL; bool set_offload = false; bool assign = false; bool offload; /* use sparse to check that we don't return without updating */ __acquire(check_fast_rx); BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); /* fast-rx doesn't do reordering */ if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) goto clear; switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: if (sta->sta.tdls) { fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); fastrx.expected_ds_bits = 0; } else { fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_FROMDS); } if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { fastrx.expected_ds_bits |= cpu_to_le16(IEEE80211_FCTL_TODS); fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); } if (!sdata->u.mgd.powersave) break; /* software powersave is a huge mess, avoid all of it */ if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) goto clear; if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) goto clear; break; case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_AP: /* parallel-rx requires this, at least with calls to * ieee80211_sta_ps_transition() */ if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) goto clear; fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); fastrx.internal_forward = !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta); if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) { fastrx.expected_ds_bits |= cpu_to_le16(IEEE80211_FCTL_FROMDS); fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); fastrx.internal_forward = 0; } break; default: goto clear; } if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) goto clear; rcu_read_lock(); key = rcu_dereference(sta->ptk[sta->ptk_idx]); if (!key) key = rcu_dereference(sdata->default_unicast_key); if (key) { switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_TKIP: /* we don't want to deal with MMIC in fast-rx */ goto clear_rcu; case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: break; default: /* We also don't want to deal with * WEP or cipher scheme. */ goto clear_rcu; } fastrx.key = true; fastrx.icv_len = key->conf.icv_len; } assign = true; clear_rcu: rcu_read_unlock(); clear: __release(check_fast_rx); if (assign) new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); offload = assign && (sdata->vif.offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED); if (offload) set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); else set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); if (set_offload) drv_sta_set_decap_offload(local, sdata, &sta->sta, assign); spin_lock_bh(&sta->lock); old = rcu_dereference_protected(sta->fast_rx, true); rcu_assign_pointer(sta->fast_rx, new); spin_unlock_bh(&sta->lock); if (old) kfree_rcu(old, rcu_head); } void ieee80211_clear_fast_rx(struct sta_info *sta) { struct ieee80211_fast_rx *old; spin_lock_bh(&sta->lock); old = rcu_dereference_protected(sta->fast_rx, true); RCU_INIT_POINTER(sta->fast_rx, NULL); spin_unlock_bh(&sta->lock); if (old) kfree_rcu(old, rcu_head); } void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct sta_info *sta; lockdep_assert_held(&local->sta_mtx); list_for_each_entry(sta, &local->sta_list, list) { if (sdata != sta->sdata && (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) continue; ieee80211_check_fast_rx(sta); } } void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; mutex_lock(&local->sta_mtx); __ieee80211_check_fast_rx_iface(sdata); mutex_unlock(&local->sta_mtx); } static void ieee80211_rx_8023(struct ieee80211_rx_data *rx, struct ieee80211_fast_rx *fast_rx, int orig_len) { struct ieee80211_sta_rx_stats *stats; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); struct sta_info *sta = rx->sta; struct sk_buff *skb = rx->skb; void *sa = skb->data + ETH_ALEN; void *da = skb->data; stats = &sta->deflink.rx_stats; if (fast_rx->uses_rss) stats = this_cpu_ptr(sta->deflink.pcpu_rx_stats); /* statistics part of ieee80211_rx_h_sta_process() */ if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { stats->last_signal = status->signal; if (!fast_rx->uses_rss) ewma_signal_add(&sta->deflink.rx_stats_avg.signal, -status->signal); } if (status->chains) { int i; stats->chains = status->chains; for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { int signal = status->chain_signal[i]; if (!(status->chains & BIT(i))) continue; stats->chain_signal_last[i] = signal; if (!fast_rx->uses_rss) ewma_signal_add(&sta->deflink.rx_stats_avg.chain_signal[i], -signal); } } /* end of statistics */ stats->last_rx = jiffies; stats->last_rate = sta_stats_encode_rate(status); stats->fragments++; stats->packets++; skb->dev = fast_rx->dev; dev_sw_netstats_rx_add(fast_rx->dev, skb->len); /* The seqno index has the same property as needed * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS * for non-QoS-data frames. Here we know it's a data * frame, so count MSDUs. */ u64_stats_update_begin(&stats->syncp); stats->msdu[rx->seqno_idx]++; stats->bytes += orig_len; u64_stats_update_end(&stats->syncp); if (fast_rx->internal_forward) { struct sk_buff *xmit_skb = NULL; if (is_multicast_ether_addr(da)) { xmit_skb = skb_copy(skb, GFP_ATOMIC); } else if (!ether_addr_equal(da, sa) && sta_info_get(rx->sdata, da)) { xmit_skb = skb; skb = NULL; } if (xmit_skb) { /* * Send to wireless media and increase priority by 256 * to keep the received priority instead of * reclassifying the frame (see cfg80211_classify8021d). */ xmit_skb->priority += 256; xmit_skb->protocol = htons(ETH_P_802_3); skb_reset_network_header(xmit_skb); skb_reset_mac_header(xmit_skb); dev_queue_xmit(xmit_skb); } if (!skb) return; } /* deliver to local stack */ skb->protocol = eth_type_trans(skb, fast_rx->dev); ieee80211_deliver_skb_to_local_stack(skb, rx); } static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, struct ieee80211_fast_rx *fast_rx) { struct sk_buff *skb = rx->skb; struct ieee80211_hdr *hdr = (void *)skb->data; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct sta_info *sta = rx->sta; int orig_len = skb->len; int hdrlen = ieee80211_hdrlen(hdr->frame_control); int snap_offs = hdrlen; struct { u8 snap[sizeof(rfc1042_header)]; __be16 proto; } *payload __aligned(2); struct { u8 da[ETH_ALEN]; u8 sa[ETH_ALEN]; } addrs __aligned(2); struct ieee80211_sta_rx_stats *stats = &sta->deflink.rx_stats; /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write * to a common data structure; drivers can implement that per queue * but we don't have that information in mac80211 */ if (!(status->flag & RX_FLAG_DUP_VALIDATED)) return false; #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) /* If using encryption, we also need to have: * - PN_VALIDATED: similar, but the implementation is tricky * - DECRYPTED: necessary for PN_VALIDATED */ if (fast_rx->key && (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) return false; if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) return false; if (unlikely(ieee80211_is_frag(hdr))) return false; /* Since our interface address cannot be multicast, this * implicitly also rejects multicast frames without the * explicit check. * * We shouldn't get any *data* frames not addressed to us * (AP mode will accept multicast *management* frames), but * punting here will make it go through the full checks in * ieee80211_accept_frame(). */ if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) return false; if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS)) != fast_rx->expected_ds_bits) return false; /* assign the key to drop unencrypted frames (later) * and strip the IV/MIC if necessary */ if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { /* GCMP header length is the same */ snap_offs += IEEE80211_CCMP_HDR_LEN; } if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) goto drop; payload = (void *)(skb->data + snap_offs); if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) return false; /* Don't handle these here since they require special code. * Accept AARP and IPX even though they should come with a * bridge-tunnel header - but if we get them this way then * there's little point in discarding them. */ if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || payload->proto == fast_rx->control_port_protocol)) return false; } /* after this point, don't punt to the slowpath! */ if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && pskb_trim(skb, skb->len - fast_rx->icv_len)) goto drop; if (rx->key && !ieee80211_has_protected(hdr->frame_control)) goto drop; if (status->rx_flags & IEEE80211_RX_AMSDU) { if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != RX_QUEUED) goto drop; return true; } /* do the header conversion - first grab the addresses */ ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); skb_postpull_rcsum(skb, skb->data + snap_offs, sizeof(rfc1042_header) + 2); /* remove the SNAP but leave the ethertype */ skb_pull(skb, snap_offs + sizeof(rfc1042_header)); /* push the addresses in front */ memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); ieee80211_rx_8023(rx, fast_rx, orig_len); return true; drop: dev_kfree_skb(skb); if (fast_rx->uses_rss) stats = this_cpu_ptr(sta->deflink.pcpu_rx_stats); stats->dropped++; return true; } /* * This function returns whether or not the SKB * was destined for RX processing or not, which, * if consume is true, is equivalent to whether * or not the skb was consumed. */ static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, struct sk_buff *skb, bool consume) { struct ieee80211_local *local = rx->local; struct ieee80211_sub_if_data *sdata = rx->sdata; struct ieee80211_hdr *hdr = (void *)skb->data; struct link_sta_info *link_sta = NULL; struct ieee80211_link_data *link; rx->skb = skb; /* See if we can do fast-rx; if we have to copy we already lost, * so punt in that case. We should never have to deliver a data * frame to multiple interfaces anyway. * * We skip the ieee80211_accept_frame() call and do the necessary * checking inside ieee80211_invoke_fast_rx(). */ if (consume && rx->sta) { struct ieee80211_fast_rx *fast_rx; fast_rx = rcu_dereference(rx->sta->fast_rx); if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) return true; } if (!ieee80211_accept_frame(rx)) return false; if (unlikely(!is_multicast_ether_addr(hdr->addr1) && rx->link_id >= 0 && rx->sta && rx->sta->sta.mlo)) { link_sta = rcu_dereference(rx->sta->link[rx->link_id]); link = rcu_dereference(rx->sdata->link[rx->link_id]); if (WARN_ON_ONCE(!link_sta || !link)) return true; } if (!consume) { skb = skb_copy(skb, GFP_ATOMIC); if (!skb) { if (net_ratelimit()) wiphy_debug(local->hw.wiphy, "failed to copy skb for %s\n", sdata->name); return true; } rx->skb = skb; } if (unlikely(link_sta)) { /* translate to MLD addresses */ if (ether_addr_equal(link->conf->addr, hdr->addr1)) ether_addr_copy(hdr->addr1, rx->sdata->vif.addr); if (ether_addr_equal(link_sta->addr, hdr->addr2)) ether_addr_copy(hdr->addr2, rx->sta->addr); if (ether_addr_equal(link_sta->addr, hdr->addr3)) ether_addr_copy(hdr->addr3, rx->sta->addr); else if (ether_addr_equal(link->conf->addr, hdr->addr3)) ether_addr_copy(hdr->addr3, rx->sdata->vif.addr); /* not needed for A4 since it can only carry the SA */ } ieee80211_invoke_rx_handlers(rx); return true; } static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, struct sk_buff *skb, struct list_head *list) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_fast_rx *fast_rx; struct ieee80211_rx_data rx; memset(&rx, 0, sizeof(rx)); rx.skb = skb; rx.local = local; rx.list = list; rx.link_id = -1; I802_DEBUG_INC(local->dot11ReceivedFragmentCount); /* drop frame if too short for header */ if (skb->len < sizeof(struct ethhdr)) goto drop; if (!pubsta) goto drop; rx.sta = container_of(pubsta, struct sta_info, sta); rx.sdata = rx.sta->sdata; fast_rx = rcu_dereference(rx.sta->fast_rx); if (!fast_rx) goto drop; ieee80211_rx_8023(&rx, fast_rx, skb->len); return; drop: dev_kfree_skb(skb); } static bool ieee80211_rx_for_interface(struct ieee80211_rx_data *rx, struct sk_buff *skb, bool consume) { struct link_sta_info *link_sta; struct ieee80211_hdr *hdr = (void *)skb->data; /* * Look up link station first, in case there's a * chance that they might have a link address that * is identical to the MLD address, that way we'll * have the link information if needed. */ link_sta = link_sta_info_get_bss(rx->sdata, hdr->addr2); if (link_sta) { rx->sta = link_sta->sta; rx->link_id = link_sta->link_id; } else { rx->sta = sta_info_get_bss(rx->sdata, hdr->addr2); } return ieee80211_prepare_and_rx_handle(rx, skb, consume); } /* * This is the actual Rx frames handler. as it belongs to Rx path it must * be called with rcu_read_lock protection. */ static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, struct sk_buff *skb, struct list_head *list) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_sub_if_data *sdata; struct ieee80211_hdr *hdr; __le16 fc; struct ieee80211_rx_data rx; struct ieee80211_sub_if_data *prev; struct rhlist_head *tmp; int err = 0; fc = ((struct ieee80211_hdr *)skb->data)->frame_control; memset(&rx, 0, sizeof(rx)); rx.skb = skb; rx.local = local; rx.list = list; rx.link_id = -1; if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) I802_DEBUG_INC(local->dot11ReceivedFragmentCount); if (ieee80211_is_mgmt(fc)) { /* drop frame if too short for header */ if (skb->len < ieee80211_hdrlen(fc)) err = -ENOBUFS; else err = skb_linearize(skb); } else { err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); } if (err) { dev_kfree_skb(skb); return; } hdr = (struct ieee80211_hdr *)skb->data; ieee80211_parse_qos(&rx); ieee80211_verify_alignment(&rx); if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || ieee80211_is_beacon(hdr->frame_control) || ieee80211_is_s1g_beacon(hdr->frame_control))) ieee80211_scan_rx(local, skb); if (ieee80211_is_data(fc)) { struct sta_info *sta, *prev_sta; if (pubsta) { rx.sta = container_of(pubsta, struct sta_info, sta); rx.sdata = rx.sta->sdata; if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) return; goto out; } prev_sta = NULL; for_each_sta_info(local, hdr->addr2, sta, tmp) { if (!prev_sta) { prev_sta = sta; continue; } rx.sta = prev_sta; rx.sdata = prev_sta->sdata; ieee80211_prepare_and_rx_handle(&rx, skb, false); prev_sta = sta; } if (prev_sta) { rx.sta = prev_sta; rx.sdata = prev_sta->sdata; if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) return; goto out; } } prev = NULL; list_for_each_entry_rcu(sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(sdata)) continue; if (sdata->vif.type == NL80211_IFTYPE_MONITOR || sdata->vif.type == NL80211_IFTYPE_AP_VLAN) continue; /* * frame is destined for this interface, but if it's * not also for the previous one we handle that after * the loop to avoid copying the SKB once too much */ if (!prev) { prev = sdata; continue; } rx.sdata = prev; ieee80211_rx_for_interface(&rx, skb, false); prev = sdata; } if (prev) { rx.sdata = prev; if (ieee80211_rx_for_interface(&rx, skb, true)) return; } out: dev_kfree_skb(skb); } /* * This is the receive path handler. It is called by a low level driver when an * 802.11 MPDU is received from the hardware. */ void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, struct sk_buff *skb, struct list_head *list) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_rate *rate = NULL; struct ieee80211_supported_band *sband; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; WARN_ON_ONCE(softirq_count() == 0); if (WARN_ON(status->band >= NUM_NL80211_BANDS)) goto drop; sband = local->hw.wiphy->bands[status->band]; if (WARN_ON(!sband)) goto drop; /* * If we're suspending, it is possible although not too likely * that we'd be receiving frames after having already partially * quiesced the stack. We can't process such frames then since * that might, for example, cause stations to be added or other * driver callbacks be invoked. */ if (unlikely(local->quiescing || local->suspended)) goto drop; /* We might be during a HW reconfig, prevent Rx for the same reason */ if (unlikely(local->in_reconfig)) goto drop; /* * The same happens when we're not even started, * but that's worth a warning. */ if (WARN_ON(!local->started)) goto drop; if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { /* * Validate the rate, unless a PLCP error means that * we probably can't have a valid rate here anyway. */ switch (status->encoding) { case RX_ENC_HT: /* * rate_idx is MCS index, which can be [0-76] * as documented on: * * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n * * Anything else would be some sort of driver or * hardware error. The driver should catch hardware * errors. */ if (WARN(status->rate_idx > 76, "Rate marked as an HT rate but passed " "status->rate_idx is not " "an MCS index [0-76]: %d (0x%02x)\n", status->rate_idx, status->rate_idx)) goto drop; break; case RX_ENC_VHT: if (WARN_ONCE(status->rate_idx > 11 || !status->nss || status->nss > 8, "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", status->rate_idx, status->nss)) goto drop; break; case RX_ENC_HE: if (WARN_ONCE(status->rate_idx > 11 || !status->nss || status->nss > 8, "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", status->rate_idx, status->nss)) goto drop; break; default: WARN_ON_ONCE(1); fallthrough; case RX_ENC_LEGACY: if (WARN_ON(status->rate_idx >= sband->n_bitrates)) goto drop; rate = &sband->bitrates[status->rate_idx]; } } status->rx_flags = 0; kcov_remote_start_common(skb_get_kcov_handle(skb)); /* * Frames with failed FCS/PLCP checksum are not returned, * all other frames are returned without radiotap header * if it was previously present. * Also, frames with less than 16 bytes are dropped. */ if (!(status->flag & RX_FLAG_8023)) skb = ieee80211_rx_monitor(local, skb, rate); if (skb) { if ((status->flag & RX_FLAG_8023) || ieee80211_is_data_present(hdr->frame_control)) ieee80211_tpt_led_trig_rx(local, skb->len); if (status->flag & RX_FLAG_8023) __ieee80211_rx_handle_8023(hw, pubsta, skb, list); else __ieee80211_rx_handle_packet(hw, pubsta, skb, list); } kcov_remote_stop(); return; drop: kfree_skb(skb); } EXPORT_SYMBOL(ieee80211_rx_list); void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, struct sk_buff *skb, struct napi_struct *napi) { struct sk_buff *tmp; LIST_HEAD(list); /* * key references and virtual interfaces are protected using RCU * and this requires that we are in a read-side RCU section during * receive processing */ rcu_read_lock(); ieee80211_rx_list(hw, pubsta, skb, &list); rcu_read_unlock(); if (!napi) { netif_receive_skb_list(&list); return; } list_for_each_entry_safe(skb, tmp, &list, list) { skb_list_del_init(skb); napi_gro_receive(napi, skb); } } EXPORT_SYMBOL(ieee80211_rx_napi); /* This is a version of the rx handler that can be called from hard irq * context. Post the skb on the queue and schedule the tasklet */ void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) { struct ieee80211_local *local = hw_to_local(hw); BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); skb->pkt_type = IEEE80211_RX_MSG; skb_queue_tail(&local->skb_queue, skb); tasklet_schedule(&local->tasklet); } EXPORT_SYMBOL(ieee80211_rx_irqsafe);