/* * skl-sst-cldma.c - Code Loader DMA handler * * Copyright (C) 2015, Intel Corporation. * Author: Subhransu S. Prusty <subhransu.s.prusty@intel.com> * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #include <linux/device.h> #include <linux/mm.h> #include <linux/kthread.h> #include <linux/delay.h> #include "../common/sst-dsp.h" #include "../common/sst-dsp-priv.h" static void skl_cldma_int_enable(struct sst_dsp *ctx) { sst_dsp_shim_update_bits_unlocked(ctx, SKL_ADSP_REG_ADSPIC, SKL_ADSPIC_CL_DMA, SKL_ADSPIC_CL_DMA); } void skl_cldma_int_disable(struct sst_dsp *ctx) { sst_dsp_shim_update_bits_unlocked(ctx, SKL_ADSP_REG_ADSPIC, SKL_ADSPIC_CL_DMA, 0); } static void skl_cldma_stream_run(struct sst_dsp *ctx, bool enable) { unsigned char val; int timeout; sst_dsp_shim_update_bits_unlocked(ctx, SKL_ADSP_REG_CL_SD_CTL, CL_SD_CTL_RUN_MASK, CL_SD_CTL_RUN(enable)); udelay(3); timeout = 300; do { /* waiting for hardware to report that the stream Run bit set */ val = sst_dsp_shim_read(ctx, SKL_ADSP_REG_CL_SD_CTL) & CL_SD_CTL_RUN_MASK; if (enable && val) break; else if (!enable && !val) break; udelay(3); } while (--timeout); if (timeout == 0) dev_err(ctx->dev, "Failed to set Run bit=%d enable=%d\n", val, enable); } static void skl_cldma_stream_clear(struct sst_dsp *ctx) { /* make sure Run bit is cleared before setting stream register */ skl_cldma_stream_run(ctx, 0); sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL, CL_SD_CTL_IOCE_MASK, CL_SD_CTL_IOCE(0)); sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL, CL_SD_CTL_FEIE_MASK, CL_SD_CTL_FEIE(0)); sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL, CL_SD_CTL_DEIE_MASK, CL_SD_CTL_DEIE(0)); sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL, CL_SD_CTL_STRM_MASK, CL_SD_CTL_STRM(0)); sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPL, CL_SD_BDLPLBA(0)); sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPU, 0); sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_CBL, 0); sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_LVI, 0); } /* Code loader helper APIs */ static void skl_cldma_setup_bdle(struct sst_dsp *ctx, struct snd_dma_buffer *dmab_data, u32 **bdlp, int size, int with_ioc) { u32 *bdl = *bdlp; ctx->cl_dev.frags = 0; while (size > 0) { phys_addr_t addr = virt_to_phys(dmab_data->area + (ctx->cl_dev.frags * ctx->cl_dev.bufsize)); bdl[0] = cpu_to_le32(lower_32_bits(addr)); bdl[1] = cpu_to_le32(upper_32_bits(addr)); bdl[2] = cpu_to_le32(ctx->cl_dev.bufsize); size -= ctx->cl_dev.bufsize; bdl[3] = (size || !with_ioc) ? 0 : cpu_to_le32(0x01); bdl += 4; ctx->cl_dev.frags++; } } /* * Setup controller * Configure the registers to update the dma buffer address and * enable interrupts. * Note: Using the channel 1 for transfer */ static void skl_cldma_setup_controller(struct sst_dsp *ctx, struct snd_dma_buffer *dmab_bdl, unsigned int max_size, u32 count) { skl_cldma_stream_clear(ctx); sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPL, CL_SD_BDLPLBA(dmab_bdl->addr)); sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPU, CL_SD_BDLPUBA(dmab_bdl->addr)); sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_CBL, max_size); sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_LVI, count - 1); sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL, CL_SD_CTL_IOCE_MASK, CL_SD_CTL_IOCE(1)); sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL, CL_SD_CTL_FEIE_MASK, CL_SD_CTL_FEIE(1)); sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL, CL_SD_CTL_DEIE_MASK, CL_SD_CTL_DEIE(1)); sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL, CL_SD_CTL_STRM_MASK, CL_SD_CTL_STRM(FW_CL_STREAM_NUMBER)); } static void skl_cldma_setup_spb(struct sst_dsp *ctx, unsigned int size, bool enable) { if (enable) sst_dsp_shim_update_bits_unlocked(ctx, SKL_ADSP_REG_CL_SPBFIFO_SPBFCCTL, CL_SPBFIFO_SPBFCCTL_SPIBE_MASK, CL_SPBFIFO_SPBFCCTL_SPIBE(1)); sst_dsp_shim_write_unlocked(ctx, SKL_ADSP_REG_CL_SPBFIFO_SPIB, size); } static void skl_cldma_cleanup_spb(struct sst_dsp *ctx) { sst_dsp_shim_update_bits_unlocked(ctx, SKL_ADSP_REG_CL_SPBFIFO_SPBFCCTL, CL_SPBFIFO_SPBFCCTL_SPIBE_MASK, CL_SPBFIFO_SPBFCCTL_SPIBE(0)); sst_dsp_shim_write_unlocked(ctx, SKL_ADSP_REG_CL_SPBFIFO_SPIB, 0); } static void skl_cldma_cleanup(struct sst_dsp *ctx) { skl_cldma_cleanup_spb(ctx); skl_cldma_stream_clear(ctx); ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_data); ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_bdl); } static int skl_cldma_wait_interruptible(struct sst_dsp *ctx) { int ret = 0; if (!wait_event_timeout(ctx->cl_dev.wait_queue, ctx->cl_dev.wait_condition, msecs_to_jiffies(SKL_WAIT_TIMEOUT))) { dev_err(ctx->dev, "%s: Wait timeout\n", __func__); ret = -EIO; goto cleanup; } dev_dbg(ctx->dev, "%s: Event wake\n", __func__); if (ctx->cl_dev.wake_status != SKL_CL_DMA_BUF_COMPLETE) { dev_err(ctx->dev, "%s: DMA Error\n", __func__); ret = -EIO; } cleanup: ctx->cl_dev.wake_status = SKL_CL_DMA_STATUS_NONE; return ret; } static void skl_cldma_stop(struct sst_dsp *ctx) { skl_cldma_stream_run(ctx, false); } static void skl_cldma_fill_buffer(struct sst_dsp *ctx, unsigned int size, const void *curr_pos, bool intr_enable, bool trigger) { dev_dbg(ctx->dev, "Size: %x, intr_enable: %d\n", size, intr_enable); dev_dbg(ctx->dev, "buf_pos_index:%d, trigger:%d\n", ctx->cl_dev.dma_buffer_offset, trigger); dev_dbg(ctx->dev, "spib position: %d\n", ctx->cl_dev.curr_spib_pos); /* * Check if the size exceeds buffer boundary. If it exceeds * max_buffer size, then copy till buffer size and then copy * remaining buffer from the start of ring buffer. */ if (ctx->cl_dev.dma_buffer_offset + size > ctx->cl_dev.bufsize) { unsigned int size_b = ctx->cl_dev.bufsize - ctx->cl_dev.dma_buffer_offset; memcpy(ctx->cl_dev.dmab_data.area + ctx->cl_dev.dma_buffer_offset, curr_pos, size_b); size -= size_b; curr_pos += size_b; ctx->cl_dev.dma_buffer_offset = 0; } memcpy(ctx->cl_dev.dmab_data.area + ctx->cl_dev.dma_buffer_offset, curr_pos, size); if (ctx->cl_dev.curr_spib_pos == ctx->cl_dev.bufsize) ctx->cl_dev.dma_buffer_offset = 0; else ctx->cl_dev.dma_buffer_offset = ctx->cl_dev.curr_spib_pos; ctx->cl_dev.wait_condition = false; if (intr_enable) skl_cldma_int_enable(ctx); ctx->cl_dev.ops.cl_setup_spb(ctx, ctx->cl_dev.curr_spib_pos, trigger); if (trigger) ctx->cl_dev.ops.cl_trigger(ctx, true); } /* * The CL dma doesn't have any way to update the transfer status until a BDL * buffer is fully transferred * * So Copying is divided in two parts. * 1. Interrupt on buffer done where the size to be transferred is more than * ring buffer size. * 2. Polling on fw register to identify if data left to transferred doesn't * fill the ring buffer. Caller takes care of polling the required status * register to identify the transfer status. */ static int skl_cldma_copy_to_buf(struct sst_dsp *ctx, const void *bin, u32 total_size) { int ret = 0; bool start = true; unsigned int excess_bytes; u32 size; unsigned int bytes_left = total_size; const void *curr_pos = bin; if (total_size <= 0) return -EINVAL; dev_dbg(ctx->dev, "%s: Total binary size: %u\n", __func__, bytes_left); while (bytes_left) { if (bytes_left > ctx->cl_dev.bufsize) { /* * dma transfers only till the write pointer as * updated in spib */ if (ctx->cl_dev.curr_spib_pos == 0) ctx->cl_dev.curr_spib_pos = ctx->cl_dev.bufsize; size = ctx->cl_dev.bufsize; skl_cldma_fill_buffer(ctx, size, curr_pos, true, start); start = false; ret = skl_cldma_wait_interruptible(ctx); if (ret < 0) { skl_cldma_stop(ctx); return ret; } } else { skl_cldma_int_disable(ctx); if ((ctx->cl_dev.curr_spib_pos + bytes_left) <= ctx->cl_dev.bufsize) { ctx->cl_dev.curr_spib_pos += bytes_left; } else { excess_bytes = bytes_left - (ctx->cl_dev.bufsize - ctx->cl_dev.curr_spib_pos); ctx->cl_dev.curr_spib_pos = excess_bytes; } size = bytes_left; skl_cldma_fill_buffer(ctx, size, curr_pos, false, start); } bytes_left -= size; curr_pos = curr_pos + size; } return ret; } void skl_cldma_process_intr(struct sst_dsp *ctx) { u8 cl_dma_intr_status; cl_dma_intr_status = sst_dsp_shim_read_unlocked(ctx, SKL_ADSP_REG_CL_SD_STS); if (!(cl_dma_intr_status & SKL_CL_DMA_SD_INT_COMPLETE)) ctx->cl_dev.wake_status = SKL_CL_DMA_ERR; else ctx->cl_dev.wake_status = SKL_CL_DMA_BUF_COMPLETE; ctx->cl_dev.wait_condition = true; wake_up(&ctx->cl_dev.wait_queue); } int skl_cldma_prepare(struct sst_dsp *ctx) { int ret; u32 *bdl; ctx->cl_dev.bufsize = SKL_MAX_BUFFER_SIZE; /* Allocate cl ops */ ctx->cl_dev.ops.cl_setup_bdle = skl_cldma_setup_bdle; ctx->cl_dev.ops.cl_setup_controller = skl_cldma_setup_controller; ctx->cl_dev.ops.cl_setup_spb = skl_cldma_setup_spb; ctx->cl_dev.ops.cl_cleanup_spb = skl_cldma_cleanup_spb; ctx->cl_dev.ops.cl_trigger = skl_cldma_stream_run; ctx->cl_dev.ops.cl_cleanup_controller = skl_cldma_cleanup; ctx->cl_dev.ops.cl_copy_to_dmabuf = skl_cldma_copy_to_buf; ctx->cl_dev.ops.cl_stop_dma = skl_cldma_stop; /* Allocate buffer*/ ret = ctx->dsp_ops.alloc_dma_buf(ctx->dev, &ctx->cl_dev.dmab_data, ctx->cl_dev.bufsize); if (ret < 0) { dev_err(ctx->dev, "Alloc buffer for base fw failed: %x", ret); return ret; } /* Setup Code loader BDL */ ret = ctx->dsp_ops.alloc_dma_buf(ctx->dev, &ctx->cl_dev.dmab_bdl, PAGE_SIZE); if (ret < 0) { dev_err(ctx->dev, "Alloc buffer for blde failed: %x", ret); ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_data); return ret; } bdl = (u32 *)ctx->cl_dev.dmab_bdl.area; /* Allocate BDLs */ ctx->cl_dev.ops.cl_setup_bdle(ctx, &ctx->cl_dev.dmab_data, &bdl, ctx->cl_dev.bufsize, 1); ctx->cl_dev.ops.cl_setup_controller(ctx, &ctx->cl_dev.dmab_bdl, ctx->cl_dev.bufsize, ctx->cl_dev.frags); ctx->cl_dev.curr_spib_pos = 0; ctx->cl_dev.dma_buffer_offset = 0; init_waitqueue_head(&ctx->cl_dev.wait_queue); return ret; }