1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
|
SCSI EH
======================================
This document describes SCSI midlayer error handling infrastructure.
Please refer to Documentation/scsi/scsi_mid_low_api.txt for more
information regarding SCSI midlayer.
TABLE OF CONTENTS
[1] How SCSI commands travel through the midlayer and to EH
[1-1] struct scsi_cmnd
[1-2] How do scmd's get completed?
[1-2-1] Completing a scmd w/ scsi_done
[1-2-2] Completing a scmd w/ timeout
[1-3] How EH takes over
[2] How SCSI EH works
[2-1] EH through fine-grained callbacks
[2-1-1] Overview
[2-1-2] Flow of scmds through EH
[2-1-3] Flow of control
[2-2] EH through transportt->eh_strategy_handler()
[2-2-1] Pre transportt->eh_strategy_handler() SCSI midlayer conditions
[2-2-2] Post transportt->eh_strategy_handler() SCSI midlayer conditions
[2-2-3] Things to consider
[1] How SCSI commands travel through the midlayer and to EH
[1-1] struct scsi_cmnd
Each SCSI command is represented with struct scsi_cmnd (== scmd). A
scmd has two list_head's to link itself into lists. The two are
scmd->list and scmd->eh_entry. The former is used for free list or
per-device allocated scmd list and not of much interest to this EH
discussion. The latter is used for completion and EH lists and unless
otherwise stated scmds are always linked using scmd->eh_entry in this
discussion.
[1-2] How do scmd's get completed?
Once LLDD gets hold of a scmd, either the LLDD will complete the
command by calling scsi_done callback passed from midlayer when
invoking hostt->queuecommand() or the block layer will time it out.
[1-2-1] Completing a scmd w/ scsi_done
For all non-EH commands, scsi_done() is the completion callback. It
just calls blk_complete_request() to delete the block layer timer and
raise SCSI_SOFTIRQ
SCSI_SOFTIRQ handler scsi_softirq calls scsi_decide_disposition() to
determine what to do with the command. scsi_decide_disposition()
looks at the scmd->result value and sense data to determine what to do
with the command.
- SUCCESS
scsi_finish_command() is invoked for the command. The
function does some maintenance chores and then calls
scsi_io_completion() to finish the I/O.
scsi_io_completion() then notifies the block layer on
the completed request by calling blk_end_request and
friends or figures out what to do with the remainder
of the data in case of an error.
- NEEDS_RETRY
- ADD_TO_MLQUEUE
scmd is requeued to blk queue.
- otherwise
scsi_eh_scmd_add(scmd) is invoked for the command. See
[1-3] for details of this function.
[1-2-2] Completing a scmd w/ timeout
The timeout handler is scsi_times_out(). When a timeout occurs, this
function
1. invokes optional hostt->eh_timed_out() callback. Return value can
be one of
- BLK_EH_HANDLED
This indicates that eh_timed_out() dealt with the timeout.
The command is passed back to the block layer and completed
via __blk_complete_requests().
*NOTE* After returning BLK_EH_HANDLED the SCSI layer is
assumed to be finished with the command, and no other
functions from the SCSI layer will be called. So this
should typically only be returned if the eh_timed_out()
handler raced with normal completion.
- BLK_EH_RESET_TIMER
This indicates that more time is required to finish the
command. Timer is restarted. This action is counted as a
retry and only allowed scmd->allowed + 1(!) times. Once the
limit is reached, action for BLK_EH_DONE is taken instead.
- BLK_EH_DONE
eh_timed_out() callback did not handle the command.
Step #2 is taken.
2. scsi_abort_command() is invoked to schedule an asynchrous abort.
Asynchronous abort are not invoked for commands which the
SCSI_EH_ABORT_SCHEDULED flag is set (this indicates that the command
already had been aborted once, and this is a retry which failed),
or when the EH deadline is expired. In these case Step #3 is taken.
3. scsi_eh_scmd_add(scmd, SCSI_EH_CANCEL_CMD) is invoked for the
command. See [1-4] for more information.
[1-3] Asynchronous command aborts
After a timeout occurs a command abort is scheduled from
scsi_abort_command(). If the abort is successful the command
will either be retried (if the number of retries is not exhausted)
or terminated with DID_TIME_OUT.
Otherwise scsi_eh_scmd_add() is invoked for the command.
See [1-4] for more information.
[1-4] How EH takes over
scmds enter EH via scsi_eh_scmd_add(), which does the following.
1. Links scmd->eh_entry to shost->eh_cmd_q
2. Sets SHOST_RECOVERY bit in shost->shost_state
3. Increments shost->host_failed
4. Wakes up SCSI EH thread if shost->host_busy == shost->host_failed
As can be seen above, once any scmd is added to shost->eh_cmd_q,
SHOST_RECOVERY shost_state bit is turned on. This prevents any new
scmd to be issued from blk queue to the host; eventually, all scmds on
the host either complete normally, fail and get added to eh_cmd_q, or
time out and get added to shost->eh_cmd_q.
If all scmds either complete or fail, the number of in-flight scmds
becomes equal to the number of failed scmds - i.e. shost->host_busy ==
shost->host_failed. This wakes up SCSI EH thread. So, once woken up,
SCSI EH thread can expect that all in-flight commands have failed and
are linked on shost->eh_cmd_q.
Note that this does not mean lower layers are quiescent. If a LLDD
completed a scmd with error status, the LLDD and lower layers are
assumed to forget about the scmd at that point. However, if a scmd
has timed out, unless hostt->eh_timed_out() made lower layers forget
about the scmd, which currently no LLDD does, the command is still
active as long as lower layers are concerned and completion could
occur at any time. Of course, all such completions are ignored as the
timer has already expired.
We'll talk about how SCSI EH takes actions to abort - make LLDD
forget about - timed out scmds later.
[2] How SCSI EH works
LLDD's can implement SCSI EH actions in one of the following two
ways.
- Fine-grained EH callbacks
LLDD can implement fine-grained EH callbacks and let SCSI
midlayer drive error handling and call appropriate callbacks.
This will be discussed further in [2-1].
- eh_strategy_handler() callback
This is one big callback which should perform whole error
handling. As such, it should do all chores the SCSI midlayer
performs during recovery. This will be discussed in [2-2].
Once recovery is complete, SCSI EH resumes normal operation by
calling scsi_restart_operations(), which
1. Checks if door locking is needed and locks door.
2. Clears SHOST_RECOVERY shost_state bit
3. Wakes up waiters on shost->host_wait. This occurs if someone
calls scsi_block_when_processing_errors() on the host.
(*QUESTION* why is it needed? All operations will be blocked
anyway after it reaches blk queue.)
4. Kicks queues in all devices on the host in the asses
[2-1] EH through fine-grained callbacks
[2-1-1] Overview
If eh_strategy_handler() is not present, SCSI midlayer takes charge
of driving error handling. EH's goals are two - make LLDD, host and
device forget about timed out scmds and make them ready for new
commands. A scmd is said to be recovered if the scmd is forgotten by
lower layers and lower layers are ready to process or fail the scmd
again.
To achieve these goals, EH performs recovery actions with increasing
severity. Some actions are performed by issuing SCSI commands and
others are performed by invoking one of the following fine-grained
hostt EH callbacks. Callbacks may be omitted and omitted ones are
considered to fail always.
int (* eh_abort_handler)(struct scsi_cmnd *);
int (* eh_device_reset_handler)(struct scsi_cmnd *);
int (* eh_bus_reset_handler)(struct scsi_cmnd *);
int (* eh_host_reset_handler)(struct scsi_cmnd *);
Higher-severity actions are taken only when lower-severity actions
cannot recover some of failed scmds. Also, note that failure of the
highest-severity action means EH failure and results in offlining of
all unrecovered devices.
During recovery, the following rules are followed
- Recovery actions are performed on failed scmds on the to do list,
eh_work_q. If a recovery action succeeds for a scmd, recovered
scmds are removed from eh_work_q.
Note that single recovery action on a scmd can recover multiple
scmds. e.g. resetting a device recovers all failed scmds on the
device.
- Higher severity actions are taken iff eh_work_q is not empty after
lower severity actions are complete.
- EH reuses failed scmds to issue commands for recovery. For
timed-out scmds, SCSI EH ensures that LLDD forgets about a scmd
before reusing it for EH commands.
When a scmd is recovered, the scmd is moved from eh_work_q to EH
local eh_done_q using scsi_eh_finish_cmd(). After all scmds are
recovered (eh_work_q is empty), scsi_eh_flush_done_q() is invoked to
either retry or error-finish (notify upper layer of failure) recovered
scmds.
scmds are retried iff its sdev is still online (not offlined during
EH), REQ_FAILFAST is not set and ++scmd->retries is less than
scmd->allowed.
[2-1-2] Flow of scmds through EH
1. Error completion / time out
ACTION: scsi_eh_scmd_add() is invoked for scmd
- add scmd to shost->eh_cmd_q
- set SHOST_RECOVERY
- shost->host_failed++
LOCKING: shost->host_lock
2. EH starts
ACTION: move all scmds to EH's local eh_work_q. shost->eh_cmd_q
is cleared.
LOCKING: shost->host_lock (not strictly necessary, just for
consistency)
3. scmd recovered
ACTION: scsi_eh_finish_cmd() is invoked to EH-finish scmd
- scsi_setup_cmd_retry()
- move from local eh_work_q to local eh_done_q
LOCKING: none
CONCURRENCY: at most one thread per separate eh_work_q to
keep queue manipulation lockless
4. EH completes
ACTION: scsi_eh_flush_done_q() retries scmds or notifies upper
layer of failure. May be called concurrently but must have
a no more than one thread per separate eh_work_q to
manipulate the queue locklessly
- scmd is removed from eh_done_q and scmd->eh_entry is cleared
- if retry is necessary, scmd is requeued using
scsi_queue_insert()
- otherwise, scsi_finish_command() is invoked for scmd
- zero shost->host_failed
LOCKING: queue or finish function performs appropriate locking
[2-1-3] Flow of control
EH through fine-grained callbacks start from scsi_unjam_host().
<<scsi_unjam_host>>
1. Lock shost->host_lock, splice_init shost->eh_cmd_q into local
eh_work_q and unlock host_lock. Note that shost->eh_cmd_q is
cleared by this action.
2. Invoke scsi_eh_get_sense.
<<scsi_eh_get_sense>>
This action is taken for each error-completed
(!SCSI_EH_CANCEL_CMD) commands without valid sense data. Most
SCSI transports/LLDDs automatically acquire sense data on
command failures (autosense). Autosense is recommended for
performance reasons and as sense information could get out of
sync between occurrence of CHECK CONDITION and this action.
Note that if autosense is not supported, scmd->sense_buffer
contains invalid sense data when error-completing the scmd
with scsi_done(). scsi_decide_disposition() always returns
FAILED in such cases thus invoking SCSI EH. When the scmd
reaches here, sense data is acquired and
scsi_decide_disposition() is called again.
1. Invoke scsi_request_sense() which issues REQUEST_SENSE
command. If fails, no action. Note that taking no action
causes higher-severity recovery to be taken for the scmd.
2. Invoke scsi_decide_disposition() on the scmd
- SUCCESS
scmd->retries is set to scmd->allowed preventing
scsi_eh_flush_done_q() from retrying the scmd and
scsi_eh_finish_cmd() is invoked.
- NEEDS_RETRY
scsi_eh_finish_cmd() invoked
- otherwise
No action.
3. If !list_empty(&eh_work_q), invoke scsi_eh_abort_cmds().
<<scsi_eh_abort_cmds>>
This action is taken for each timed out command when
no_async_abort is enabled in the host template.
hostt->eh_abort_handler() is invoked for each scmd. The
handler returns SUCCESS if it has succeeded to make LLDD and
all related hardware forget about the scmd.
If a timedout scmd is successfully aborted and the sdev is
either offline or ready, scsi_eh_finish_cmd() is invoked for
the scmd. Otherwise, the scmd is left in eh_work_q for
higher-severity actions.
Note that both offline and ready status mean that the sdev is
ready to process new scmds, where processing also implies
immediate failing; thus, if a sdev is in one of the two
states, no further recovery action is needed.
Device readiness is tested using scsi_eh_tur() which issues
TEST_UNIT_READY command. Note that the scmd must have been
aborted successfully before reusing it for TEST_UNIT_READY.
4. If !list_empty(&eh_work_q), invoke scsi_eh_ready_devs()
<<scsi_eh_ready_devs>>
This function takes four increasingly more severe measures to
make failed sdevs ready for new commands.
1. Invoke scsi_eh_stu()
<<scsi_eh_stu>>
For each sdev which has failed scmds with valid sense data
of which scsi_check_sense()'s verdict is FAILED,
START_STOP_UNIT command is issued w/ start=1. Note that
as we explicitly choose error-completed scmds, it is known
that lower layers have forgotten about the scmd and we can
reuse it for STU.
If STU succeeds and the sdev is either offline or ready,
all failed scmds on the sdev are EH-finished with
scsi_eh_finish_cmd().
*NOTE* If hostt->eh_abort_handler() isn't implemented or
failed, we may still have timed out scmds at this point
and STU doesn't make lower layers forget about those
scmds. Yet, this function EH-finish all scmds on the sdev
if STU succeeds leaving lower layers in an inconsistent
state. It seems that STU action should be taken only when
a sdev has no timed out scmd.
2. If !list_empty(&eh_work_q), invoke scsi_eh_bus_device_reset().
<<scsi_eh_bus_device_reset>>
This action is very similar to scsi_eh_stu() except that,
instead of issuing STU, hostt->eh_device_reset_handler()
is used. Also, as we're not issuing SCSI commands and
resetting clears all scmds on the sdev, there is no need
to choose error-completed scmds.
3. If !list_empty(&eh_work_q), invoke scsi_eh_bus_reset()
<<scsi_eh_bus_reset>>
hostt->eh_bus_reset_handler() is invoked for each channel
with failed scmds. If bus reset succeeds, all failed
scmds on all ready or offline sdevs on the channel are
EH-finished.
4. If !list_empty(&eh_work_q), invoke scsi_eh_host_reset()
<<scsi_eh_host_reset>>
This is the last resort. hostt->eh_host_reset_handler()
is invoked. If host reset succeeds, all failed scmds on
all ready or offline sdevs on the host are EH-finished.
5. If !list_empty(&eh_work_q), invoke scsi_eh_offline_sdevs()
<<scsi_eh_offline_sdevs>>
Take all sdevs which still have unrecovered scmds offline
and EH-finish the scmds.
5. Invoke scsi_eh_flush_done_q().
<<scsi_eh_flush_done_q>>
At this point all scmds are recovered (or given up) and
put on eh_done_q by scsi_eh_finish_cmd(). This function
flushes eh_done_q by either retrying or notifying upper
layer of failure of the scmds.
[2-2] EH through transportt->eh_strategy_handler()
transportt->eh_strategy_handler() is invoked in the place of
scsi_unjam_host() and it is responsible for whole recovery process.
On completion, the handler should have made lower layers forget about
all failed scmds and either ready for new commands or offline. Also,
it should perform SCSI EH maintenance chores to maintain integrity of
SCSI midlayer. IOW, of the steps described in [2-1-2], all steps
except for #1 must be implemented by eh_strategy_handler().
[2-2-1] Pre transportt->eh_strategy_handler() SCSI midlayer conditions
The following conditions are true on entry to the handler.
- Each failed scmd's eh_flags field is set appropriately.
- Each failed scmd is linked on scmd->eh_cmd_q by scmd->eh_entry.
- SHOST_RECOVERY is set.
- shost->host_failed == shost->host_busy
[2-2-2] Post transportt->eh_strategy_handler() SCSI midlayer conditions
The following conditions must be true on exit from the handler.
- shost->host_failed is zero.
- Each scmd is in such a state that scsi_setup_cmd_retry() on the
scmd doesn't make any difference.
- shost->eh_cmd_q is cleared.
- Each scmd->eh_entry is cleared.
- Either scsi_queue_insert() or scsi_finish_command() is called on
each scmd. Note that the handler is free to use scmd->retries and
->allowed to limit the number of retries.
[2-2-3] Things to consider
- Know that timed out scmds are still active on lower layers. Make
lower layers forget about them before doing anything else with
those scmds.
- For consistency, when accessing/modifying shost data structure,
grab shost->host_lock.
- On completion, each failed sdev must have forgotten about all
active scmds.
- On completion, each failed sdev must be ready for new commands or
offline.
--
Tejun Heo
htejun@gmail.com
11th September 2005
|