summaryrefslogtreecommitdiff
path: root/arch/mips/kernel/smp.c
blob: d0e911f2421b66be6e61a2f3b4685754fdcfe46a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 *
 * Copyright (C) 2000, 2001 Kanoj Sarcar
 * Copyright (C) 2000, 2001 Ralf Baechle
 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
 */
#include <linux/cache.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <linux/threads.h>
#include <linux/export.h>
#include <linux/time.h>
#include <linux/timex.h>
#include <linux/sched/mm.h>
#include <linux/cpumask.h>
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/ftrace.h>
#include <linux/irqdomain.h>
#include <linux/of.h>
#include <linux/of_irq.h>

#include <linux/atomic.h>
#include <asm/cpu.h>
#include <asm/ginvt.h>
#include <asm/processor.h>
#include <asm/idle.h>
#include <asm/r4k-timer.h>
#include <asm/mips-cps.h>
#include <asm/mmu_context.h>
#include <asm/time.h>
#include <asm/setup.h>
#include <asm/maar.h>

int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP];   /* Map physical to logical */
EXPORT_SYMBOL(__cpu_number_map);

int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
EXPORT_SYMBOL(__cpu_logical_map);

/* Number of TCs (or siblings in Intel speak) per CPU core */
int smp_num_siblings = 1;
EXPORT_SYMBOL(smp_num_siblings);

/* representing the TCs (or siblings in Intel speak) of each logical CPU */
cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(cpu_sibling_map);

/* representing the core map of multi-core chips of each logical CPU */
cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(cpu_core_map);

static DECLARE_COMPLETION(cpu_starting);
static DECLARE_COMPLETION(cpu_running);

/*
 * A logcal cpu mask containing only one VPE per core to
 * reduce the number of IPIs on large MT systems.
 */
cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(cpu_foreign_map);

/* representing cpus for which sibling maps can be computed */
static cpumask_t cpu_sibling_setup_map;

/* representing cpus for which core maps can be computed */
static cpumask_t cpu_core_setup_map;

cpumask_t cpu_coherent_mask;

#ifdef CONFIG_GENERIC_IRQ_IPI
static struct irq_desc *call_desc;
static struct irq_desc *sched_desc;
#endif

static inline void set_cpu_sibling_map(int cpu)
{
	int i;

	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);

	if (smp_num_siblings > 1) {
		for_each_cpu(i, &cpu_sibling_setup_map) {
			if (cpus_are_siblings(cpu, i)) {
				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
			}
		}
	} else
		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
}

static inline void set_cpu_core_map(int cpu)
{
	int i;

	cpumask_set_cpu(cpu, &cpu_core_setup_map);

	for_each_cpu(i, &cpu_core_setup_map) {
		if (cpu_data[cpu].package == cpu_data[i].package) {
			cpumask_set_cpu(i, &cpu_core_map[cpu]);
			cpumask_set_cpu(cpu, &cpu_core_map[i]);
		}
	}
}

/*
 * Calculate a new cpu_foreign_map mask whenever a
 * new cpu appears or disappears.
 */
void calculate_cpu_foreign_map(void)
{
	int i, k, core_present;
	cpumask_t temp_foreign_map;

	/* Re-calculate the mask */
	cpumask_clear(&temp_foreign_map);
	for_each_online_cpu(i) {
		core_present = 0;
		for_each_cpu(k, &temp_foreign_map)
			if (cpus_are_siblings(i, k))
				core_present = 1;
		if (!core_present)
			cpumask_set_cpu(i, &temp_foreign_map);
	}

	for_each_online_cpu(i)
		cpumask_andnot(&cpu_foreign_map[i],
			       &temp_foreign_map, &cpu_sibling_map[i]);
}

const struct plat_smp_ops *mp_ops;
EXPORT_SYMBOL(mp_ops);

void register_smp_ops(const struct plat_smp_ops *ops)
{
	if (mp_ops)
		printk(KERN_WARNING "Overriding previously set SMP ops\n");

	mp_ops = ops;
}

#ifdef CONFIG_GENERIC_IRQ_IPI
void mips_smp_send_ipi_single(int cpu, unsigned int action)
{
	mips_smp_send_ipi_mask(cpumask_of(cpu), action);
}

void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
{
	unsigned long flags;
	unsigned int core;
	int cpu;

	local_irq_save(flags);

	switch (action) {
	case SMP_CALL_FUNCTION:
		__ipi_send_mask(call_desc, mask);
		break;

	case SMP_RESCHEDULE_YOURSELF:
		__ipi_send_mask(sched_desc, mask);
		break;

	default:
		BUG();
	}

	if (mips_cpc_present()) {
		for_each_cpu(cpu, mask) {
			if (cpus_are_siblings(cpu, smp_processor_id()))
				continue;

			core = cpu_core(&cpu_data[cpu]);

			while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
				mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
				mips_cpc_lock_other(core);
				write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
				mips_cpc_unlock_other();
				mips_cm_unlock_other();
			}
		}
	}

	local_irq_restore(flags);
}


static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
{
	scheduler_ipi();

	return IRQ_HANDLED;
}

static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
{
	generic_smp_call_function_interrupt();

	return IRQ_HANDLED;
}

static void smp_ipi_init_one(unsigned int virq, const char *name,
			     irq_handler_t handler)
{
	int ret;

	irq_set_handler(virq, handle_percpu_irq);
	ret = request_irq(virq, handler, IRQF_PERCPU, name, NULL);
	BUG_ON(ret);
}

static unsigned int call_virq, sched_virq;

int mips_smp_ipi_allocate(const struct cpumask *mask)
{
	int virq;
	struct irq_domain *ipidomain;
	struct device_node *node;

	node = of_irq_find_parent(of_root);
	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);

	/*
	 * Some platforms have half DT setup. So if we found irq node but
	 * didn't find an ipidomain, try to search for one that is not in the
	 * DT.
	 */
	if (node && !ipidomain)
		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);

	/*
	 * There are systems which use IPI IRQ domains, but only have one
	 * registered when some runtime condition is met. For example a Malta
	 * kernel may include support for GIC & CPU interrupt controller IPI
	 * IRQ domains, but if run on a system with no GIC & no MT ASE then
	 * neither will be supported or registered.
	 *
	 * We only have a problem if we're actually using multiple CPUs so fail
	 * loudly if that is the case. Otherwise simply return, skipping IPI
	 * setup, if we're running with only a single CPU.
	 */
	if (!ipidomain) {
		BUG_ON(num_present_cpus() > 1);
		return 0;
	}

	virq = irq_reserve_ipi(ipidomain, mask);
	BUG_ON(!virq);
	if (!call_virq)
		call_virq = virq;

	virq = irq_reserve_ipi(ipidomain, mask);
	BUG_ON(!virq);
	if (!sched_virq)
		sched_virq = virq;

	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
		int cpu;

		for_each_cpu(cpu, mask) {
			smp_ipi_init_one(call_virq + cpu, "IPI call",
					 ipi_call_interrupt);
			smp_ipi_init_one(sched_virq + cpu, "IPI resched",
					 ipi_resched_interrupt);
		}
	} else {
		smp_ipi_init_one(call_virq, "IPI call", ipi_call_interrupt);
		smp_ipi_init_one(sched_virq, "IPI resched",
				 ipi_resched_interrupt);
	}

	return 0;
}

int mips_smp_ipi_free(const struct cpumask *mask)
{
	struct irq_domain *ipidomain;
	struct device_node *node;

	node = of_irq_find_parent(of_root);
	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);

	/*
	 * Some platforms have half DT setup. So if we found irq node but
	 * didn't find an ipidomain, try to search for one that is not in the
	 * DT.
	 */
	if (node && !ipidomain)
		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);

	BUG_ON(!ipidomain);

	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
		int cpu;

		for_each_cpu(cpu, mask) {
			free_irq(call_virq + cpu, NULL);
			free_irq(sched_virq + cpu, NULL);
		}
	}
	irq_destroy_ipi(call_virq, mask);
	irq_destroy_ipi(sched_virq, mask);
	return 0;
}


static int __init mips_smp_ipi_init(void)
{
	if (num_possible_cpus() == 1)
		return 0;

	mips_smp_ipi_allocate(cpu_possible_mask);

	call_desc = irq_to_desc(call_virq);
	sched_desc = irq_to_desc(sched_virq);

	return 0;
}
early_initcall(mips_smp_ipi_init);
#endif

/*
 * First C code run on the secondary CPUs after being started up by
 * the master.
 */
asmlinkage void start_secondary(void)
{
	unsigned int cpu;

	cpu_probe();
	per_cpu_trap_init(false);
	mips_clockevent_init();
	mp_ops->init_secondary();
	cpu_report();
	maar_init();

	/*
	 * XXX parity protection should be folded in here when it's converted
	 * to an option instead of something based on .cputype
	 */

	calibrate_delay();
	preempt_disable();
	cpu = smp_processor_id();
	cpu_data[cpu].udelay_val = loops_per_jiffy;

	cpumask_set_cpu(cpu, &cpu_coherent_mask);
	notify_cpu_starting(cpu);

	/* Notify boot CPU that we're starting & ready to sync counters */
	complete(&cpu_starting);

	synchronise_count_slave(cpu);

	/* The CPU is running and counters synchronised, now mark it online */
	set_cpu_online(cpu, true);

	set_cpu_sibling_map(cpu);
	set_cpu_core_map(cpu);

	calculate_cpu_foreign_map();

	/*
	 * Notify boot CPU that we're up & online and it can safely return
	 * from __cpu_up
	 */
	complete(&cpu_running);

	/*
	 * irq will be enabled in ->smp_finish(), enabling it too early
	 * is dangerous.
	 */
	WARN_ON_ONCE(!irqs_disabled());
	mp_ops->smp_finish();

	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
}

static void stop_this_cpu(void *dummy)
{
	/*
	 * Remove this CPU:
	 */

	set_cpu_online(smp_processor_id(), false);
	calculate_cpu_foreign_map();
	local_irq_disable();
	while (1);
}

void smp_send_stop(void)
{
	smp_call_function(stop_this_cpu, NULL, 0);
}

void __init smp_cpus_done(unsigned int max_cpus)
{
}

/* called from main before smp_init() */
void __init smp_prepare_cpus(unsigned int max_cpus)
{
	init_new_context(current, &init_mm);
	current_thread_info()->cpu = 0;
	mp_ops->prepare_cpus(max_cpus);
	set_cpu_sibling_map(0);
	set_cpu_core_map(0);
	calculate_cpu_foreign_map();
#ifndef CONFIG_HOTPLUG_CPU
	init_cpu_present(cpu_possible_mask);
#endif
	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
}

/* preload SMP state for boot cpu */
void smp_prepare_boot_cpu(void)
{
	if (mp_ops->prepare_boot_cpu)
		mp_ops->prepare_boot_cpu();
	set_cpu_possible(0, true);
	set_cpu_online(0, true);
}

int __cpu_up(unsigned int cpu, struct task_struct *tidle)
{
	int err;

	err = mp_ops->boot_secondary(cpu, tidle);
	if (err)
		return err;

	/* Wait for CPU to start and be ready to sync counters */
	if (!wait_for_completion_timeout(&cpu_starting,
					 msecs_to_jiffies(1000))) {
		pr_crit("CPU%u: failed to start\n", cpu);
		return -EIO;
	}

	synchronise_count_master(cpu);

	/* Wait for CPU to finish startup & mark itself online before return */
	wait_for_completion(&cpu_running);
	return 0;
}

/* Not really SMP stuff ... */
int setup_profiling_timer(unsigned int multiplier)
{
	return 0;
}

static void flush_tlb_all_ipi(void *info)
{
	local_flush_tlb_all();
}

void flush_tlb_all(void)
{
	if (cpu_has_mmid) {
		htw_stop();
		ginvt_full();
		sync_ginv();
		instruction_hazard();
		htw_start();
		return;
	}

	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
}

static void flush_tlb_mm_ipi(void *mm)
{
	drop_mmu_context((struct mm_struct *)mm);
}

/*
 * Special Variant of smp_call_function for use by TLB functions:
 *
 *  o No return value
 *  o collapses to normal function call on UP kernels
 *  o collapses to normal function call on systems with a single shared
 *    primary cache.
 */
static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
{
	smp_call_function(func, info, 1);
}

static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
{
	preempt_disable();

	smp_on_other_tlbs(func, info);
	func(info);

	preempt_enable();
}

/*
 * The following tlb flush calls are invoked when old translations are
 * being torn down, or pte attributes are changing. For single threaded
 * address spaces, a new context is obtained on the current cpu, and tlb
 * context on other cpus are invalidated to force a new context allocation
 * at switch_mm time, should the mm ever be used on other cpus. For
 * multithreaded address spaces, intercpu interrupts have to be sent.
 * Another case where intercpu interrupts are required is when the target
 * mm might be active on another cpu (eg debuggers doing the flushes on
 * behalf of debugees, kswapd stealing pages from another process etc).
 * Kanoj 07/00.
 */

void flush_tlb_mm(struct mm_struct *mm)
{
	preempt_disable();

	if (cpu_has_mmid) {
		/*
		 * No need to worry about other CPUs - the ginvt in
		 * drop_mmu_context() will be globalized.
		 */
	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
	} else {
		unsigned int cpu;

		for_each_online_cpu(cpu) {
			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
				set_cpu_context(cpu, mm, 0);
		}
	}
	drop_mmu_context(mm);

	preempt_enable();
}

struct flush_tlb_data {
	struct vm_area_struct *vma;
	unsigned long addr1;
	unsigned long addr2;
};

static void flush_tlb_range_ipi(void *info)
{
	struct flush_tlb_data *fd = info;

	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
}

void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long addr;
	u32 old_mmid;

	preempt_disable();
	if (cpu_has_mmid) {
		htw_stop();
		old_mmid = read_c0_memorymapid();
		write_c0_memorymapid(cpu_asid(0, mm));
		mtc0_tlbw_hazard();
		addr = round_down(start, PAGE_SIZE * 2);
		end = round_up(end, PAGE_SIZE * 2);
		do {
			ginvt_va_mmid(addr);
			sync_ginv();
			addr += PAGE_SIZE * 2;
		} while (addr < end);
		write_c0_memorymapid(old_mmid);
		instruction_hazard();
		htw_start();
	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
		struct flush_tlb_data fd = {
			.vma = vma,
			.addr1 = start,
			.addr2 = end,
		};

		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
		local_flush_tlb_range(vma, start, end);
	} else {
		unsigned int cpu;
		int exec = vma->vm_flags & VM_EXEC;

		for_each_online_cpu(cpu) {
			/*
			 * flush_cache_range() will only fully flush icache if
			 * the VMA is executable, otherwise we must invalidate
			 * ASID without it appearing to has_valid_asid() as if
			 * mm has been completely unused by that CPU.
			 */
			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
				set_cpu_context(cpu, mm, !exec);
		}
		local_flush_tlb_range(vma, start, end);
	}
	preempt_enable();
}

static void flush_tlb_kernel_range_ipi(void *info)
{
	struct flush_tlb_data *fd = info;

	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
}

void flush_tlb_kernel_range(unsigned long start, unsigned long end)
{
	struct flush_tlb_data fd = {
		.addr1 = start,
		.addr2 = end,
	};

	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
}

static void flush_tlb_page_ipi(void *info)
{
	struct flush_tlb_data *fd = info;

	local_flush_tlb_page(fd->vma, fd->addr1);
}

void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
	u32 old_mmid;

	preempt_disable();
	if (cpu_has_mmid) {
		htw_stop();
		old_mmid = read_c0_memorymapid();
		write_c0_memorymapid(cpu_asid(0, vma->vm_mm));
		mtc0_tlbw_hazard();
		ginvt_va_mmid(page);
		sync_ginv();
		write_c0_memorymapid(old_mmid);
		instruction_hazard();
		htw_start();
	} else if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
		   (current->mm != vma->vm_mm)) {
		struct flush_tlb_data fd = {
			.vma = vma,
			.addr1 = page,
		};

		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
		local_flush_tlb_page(vma, page);
	} else {
		unsigned int cpu;

		for_each_online_cpu(cpu) {
			/*
			 * flush_cache_page() only does partial flushes, so
			 * invalidate ASID without it appearing to
			 * has_valid_asid() as if mm has been completely unused
			 * by that CPU.
			 */
			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
				set_cpu_context(cpu, vma->vm_mm, 1);
		}
		local_flush_tlb_page(vma, page);
	}
	preempt_enable();
}

static void flush_tlb_one_ipi(void *info)
{
	unsigned long vaddr = (unsigned long) info;

	local_flush_tlb_one(vaddr);
}

void flush_tlb_one(unsigned long vaddr)
{
	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
}

EXPORT_SYMBOL(flush_tlb_page);
EXPORT_SYMBOL(flush_tlb_one);

#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST

static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd);

void tick_broadcast(const struct cpumask *mask)
{
	atomic_t *count;
	call_single_data_t *csd;
	int cpu;

	for_each_cpu(cpu, mask) {
		count = &per_cpu(tick_broadcast_count, cpu);
		csd = &per_cpu(tick_broadcast_csd, cpu);

		if (atomic_inc_return(count) == 1)
			smp_call_function_single_async(cpu, csd);
	}
}

static void tick_broadcast_callee(void *info)
{
	int cpu = smp_processor_id();
	tick_receive_broadcast();
	atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
}

static int __init tick_broadcast_init(void)
{
	call_single_data_t *csd;
	int cpu;

	for (cpu = 0; cpu < NR_CPUS; cpu++) {
		csd = &per_cpu(tick_broadcast_csd, cpu);
		csd->func = tick_broadcast_callee;
	}

	return 0;
}
early_initcall(tick_broadcast_init);

#endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */