1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
|
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H
#define _ASM_POWERPC_BOOK3S_32_PGTABLE_H
#include <asm-generic/pgtable-nopmd.h>
/*
* The "classic" 32-bit implementation of the PowerPC MMU uses a hash
* table containing PTEs, together with a set of 16 segment registers,
* to define the virtual to physical address mapping.
*
* We use the hash table as an extended TLB, i.e. a cache of currently
* active mappings. We maintain a two-level page table tree, much
* like that used by the i386, for the sake of the Linux memory
* management code. Low-level assembler code in hash_low_32.S
* (procedure hash_page) is responsible for extracting ptes from the
* tree and putting them into the hash table when necessary, and
* updating the accessed and modified bits in the page table tree.
*/
#define _PAGE_PRESENT 0x001 /* software: pte contains a translation */
#define _PAGE_HASHPTE 0x002 /* hash_page has made an HPTE for this pte */
#define _PAGE_USER 0x004 /* usermode access allowed */
#define _PAGE_GUARDED 0x008 /* G: prohibit speculative access */
#define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */
#define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */
#define _PAGE_WRITETHRU 0x040 /* W: cache write-through */
#define _PAGE_DIRTY 0x080 /* C: page changed */
#define _PAGE_ACCESSED 0x100 /* R: page referenced */
#define _PAGE_EXEC 0x200 /* software: exec allowed */
#define _PAGE_RW 0x400 /* software: user write access allowed */
#define _PAGE_SPECIAL 0x800 /* software: Special page */
#ifdef CONFIG_PTE_64BIT
/* We never clear the high word of the pte */
#define _PTE_NONE_MASK (0xffffffff00000000ULL | _PAGE_HASHPTE)
#else
#define _PTE_NONE_MASK _PAGE_HASHPTE
#endif
#define _PMD_PRESENT 0
#define _PMD_PRESENT_MASK (PAGE_MASK)
#define _PMD_BAD (~PAGE_MASK)
/* And here we include common definitions */
#define _PAGE_KERNEL_RO 0
#define _PAGE_KERNEL_ROX (_PAGE_EXEC)
#define _PAGE_KERNEL_RW (_PAGE_DIRTY | _PAGE_RW)
#define _PAGE_KERNEL_RWX (_PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC)
#define _PAGE_HPTEFLAGS _PAGE_HASHPTE
#ifndef __ASSEMBLY__
static inline bool pte_user(pte_t pte)
{
return pte_val(pte) & _PAGE_USER;
}
#endif /* __ASSEMBLY__ */
/*
* Location of the PFN in the PTE. Most 32-bit platforms use the same
* as _PAGE_SHIFT here (ie, naturally aligned).
* Platform who don't just pre-define the value so we don't override it here.
*/
#define PTE_RPN_SHIFT (PAGE_SHIFT)
/*
* The mask covered by the RPN must be a ULL on 32-bit platforms with
* 64-bit PTEs.
*/
#ifdef CONFIG_PTE_64BIT
#define PTE_RPN_MASK (~((1ULL << PTE_RPN_SHIFT) - 1))
#define MAX_POSSIBLE_PHYSMEM_BITS 36
#else
#define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1))
#define MAX_POSSIBLE_PHYSMEM_BITS 32
#endif
/*
* _PAGE_CHG_MASK masks of bits that are to be preserved across
* pgprot changes.
*/
#define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HASHPTE | _PAGE_DIRTY | \
_PAGE_ACCESSED | _PAGE_SPECIAL)
/*
* We define 2 sets of base prot bits, one for basic pages (ie,
* cacheable kernel and user pages) and one for non cacheable
* pages. We always set _PAGE_COHERENT when SMP is enabled or
* the processor might need it for DMA coherency.
*/
#define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED)
#define _PAGE_BASE (_PAGE_BASE_NC | _PAGE_COHERENT)
/*
* Permission masks used to generate the __P and __S table.
*
* Note:__pgprot is defined in arch/powerpc/include/asm/page.h
*
* Write permissions imply read permissions for now.
*/
#define PAGE_NONE __pgprot(_PAGE_BASE)
#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
/* Permission masks used for kernel mappings */
#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
#define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE)
#define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
_PAGE_NO_CACHE | _PAGE_GUARDED)
#define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
#define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
/*
* Protection used for kernel text. We want the debuggers to be able to
* set breakpoints anywhere, so don't write protect the kernel text
* on platforms where such control is possible.
*/
#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) ||\
defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
#define PAGE_KERNEL_TEXT PAGE_KERNEL_X
#else
#define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX
#endif
/* Make modules code happy. We don't set RO yet */
#define PAGE_KERNEL_EXEC PAGE_KERNEL_X
/* Advertise special mapping type for AGP */
#define PAGE_AGP (PAGE_KERNEL_NC)
#define HAVE_PAGE_AGP
#define PTE_INDEX_SIZE PTE_SHIFT
#define PMD_INDEX_SIZE 0
#define PUD_INDEX_SIZE 0
#define PGD_INDEX_SIZE (32 - PGDIR_SHIFT)
#define PMD_CACHE_INDEX PMD_INDEX_SIZE
#define PUD_CACHE_INDEX PUD_INDEX_SIZE
#ifndef __ASSEMBLY__
#define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE)
#define PMD_TABLE_SIZE 0
#define PUD_TABLE_SIZE 0
#define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
/* Bits to mask out from a PMD to get to the PTE page */
#define PMD_MASKED_BITS (PTE_TABLE_SIZE - 1)
#endif /* __ASSEMBLY__ */
#define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
#define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
/*
* The normal case is that PTEs are 32-bits and we have a 1-page
* 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
*
* For any >32-bit physical address platform, we can use the following
* two level page table layout where the pgdir is 8KB and the MS 13 bits
* are an index to the second level table. The combined pgdir/pmd first
* level has 2048 entries and the second level has 512 64-bit PTE entries.
* -Matt
*/
/* PGDIR_SHIFT determines what a top-level page table entry can map */
#define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
#ifndef __ASSEMBLY__
int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);
void unmap_kernel_page(unsigned long va);
#endif /* !__ASSEMBLY__ */
/*
* This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
* value (for now) on others, from where we can start layout kernel
* virtual space that goes below PKMAP and FIXMAP
*/
#include <asm/fixmap.h>
/*
* ioremap_bot starts at that address. Early ioremaps move down from there,
* until mem_init() at which point this becomes the top of the vmalloc
* and ioremap space
*/
#ifdef CONFIG_HIGHMEM
#define IOREMAP_TOP PKMAP_BASE
#else
#define IOREMAP_TOP FIXADDR_START
#endif
/* PPC32 shares vmalloc area with ioremap */
#define IOREMAP_START VMALLOC_START
#define IOREMAP_END VMALLOC_END
/*
* Just any arbitrary offset to the start of the vmalloc VM area: the
* current 16MB value just means that there will be a 64MB "hole" after the
* physical memory until the kernel virtual memory starts. That means that
* any out-of-bounds memory accesses will hopefully be caught.
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
* area for the same reason. ;)
*
* We no longer map larger than phys RAM with the BATs so we don't have
* to worry about the VMALLOC_OFFSET causing problems. We do have to worry
* about clashes between our early calls to ioremap() that start growing down
* from ioremap_base being run into the VM area allocations (growing upwards
* from VMALLOC_START). For this reason we have ioremap_bot to check when
* we actually run into our mappings setup in the early boot with the VM
* system. This really does become a problem for machines with good amounts
* of RAM. -- Cort
*/
#define VMALLOC_OFFSET (0x1000000) /* 16M */
#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
#ifdef CONFIG_KASAN_VMALLOC
#define VMALLOC_END ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT)
#else
#define VMALLOC_END ioremap_bot
#endif
#define MODULES_END ALIGN_DOWN(PAGE_OFFSET, SZ_256M)
#define MODULES_VADDR (MODULES_END - SZ_256M)
#ifndef __ASSEMBLY__
#include <linux/sched.h>
#include <linux/threads.h>
/* Bits to mask out from a PGD to get to the PUD page */
#define PGD_MASKED_BITS 0
#define pte_ERROR(e) \
pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
(unsigned long long)pte_val(e))
#define pgd_ERROR(e) \
pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
/*
* Bits in a linux-style PTE. These match the bits in the
* (hardware-defined) PowerPC PTE as closely as possible.
*/
#define pte_clear(mm, addr, ptep) \
do { pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0); } while (0)
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
#define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
static inline void pmd_clear(pmd_t *pmdp)
{
*pmdp = __pmd(0);
}
/*
* When flushing the tlb entry for a page, we also need to flush the hash
* table entry. flush_hash_pages is assembler (for speed) in hashtable.S.
*/
extern int flush_hash_pages(unsigned context, unsigned long va,
unsigned long pmdval, int count);
/* Add an HPTE to the hash table */
extern void add_hash_page(unsigned context, unsigned long va,
unsigned long pmdval);
/* Flush an entry from the TLB/hash table */
static inline void flush_hash_entry(struct mm_struct *mm, pte_t *ptep, unsigned long addr)
{
if (mmu_has_feature(MMU_FTR_HPTE_TABLE)) {
unsigned long ptephys = __pa(ptep) & PAGE_MASK;
flush_hash_pages(mm->context.id, addr, ptephys, 1);
}
}
/*
* PTE updates. This function is called whenever an existing
* valid PTE is updated. This does -not- include set_pte_at()
* which nowadays only sets a new PTE.
*
* Depending on the type of MMU, we may need to use atomic updates
* and the PTE may be either 32 or 64 bit wide. In the later case,
* when using atomic updates, only the low part of the PTE is
* accessed atomically.
*/
static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
unsigned long clr, unsigned long set, int huge)
{
pte_basic_t old;
unsigned long tmp;
__asm__ __volatile__(
#ifndef CONFIG_PTE_64BIT
"1: lwarx %0, 0, %3\n"
" andc %1, %0, %4\n"
#else
"1: lwarx %L0, 0, %3\n"
" lwz %0, -4(%3)\n"
" andc %1, %L0, %4\n"
#endif
" or %1, %1, %5\n"
" stwcx. %1, 0, %3\n"
" bne- 1b"
: "=&r" (old), "=&r" (tmp), "=m" (*p)
#ifndef CONFIG_PTE_64BIT
: "r" (p),
#else
: "b" ((unsigned long)(p) + 4),
#endif
"r" (clr), "r" (set), "m" (*p)
: "cc" );
return old;
}
/*
* 2.6 calls this without flushing the TLB entry; this is wrong
* for our hash-based implementation, we fix that up here.
*/
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
unsigned long old;
old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
if (old & _PAGE_HASHPTE)
flush_hash_entry(mm, ptep, addr);
return (old & _PAGE_ACCESSED) != 0;
}
#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep)
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
return __pte(pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0));
}
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
}
static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
pte_t *ptep, pte_t entry,
unsigned long address,
int psize)
{
unsigned long set = pte_val(entry) &
(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
pte_update(vma->vm_mm, address, ptep, 0, set, 0);
flush_tlb_page(vma, address);
}
#define __HAVE_ARCH_PTE_SAME
#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
#define pmd_page(pmd) \
pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
/*
* Encode and decode a swap entry.
* Note that the bits we use in a PTE for representing a swap entry
* must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used).
* -- paulus
*/
#define __swp_type(entry) ((entry).val & 0x1f)
#define __swp_offset(entry) ((entry).val >> 5)
#define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
/* Generic accessors to PTE bits */
static inline int pte_write(pte_t pte) { return !!(pte_val(pte) & _PAGE_RW);}
static inline int pte_read(pte_t pte) { return 1; }
static inline int pte_dirty(pte_t pte) { return !!(pte_val(pte) & _PAGE_DIRTY); }
static inline int pte_young(pte_t pte) { return !!(pte_val(pte) & _PAGE_ACCESSED); }
static inline int pte_special(pte_t pte) { return !!(pte_val(pte) & _PAGE_SPECIAL); }
static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
static inline bool pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
static inline int pte_present(pte_t pte)
{
return pte_val(pte) & _PAGE_PRESENT;
}
static inline bool pte_hw_valid(pte_t pte)
{
return pte_val(pte) & _PAGE_PRESENT;
}
static inline bool pte_hashpte(pte_t pte)
{
return !!(pte_val(pte) & _PAGE_HASHPTE);
}
static inline bool pte_ci(pte_t pte)
{
return !!(pte_val(pte) & _PAGE_NO_CACHE);
}
/*
* We only find page table entry in the last level
* Hence no need for other accessors
*/
#define pte_access_permitted pte_access_permitted
static inline bool pte_access_permitted(pte_t pte, bool write)
{
/*
* A read-only access is controlled by _PAGE_USER bit.
* We have _PAGE_READ set for WRITE and EXECUTE
*/
if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
return false;
if (write && !pte_write(pte))
return false;
return true;
}
/* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*
* Even if PTEs can be unsigned long long, a PFN is always an unsigned
* long for now.
*/
static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
{
return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
pgprot_val(pgprot));
}
static inline unsigned long pte_pfn(pte_t pte)
{
return pte_val(pte) >> PTE_RPN_SHIFT;
}
/* Generic modifiers for PTE bits */
static inline pte_t pte_wrprotect(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_RW);
}
static inline pte_t pte_exprotect(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_EXEC);
}
static inline pte_t pte_mkclean(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_DIRTY);
}
static inline pte_t pte_mkold(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
}
static inline pte_t pte_mkexec(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_EXEC);
}
static inline pte_t pte_mkpte(pte_t pte)
{
return pte;
}
static inline pte_t pte_mkwrite(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_RW);
}
static inline pte_t pte_mkdirty(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_DIRTY);
}
static inline pte_t pte_mkyoung(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_ACCESSED);
}
static inline pte_t pte_mkspecial(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_SPECIAL);
}
static inline pte_t pte_mkhuge(pte_t pte)
{
return pte;
}
static inline pte_t pte_mkprivileged(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_USER);
}
static inline pte_t pte_mkuser(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_USER);
}
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
}
/* This low level function performs the actual PTE insertion
* Setting the PTE depends on the MMU type and other factors. It's
* an horrible mess that I'm not going to try to clean up now but
* I'm keeping it in one place rather than spread around
*/
static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte, int percpu)
{
#if defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
/* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
* helper pte_update() which does an atomic update. We need to do that
* because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
* per-CPU PTE such as a kmap_atomic, we do a simple update preserving
* the hash bits instead (ie, same as the non-SMP case)
*/
if (percpu)
*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
| (pte_val(pte) & ~_PAGE_HASHPTE));
else
pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, pte_val(pte), 0);
#elif defined(CONFIG_PTE_64BIT)
/* Second case is 32-bit with 64-bit PTE. In this case, we
* can just store as long as we do the two halves in the right order
* with a barrier in between. This is possible because we take care,
* in the hash code, to pre-invalidate if the PTE was already hashed,
* which synchronizes us with any concurrent invalidation.
* In the percpu case, we also fallback to the simple update preserving
* the hash bits
*/
if (percpu) {
*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
| (pte_val(pte) & ~_PAGE_HASHPTE));
return;
}
if (pte_val(*ptep) & _PAGE_HASHPTE)
flush_hash_entry(mm, ptep, addr);
__asm__ __volatile__("\
stw%X0 %2,%0\n\
eieio\n\
stw%X1 %L2,%1"
: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
: "r" (pte) : "memory");
#else
/* Third case is 32-bit hash table in UP mode, we need to preserve
* the _PAGE_HASHPTE bit since we may not have invalidated the previous
* translation in the hash yet (done in a subsequent flush_tlb_xxx())
* and see we need to keep track that this PTE needs invalidating
*/
*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
| (pte_val(pte) & ~_PAGE_HASHPTE));
#endif
}
/*
* Macro to mark a page protection value as "uncacheable".
*/
#define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
_PAGE_WRITETHRU)
#define pgprot_noncached pgprot_noncached
static inline pgprot_t pgprot_noncached(pgprot_t prot)
{
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
_PAGE_NO_CACHE | _PAGE_GUARDED);
}
#define pgprot_noncached_wc pgprot_noncached_wc
static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
{
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
_PAGE_NO_CACHE);
}
#define pgprot_cached pgprot_cached
static inline pgprot_t pgprot_cached(pgprot_t prot)
{
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
_PAGE_COHERENT);
}
#define pgprot_cached_wthru pgprot_cached_wthru
static inline pgprot_t pgprot_cached_wthru(pgprot_t prot)
{
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
_PAGE_COHERENT | _PAGE_WRITETHRU);
}
#define pgprot_cached_noncoherent pgprot_cached_noncoherent
static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot)
{
return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL);
}
#define pgprot_writecombine pgprot_writecombine
static inline pgprot_t pgprot_writecombine(pgprot_t prot)
{
return pgprot_noncached_wc(prot);
}
#endif /* !__ASSEMBLY__ */
#endif /* _ASM_POWERPC_BOOK3S_32_PGTABLE_H */
|