1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
|
// SPDX-License-Identifier: GPL-2.0
/*
* Handling Page Tables through page fragments
*
*/
#include <linux/kernel.h>
#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/percpu.h>
#include <linux/hardirq.h>
#include <linux/hugetlb.h>
#include <asm/pgalloc.h>
#include <asm/tlbflush.h>
#include <asm/tlb.h>
void pte_frag_destroy(void *pte_frag)
{
int count;
struct ptdesc *ptdesc;
ptdesc = virt_to_ptdesc(pte_frag);
/* drop all the pending references */
count = ((unsigned long)pte_frag & ~PAGE_MASK) >> PTE_FRAG_SIZE_SHIFT;
/* We allow PTE_FRAG_NR fragments from a PTE page */
if (atomic_sub_and_test(PTE_FRAG_NR - count, &ptdesc->pt_frag_refcount)) {
pagetable_pte_dtor(ptdesc);
pagetable_free(ptdesc);
}
}
static pte_t *get_pte_from_cache(struct mm_struct *mm)
{
void *pte_frag, *ret;
if (PTE_FRAG_NR == 1)
return NULL;
spin_lock(&mm->page_table_lock);
ret = pte_frag_get(&mm->context);
if (ret) {
pte_frag = ret + PTE_FRAG_SIZE;
/*
* If we have taken up all the fragments mark PTE page NULL
*/
if (((unsigned long)pte_frag & ~PAGE_MASK) == 0)
pte_frag = NULL;
pte_frag_set(&mm->context, pte_frag);
}
spin_unlock(&mm->page_table_lock);
return (pte_t *)ret;
}
static pte_t *__alloc_for_ptecache(struct mm_struct *mm, int kernel)
{
void *ret = NULL;
struct ptdesc *ptdesc;
if (!kernel) {
ptdesc = pagetable_alloc(PGALLOC_GFP | __GFP_ACCOUNT, 0);
if (!ptdesc)
return NULL;
if (!pagetable_pte_ctor(ptdesc)) {
pagetable_free(ptdesc);
return NULL;
}
} else {
ptdesc = pagetable_alloc(PGALLOC_GFP, 0);
if (!ptdesc)
return NULL;
}
atomic_set(&ptdesc->pt_frag_refcount, 1);
ret = ptdesc_address(ptdesc);
/*
* if we support only one fragment just return the
* allocated page.
*/
if (PTE_FRAG_NR == 1)
return ret;
spin_lock(&mm->page_table_lock);
/*
* If we find ptdesc_page set, we return
* the allocated page with single fragment
* count.
*/
if (likely(!pte_frag_get(&mm->context))) {
atomic_set(&ptdesc->pt_frag_refcount, PTE_FRAG_NR);
pte_frag_set(&mm->context, ret + PTE_FRAG_SIZE);
}
spin_unlock(&mm->page_table_lock);
return (pte_t *)ret;
}
pte_t *pte_fragment_alloc(struct mm_struct *mm, int kernel)
{
pte_t *pte;
pte = get_pte_from_cache(mm);
if (pte)
return pte;
return __alloc_for_ptecache(mm, kernel);
}
static void pte_free_now(struct rcu_head *head)
{
struct ptdesc *ptdesc;
ptdesc = container_of(head, struct ptdesc, pt_rcu_head);
pagetable_pte_dtor(ptdesc);
pagetable_free(ptdesc);
}
void pte_fragment_free(unsigned long *table, int kernel)
{
struct ptdesc *ptdesc = virt_to_ptdesc(table);
if (pagetable_is_reserved(ptdesc))
return free_reserved_ptdesc(ptdesc);
BUG_ON(atomic_read(&ptdesc->pt_frag_refcount) <= 0);
if (atomic_dec_and_test(&ptdesc->pt_frag_refcount)) {
if (kernel)
pagetable_free(ptdesc);
else if (folio_test_clear_active(ptdesc_folio(ptdesc)))
call_rcu(&ptdesc->pt_rcu_head, pte_free_now);
else
pte_free_now(&ptdesc->pt_rcu_head);
}
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable)
{
struct folio *folio;
folio = virt_to_folio(pgtable);
folio_set_active(folio);
pte_fragment_free((unsigned long *)pgtable, 0);
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|