summaryrefslogtreecommitdiff
path: root/arch/sparc/net/bpf_jit_comp_64.c
blob: ec7d10da94f08eccce59bfde30158910de0900b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
#include <linux/moduleloader.h>
#include <linux/workqueue.h>
#include <linux/netdevice.h>
#include <linux/filter.h>
#include <linux/bpf.h>
#include <linux/cache.h>
#include <linux/if_vlan.h>

#include <asm/cacheflush.h>
#include <asm/ptrace.h>

#include "bpf_jit_64.h"

int bpf_jit_enable __read_mostly;

static inline bool is_simm13(unsigned int value)
{
	return value + 0x1000 < 0x2000;
}

static inline bool is_simm10(unsigned int value)
{
	return value + 0x200 < 0x400;
}

static inline bool is_simm5(unsigned int value)
{
	return value + 0x10 < 0x20;
}

static inline bool is_sethi(unsigned int value)
{
	return (value & ~0x3fffff) == 0;
}

static void bpf_flush_icache(void *start_, void *end_)
{
	/* Cheetah's I-cache is fully coherent.  */
	if (tlb_type == spitfire) {
		unsigned long start = (unsigned long) start_;
		unsigned long end = (unsigned long) end_;

		start &= ~7UL;
		end = (end + 7UL) & ~7UL;
		while (start < end) {
			flushi(start);
			start += 32;
		}
	}
}

#define SEEN_DATAREF 1 /* might call external helpers */
#define SEEN_XREG    2 /* ebx is used */
#define SEEN_MEM     4 /* use mem[] for temporary storage */

#define S13(X)		((X) & 0x1fff)
#define S5(X)		((X) & 0x1f)
#define IMMED		0x00002000
#define RD(X)		((X) << 25)
#define RS1(X)		((X) << 14)
#define RS2(X)		((X))
#define OP(X)		((X) << 30)
#define OP2(X)		((X) << 22)
#define OP3(X)		((X) << 19)
#define COND(X)		(((X) & 0xf) << 25)
#define CBCOND(X)	(((X) & 0x1f) << 25)
#define F1(X)		OP(X)
#define F2(X, Y)	(OP(X) | OP2(Y))
#define F3(X, Y)	(OP(X) | OP3(Y))
#define ASI(X)		(((X) & 0xff) << 5)

#define CONDN		COND(0x0)
#define CONDE		COND(0x1)
#define CONDLE		COND(0x2)
#define CONDL		COND(0x3)
#define CONDLEU		COND(0x4)
#define CONDCS		COND(0x5)
#define CONDNEG		COND(0x6)
#define CONDVC		COND(0x7)
#define CONDA		COND(0x8)
#define CONDNE		COND(0x9)
#define CONDG		COND(0xa)
#define CONDGE		COND(0xb)
#define CONDGU		COND(0xc)
#define CONDCC		COND(0xd)
#define CONDPOS		COND(0xe)
#define CONDVS		COND(0xf)

#define CONDGEU		CONDCC
#define CONDLU		CONDCS

#define WDISP22(X)	(((X) >> 2) & 0x3fffff)
#define WDISP19(X)	(((X) >> 2) & 0x7ffff)

/* The 10-bit branch displacement for CBCOND is split into two fields */
static u32 WDISP10(u32 off)
{
	u32 ret = ((off >> 2) & 0xff) << 5;

	ret |= ((off >> (2 + 8)) & 0x03) << 19;

	return ret;
}

#define CBCONDE		CBCOND(0x09)
#define CBCONDLE	CBCOND(0x0a)
#define CBCONDL		CBCOND(0x0b)
#define CBCONDLEU	CBCOND(0x0c)
#define CBCONDCS	CBCOND(0x0d)
#define CBCONDN		CBCOND(0x0e)
#define CBCONDVS	CBCOND(0x0f)
#define CBCONDNE	CBCOND(0x19)
#define CBCONDG		CBCOND(0x1a)
#define CBCONDGE	CBCOND(0x1b)
#define CBCONDGU	CBCOND(0x1c)
#define CBCONDCC	CBCOND(0x1d)
#define CBCONDPOS	CBCOND(0x1e)
#define CBCONDVC	CBCOND(0x1f)

#define CBCONDGEU	CBCONDCC
#define CBCONDLU	CBCONDCS

#define ANNUL		(1 << 29)
#define XCC		(1 << 21)

#define BRANCH		(F2(0, 1) | XCC)
#define CBCOND_OP	(F2(0, 3) | XCC)

#define BA		(BRANCH | CONDA)
#define BG		(BRANCH | CONDG)
#define BGU		(BRANCH | CONDGU)
#define BLEU		(BRANCH | CONDLEU)
#define BGE		(BRANCH | CONDGE)
#define BGEU		(BRANCH | CONDGEU)
#define BLU		(BRANCH | CONDLU)
#define BE		(BRANCH | CONDE)
#define BNE		(BRANCH | CONDNE)

#define SETHI(K, REG)	\
	(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
#define OR_LO(K, REG)	\
	(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))

#define ADD		F3(2, 0x00)
#define AND		F3(2, 0x01)
#define ANDCC		F3(2, 0x11)
#define OR		F3(2, 0x02)
#define XOR		F3(2, 0x03)
#define SUB		F3(2, 0x04)
#define SUBCC		F3(2, 0x14)
#define MUL		F3(2, 0x0a)
#define MULX		F3(2, 0x09)
#define UDIVX		F3(2, 0x0d)
#define DIV		F3(2, 0x0e)
#define SLL		F3(2, 0x25)
#define SLLX		(F3(2, 0x25)|(1<<12))
#define SRA		F3(2, 0x27)
#define SRAX		(F3(2, 0x27)|(1<<12))
#define SRL		F3(2, 0x26)
#define SRLX		(F3(2, 0x26)|(1<<12))
#define JMPL		F3(2, 0x38)
#define SAVE		F3(2, 0x3c)
#define RESTORE		F3(2, 0x3d)
#define CALL		F1(1)
#define BR		F2(0, 0x01)
#define RD_Y		F3(2, 0x28)
#define WR_Y		F3(2, 0x30)

#define LD32		F3(3, 0x00)
#define LD8		F3(3, 0x01)
#define LD16		F3(3, 0x02)
#define LD64		F3(3, 0x0b)
#define LD64A		F3(3, 0x1b)
#define ST8		F3(3, 0x05)
#define ST16		F3(3, 0x06)
#define ST32		F3(3, 0x04)
#define ST64		F3(3, 0x0e)

#define CAS		F3(3, 0x3c)
#define CASX		F3(3, 0x3e)

#define LDPTR		LD64
#define BASE_STACKFRAME	176

#define LD32I		(LD32 | IMMED)
#define LD8I		(LD8 | IMMED)
#define LD16I		(LD16 | IMMED)
#define LD64I		(LD64 | IMMED)
#define LDPTRI		(LDPTR | IMMED)
#define ST32I		(ST32 | IMMED)

struct jit_ctx {
	struct bpf_prog		*prog;
	unsigned int		*offset;
	int			idx;
	int			epilogue_offset;
	bool 			tmp_1_used;
	bool 			tmp_2_used;
	bool 			tmp_3_used;
	bool			saw_ld_abs_ind;
	bool			saw_frame_pointer;
	bool			saw_call;
	bool			saw_tail_call;
	u32			*image;
};

#define TMP_REG_1	(MAX_BPF_JIT_REG + 0)
#define TMP_REG_2	(MAX_BPF_JIT_REG + 1)
#define SKB_HLEN_REG	(MAX_BPF_JIT_REG + 2)
#define SKB_DATA_REG	(MAX_BPF_JIT_REG + 3)
#define TMP_REG_3	(MAX_BPF_JIT_REG + 4)

/* Map BPF registers to SPARC registers */
static const int bpf2sparc[] = {
	/* return value from in-kernel function, and exit value from eBPF */
	[BPF_REG_0] = O5,

	/* arguments from eBPF program to in-kernel function */
	[BPF_REG_1] = O0,
	[BPF_REG_2] = O1,
	[BPF_REG_3] = O2,
	[BPF_REG_4] = O3,
	[BPF_REG_5] = O4,

	/* callee saved registers that in-kernel function will preserve */
	[BPF_REG_6] = L0,
	[BPF_REG_7] = L1,
	[BPF_REG_8] = L2,
	[BPF_REG_9] = L3,

	/* read-only frame pointer to access stack */
	[BPF_REG_FP] = L6,

	[BPF_REG_AX] = G7,

	/* temporary register for internal BPF JIT */
	[TMP_REG_1] = G1,
	[TMP_REG_2] = G2,
	[TMP_REG_3] = G3,

	[SKB_HLEN_REG] = L4,
	[SKB_DATA_REG] = L5,
};

static void emit(const u32 insn, struct jit_ctx *ctx)
{
	if (ctx->image != NULL)
		ctx->image[ctx->idx] = insn;

	ctx->idx++;
}

static void emit_call(u32 *func, struct jit_ctx *ctx)
{
	if (ctx->image != NULL) {
		void *here = &ctx->image[ctx->idx];
		unsigned int off;

		off = (void *)func - here;
		ctx->image[ctx->idx] = CALL | ((off >> 2) & 0x3fffffff);
	}
	ctx->idx++;
}

static void emit_nop(struct jit_ctx *ctx)
{
	emit(SETHI(0, G0), ctx);
}

static void emit_reg_move(u32 from, u32 to, struct jit_ctx *ctx)
{
	emit(OR | RS1(G0) | RS2(from) | RD(to), ctx);
}

/* Emit 32-bit constant, zero extended. */
static void emit_set_const(s32 K, u32 reg, struct jit_ctx *ctx)
{
	emit(SETHI(K, reg), ctx);
	emit(OR_LO(K, reg), ctx);
}

/* Emit 32-bit constant, sign extended. */
static void emit_set_const_sext(s32 K, u32 reg, struct jit_ctx *ctx)
{
	if (K >= 0) {
		emit(SETHI(K, reg), ctx);
		emit(OR_LO(K, reg), ctx);
	} else {
		u32 hbits = ~(u32) K;
		u32 lbits = -0x400 | (u32) K;

		emit(SETHI(hbits, reg), ctx);
		emit(XOR | IMMED | RS1(reg) | S13(lbits) | RD(reg), ctx);
	}
}

static void emit_alu(u32 opcode, u32 src, u32 dst, struct jit_ctx *ctx)
{
	emit(opcode | RS1(dst) | RS2(src) | RD(dst), ctx);
}

static void emit_alu3(u32 opcode, u32 a, u32 b, u32 c, struct jit_ctx *ctx)
{
	emit(opcode | RS1(a) | RS2(b) | RD(c), ctx);
}

static void emit_alu_K(unsigned int opcode, unsigned int dst, unsigned int imm,
		       struct jit_ctx *ctx)
{
	bool small_immed = is_simm13(imm);
	unsigned int insn = opcode;

	insn |= RS1(dst) | RD(dst);
	if (small_immed) {
		emit(insn | IMMED | S13(imm), ctx);
	} else {
		unsigned int tmp = bpf2sparc[TMP_REG_1];

		ctx->tmp_1_used = true;

		emit_set_const_sext(imm, tmp, ctx);
		emit(insn | RS2(tmp), ctx);
	}
}

static void emit_alu3_K(unsigned int opcode, unsigned int src, unsigned int imm,
			unsigned int dst, struct jit_ctx *ctx)
{
	bool small_immed = is_simm13(imm);
	unsigned int insn = opcode;

	insn |= RS1(src) | RD(dst);
	if (small_immed) {
		emit(insn | IMMED | S13(imm), ctx);
	} else {
		unsigned int tmp = bpf2sparc[TMP_REG_1];

		ctx->tmp_1_used = true;

		emit_set_const_sext(imm, tmp, ctx);
		emit(insn | RS2(tmp), ctx);
	}
}

static void emit_loadimm32(s32 K, unsigned int dest, struct jit_ctx *ctx)
{
	if (K >= 0 && is_simm13(K)) {
		/* or %g0, K, DEST */
		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
	} else {
		emit_set_const(K, dest, ctx);
	}
}

static void emit_loadimm(s32 K, unsigned int dest, struct jit_ctx *ctx)
{
	if (is_simm13(K)) {
		/* or %g0, K, DEST */
		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
	} else {
		emit_set_const(K, dest, ctx);
	}
}

static void emit_loadimm_sext(s32 K, unsigned int dest, struct jit_ctx *ctx)
{
	if (is_simm13(K)) {
		/* or %g0, K, DEST */
		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
	} else {
		emit_set_const_sext(K, dest, ctx);
	}
}

static void analyze_64bit_constant(u32 high_bits, u32 low_bits,
				   int *hbsp, int *lbsp, int *abbasp)
{
	int lowest_bit_set, highest_bit_set, all_bits_between_are_set;
	int i;

	lowest_bit_set = highest_bit_set = -1;
	i = 0;
	do {
		if ((lowest_bit_set == -1) && ((low_bits >> i) & 1))
			lowest_bit_set = i;
		if ((highest_bit_set == -1) && ((high_bits >> (32 - i - 1)) & 1))
			highest_bit_set = (64 - i - 1);
	}  while (++i < 32 && (highest_bit_set == -1 ||
			       lowest_bit_set == -1));
	if (i == 32) {
		i = 0;
		do {
			if (lowest_bit_set == -1 && ((high_bits >> i) & 1))
				lowest_bit_set = i + 32;
			if (highest_bit_set == -1 &&
			    ((low_bits >> (32 - i - 1)) & 1))
				highest_bit_set = 32 - i - 1;
		} while (++i < 32 && (highest_bit_set == -1 ||
				      lowest_bit_set == -1));
	}

	all_bits_between_are_set = 1;
	for (i = lowest_bit_set; i <= highest_bit_set; i++) {
		if (i < 32) {
			if ((low_bits & (1 << i)) != 0)
				continue;
		} else {
			if ((high_bits & (1 << (i - 32))) != 0)
				continue;
		}
		all_bits_between_are_set = 0;
		break;
	}
	*hbsp = highest_bit_set;
	*lbsp = lowest_bit_set;
	*abbasp = all_bits_between_are_set;
}

static unsigned long create_simple_focus_bits(unsigned long high_bits,
					      unsigned long low_bits,
					      int lowest_bit_set, int shift)
{
	long hi, lo;

	if (lowest_bit_set < 32) {
		lo = (low_bits >> lowest_bit_set) << shift;
		hi = ((high_bits << (32 - lowest_bit_set)) << shift);
	} else {
		lo = 0;
		hi = ((high_bits >> (lowest_bit_set - 32)) << shift);
	}
	return hi | lo;
}

static bool const64_is_2insns(unsigned long high_bits,
			      unsigned long low_bits)
{
	int highest_bit_set, lowest_bit_set, all_bits_between_are_set;

	if (high_bits == 0 || high_bits == 0xffffffff)
		return true;

	analyze_64bit_constant(high_bits, low_bits,
			       &highest_bit_set, &lowest_bit_set,
			       &all_bits_between_are_set);

	if ((highest_bit_set == 63 || lowest_bit_set == 0) &&
	    all_bits_between_are_set != 0)
		return true;

	if (highest_bit_set - lowest_bit_set < 21)
		return true;

	return false;
}

static void sparc_emit_set_const64_quick2(unsigned long high_bits,
					  unsigned long low_imm,
					  unsigned int dest,
					  int shift_count, struct jit_ctx *ctx)
{
	emit_loadimm32(high_bits, dest, ctx);

	/* Now shift it up into place.  */
	emit_alu_K(SLLX, dest, shift_count, ctx);

	/* If there is a low immediate part piece, finish up by
	 * putting that in as well.
	 */
	if (low_imm != 0)
		emit(OR | IMMED | RS1(dest) | S13(low_imm) | RD(dest), ctx);
}

static void emit_loadimm64(u64 K, unsigned int dest, struct jit_ctx *ctx)
{
	int all_bits_between_are_set, lowest_bit_set, highest_bit_set;
	unsigned int tmp = bpf2sparc[TMP_REG_1];
	u32 low_bits = (K & 0xffffffff);
	u32 high_bits = (K >> 32);

	/* These two tests also take care of all of the one
	 * instruction cases.
	 */
	if (high_bits == 0xffffffff && (low_bits & 0x80000000))
		return emit_loadimm_sext(K, dest, ctx);
	if (high_bits == 0x00000000)
		return emit_loadimm32(K, dest, ctx);

	analyze_64bit_constant(high_bits, low_bits, &highest_bit_set,
			       &lowest_bit_set, &all_bits_between_are_set);

	/* 1) mov	-1, %reg
	 *    sllx	%reg, shift, %reg
	 * 2) mov	-1, %reg
	 *    srlx	%reg, shift, %reg
	 * 3) mov	some_small_const, %reg
	 *    sllx	%reg, shift, %reg
	 */
	if (((highest_bit_set == 63 || lowest_bit_set == 0) &&
	     all_bits_between_are_set != 0) ||
	    ((highest_bit_set - lowest_bit_set) < 12)) {
		int shift = lowest_bit_set;
		long the_const = -1;

		if ((highest_bit_set != 63 && lowest_bit_set != 0) ||
		    all_bits_between_are_set == 0) {
			the_const =
				create_simple_focus_bits(high_bits, low_bits,
							 lowest_bit_set, 0);
		} else if (lowest_bit_set == 0)
			shift = -(63 - highest_bit_set);

		emit(OR | IMMED | RS1(G0) | S13(the_const) | RD(dest), ctx);
		if (shift > 0)
			emit_alu_K(SLLX, dest, shift, ctx);
		else if (shift < 0)
			emit_alu_K(SRLX, dest, -shift, ctx);

		return;
	}

	/* Now a range of 22 or less bits set somewhere.
	 * 1) sethi	%hi(focus_bits), %reg
	 *    sllx	%reg, shift, %reg
	 * 2) sethi	%hi(focus_bits), %reg
	 *    srlx	%reg, shift, %reg
	 */
	if ((highest_bit_set - lowest_bit_set) < 21) {
		unsigned long focus_bits =
			create_simple_focus_bits(high_bits, low_bits,
						 lowest_bit_set, 10);

		emit(SETHI(focus_bits, dest), ctx);

		/* If lowest_bit_set == 10 then a sethi alone could
		 * have done it.
		 */
		if (lowest_bit_set < 10)
			emit_alu_K(SRLX, dest, 10 - lowest_bit_set, ctx);
		else if (lowest_bit_set > 10)
			emit_alu_K(SLLX, dest, lowest_bit_set - 10, ctx);
		return;
	}

	/* Ok, now 3 instruction sequences.  */
	if (low_bits == 0) {
		emit_loadimm32(high_bits, dest, ctx);
		emit_alu_K(SLLX, dest, 32, ctx);
		return;
	}

	/* We may be able to do something quick
	 * when the constant is negated, so try that.
	 */
	if (const64_is_2insns((~high_bits) & 0xffffffff,
			      (~low_bits) & 0xfffffc00)) {
		/* NOTE: The trailing bits get XOR'd so we need the
		 * non-negated bits, not the negated ones.
		 */
		unsigned long trailing_bits = low_bits & 0x3ff;

		if ((((~high_bits) & 0xffffffff) == 0 &&
		     ((~low_bits) & 0x80000000) == 0) ||
		    (((~high_bits) & 0xffffffff) == 0xffffffff &&
		     ((~low_bits) & 0x80000000) != 0)) {
			unsigned long fast_int = (~low_bits & 0xffffffff);

			if ((is_sethi(fast_int) &&
			     (~high_bits & 0xffffffff) == 0)) {
				emit(SETHI(fast_int, dest), ctx);
			} else if (is_simm13(fast_int)) {
				emit(OR | IMMED | RS1(G0) | S13(fast_int) | RD(dest), ctx);
			} else {
				emit_loadimm64(fast_int, dest, ctx);
			}
		} else {
			u64 n = ((~low_bits) & 0xfffffc00) |
				(((unsigned long)((~high_bits) & 0xffffffff))<<32);
			emit_loadimm64(n, dest, ctx);
		}

		low_bits = -0x400 | trailing_bits;

		emit(XOR | IMMED | RS1(dest) | S13(low_bits) | RD(dest), ctx);
		return;
	}

	/* 1) sethi	%hi(xxx), %reg
	 *    or	%reg, %lo(xxx), %reg
	 *    sllx	%reg, yyy, %reg
	 */
	if ((highest_bit_set - lowest_bit_set) < 32) {
		unsigned long focus_bits =
			create_simple_focus_bits(high_bits, low_bits,
						 lowest_bit_set, 0);

		/* So what we know is that the set bits straddle the
		 * middle of the 64-bit word.
		 */
		sparc_emit_set_const64_quick2(focus_bits, 0, dest,
					      lowest_bit_set, ctx);
		return;
	}

	/* 1) sethi	%hi(high_bits), %reg
	 *    or	%reg, %lo(high_bits), %reg
	 *    sllx	%reg, 32, %reg
	 *    or	%reg, low_bits, %reg
	 */
	if (is_simm13(low_bits) && ((int)low_bits > 0)) {
		sparc_emit_set_const64_quick2(high_bits, low_bits,
					      dest, 32, ctx);
		return;
	}

	/* Oh well, we tried... Do a full 64-bit decomposition.  */
	ctx->tmp_1_used = true;

	emit_loadimm32(high_bits, tmp, ctx);
	emit_loadimm32(low_bits, dest, ctx);
	emit_alu_K(SLLX, tmp, 32, ctx);
	emit(OR | RS1(dest) | RS2(tmp) | RD(dest), ctx);
}

static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int to_idx,
			struct jit_ctx *ctx)
{
	unsigned int off = to_idx - from_idx;

	if (br_opc & XCC)
		emit(br_opc | WDISP19(off << 2), ctx);
	else
		emit(br_opc | WDISP22(off << 2), ctx);
}

static void emit_cbcond(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
			const u8 dst, const u8 src, struct jit_ctx *ctx)
{
	unsigned int off = to_idx - from_idx;

	emit(cb_opc | WDISP10(off << 2) | RS1(dst) | RS2(src), ctx);
}

static void emit_cbcondi(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
			 const u8 dst, s32 imm, struct jit_ctx *ctx)
{
	unsigned int off = to_idx - from_idx;

	emit(cb_opc | IMMED | WDISP10(off << 2) | RS1(dst) | S5(imm), ctx);
}

#define emit_read_y(REG, CTX)	emit(RD_Y | RD(REG), CTX)
#define emit_write_y(REG, CTX)	emit(WR_Y | IMMED | RS1(REG) | S13(0), CTX)

#define emit_cmp(R1, R2, CTX)				\
	emit(SUBCC | RS1(R1) | RS2(R2) | RD(G0), CTX)

#define emit_cmpi(R1, IMM, CTX)				\
	emit(SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)

#define emit_btst(R1, R2, CTX)				\
	emit(ANDCC | RS1(R1) | RS2(R2) | RD(G0), CTX)

#define emit_btsti(R1, IMM, CTX)			\
	emit(ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)

static int emit_compare_and_branch(const u8 code, const u8 dst, u8 src,
				   const s32 imm, bool is_imm, int branch_dst,
				   struct jit_ctx *ctx)
{
	bool use_cbcond = (sparc64_elf_hwcap & AV_SPARC_CBCOND) != 0;
	const u8 tmp = bpf2sparc[TMP_REG_1];

	branch_dst = ctx->offset[branch_dst];

	if (!is_simm10(branch_dst - ctx->idx) ||
	    BPF_OP(code) == BPF_JSET)
		use_cbcond = false;

	if (is_imm) {
		bool fits = true;

		if (use_cbcond) {
			if (!is_simm5(imm))
				fits = false;
		} else if (!is_simm13(imm)) {
			fits = false;
		}
		if (!fits) {
			ctx->tmp_1_used = true;
			emit_loadimm_sext(imm, tmp, ctx);
			src = tmp;
			is_imm = false;
		}
	}

	if (!use_cbcond) {
		u32 br_opcode;

		if (BPF_OP(code) == BPF_JSET) {
			if (is_imm)
				emit_btsti(dst, imm, ctx);
			else
				emit_btst(dst, src, ctx);
		} else {
			if (is_imm)
				emit_cmpi(dst, imm, ctx);
			else
				emit_cmp(dst, src, ctx);
		}
		switch (BPF_OP(code)) {
		case BPF_JEQ:
			br_opcode = BE;
			break;
		case BPF_JGT:
			br_opcode = BGU;
			break;
		case BPF_JGE:
			br_opcode = BGEU;
			break;
		case BPF_JSET:
		case BPF_JNE:
			br_opcode = BNE;
			break;
		case BPF_JSGT:
			br_opcode = BG;
			break;
		case BPF_JSGE:
			br_opcode = BGE;
			break;
		default:
			/* Make sure we dont leak kernel information to the
			 * user.
			 */
			return -EFAULT;
		}
		emit_branch(br_opcode, ctx->idx, branch_dst, ctx);
		emit_nop(ctx);
	} else {
		u32 cbcond_opcode;

		switch (BPF_OP(code)) {
		case BPF_JEQ:
			cbcond_opcode = CBCONDE;
			break;
		case BPF_JGT:
			cbcond_opcode = CBCONDGU;
			break;
		case BPF_JGE:
			cbcond_opcode = CBCONDGEU;
			break;
		case BPF_JNE:
			cbcond_opcode = CBCONDNE;
			break;
		case BPF_JSGT:
			cbcond_opcode = CBCONDG;
			break;
		case BPF_JSGE:
			cbcond_opcode = CBCONDGE;
			break;
		default:
			/* Make sure we dont leak kernel information to the
			 * user.
			 */
			return -EFAULT;
		}
		cbcond_opcode |= CBCOND_OP;
		if (is_imm)
			emit_cbcondi(cbcond_opcode, ctx->idx, branch_dst,
				     dst, imm, ctx);
		else
			emit_cbcond(cbcond_opcode, ctx->idx, branch_dst,
				    dst, src, ctx);
	}
	return 0;
}

static void load_skb_regs(struct jit_ctx *ctx, u8 r_skb)
{
	const u8 r_headlen = bpf2sparc[SKB_HLEN_REG];
	const u8 r_data = bpf2sparc[SKB_DATA_REG];
	const u8 r_tmp = bpf2sparc[TMP_REG_1];
	unsigned int off;

	off = offsetof(struct sk_buff, len);
	emit(LD32I | RS1(r_skb) | S13(off) | RD(r_headlen), ctx);

	off = offsetof(struct sk_buff, data_len);
	emit(LD32I | RS1(r_skb) | S13(off) | RD(r_tmp), ctx);

	emit(SUB | RS1(r_headlen) | RS2(r_tmp) | RD(r_headlen), ctx);

	off = offsetof(struct sk_buff, data);
	emit(LDPTRI | RS1(r_skb) | S13(off) | RD(r_data), ctx);
}

/* Just skip the save instruction and the ctx register move.  */
#define BPF_TAILCALL_PROLOGUE_SKIP	16
#define BPF_TAILCALL_CNT_SP_OFF		(STACK_BIAS + 128)

static void build_prologue(struct jit_ctx *ctx)
{
	s32 stack_needed = BASE_STACKFRAME;

	if (ctx->saw_frame_pointer || ctx->saw_tail_call)
		stack_needed += MAX_BPF_STACK;

	if (ctx->saw_tail_call)
		stack_needed += 8;

	/* save %sp, -176, %sp */
	emit(SAVE | IMMED | RS1(SP) | S13(-stack_needed) | RD(SP), ctx);

	/* tail_call_cnt = 0 */
	if (ctx->saw_tail_call) {
		u32 off = BPF_TAILCALL_CNT_SP_OFF;

		emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(G0), ctx);
	} else {
		emit_nop(ctx);
	}
	if (ctx->saw_frame_pointer) {
		const u8 vfp = bpf2sparc[BPF_REG_FP];

		emit(ADD | IMMED | RS1(FP) | S13(STACK_BIAS) | RD(vfp), ctx);
	}

	emit_reg_move(I0, O0, ctx);
	/* If you add anything here, adjust BPF_TAILCALL_PROLOGUE_SKIP above. */

	if (ctx->saw_ld_abs_ind)
		load_skb_regs(ctx, bpf2sparc[BPF_REG_1]);
}

static void build_epilogue(struct jit_ctx *ctx)
{
	ctx->epilogue_offset = ctx->idx;

	/* ret (jmpl %i7 + 8, %g0) */
	emit(JMPL | IMMED | RS1(I7) | S13(8) | RD(G0), ctx);

	/* restore %i5, %g0, %o0 */
	emit(RESTORE | RS1(bpf2sparc[BPF_REG_0]) | RS2(G0) | RD(O0), ctx);
}

static void emit_tail_call(struct jit_ctx *ctx)
{
	const u8 bpf_array = bpf2sparc[BPF_REG_2];
	const u8 bpf_index = bpf2sparc[BPF_REG_3];
	const u8 tmp = bpf2sparc[TMP_REG_1];
	u32 off;

	ctx->saw_tail_call = true;

	off = offsetof(struct bpf_array, map.max_entries);
	emit(LD32 | IMMED | RS1(bpf_array) | S13(off) | RD(tmp), ctx);
	emit_cmp(bpf_index, tmp, ctx);
#define OFFSET1 17
	emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET1, ctx);
	emit_nop(ctx);

	off = BPF_TAILCALL_CNT_SP_OFF;
	emit(LD32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
	emit_cmpi(tmp, MAX_TAIL_CALL_CNT, ctx);
#define OFFSET2 13
	emit_branch(BGU, ctx->idx, ctx->idx + OFFSET2, ctx);
	emit_nop(ctx);

	emit_alu_K(ADD, tmp, 1, ctx);
	off = BPF_TAILCALL_CNT_SP_OFF;
	emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);

	emit_alu3_K(SLL, bpf_index, 3, tmp, ctx);
	emit_alu(ADD, bpf_array, tmp, ctx);
	off = offsetof(struct bpf_array, ptrs);
	emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);

	emit_cmpi(tmp, 0, ctx);
#define OFFSET3 5
	emit_branch(BE, ctx->idx, ctx->idx + OFFSET3, ctx);
	emit_nop(ctx);

	off = offsetof(struct bpf_prog, bpf_func);
	emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);

	off = BPF_TAILCALL_PROLOGUE_SKIP;
	emit(JMPL | IMMED | RS1(tmp) | S13(off) | RD(G0), ctx);
	emit_nop(ctx);
}

static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
{
	const u8 code = insn->code;
	const u8 dst = bpf2sparc[insn->dst_reg];
	const u8 src = bpf2sparc[insn->src_reg];
	const int i = insn - ctx->prog->insnsi;
	const s16 off = insn->off;
	const s32 imm = insn->imm;
	u32 *func;

	if (insn->src_reg == BPF_REG_FP)
		ctx->saw_frame_pointer = true;

	switch (code) {
	/* dst = src */
	case BPF_ALU | BPF_MOV | BPF_X:
		emit_alu3_K(SRL, src, 0, dst, ctx);
		break;
	case BPF_ALU64 | BPF_MOV | BPF_X:
		emit_reg_move(src, dst, ctx);
		break;
	/* dst = dst OP src */
	case BPF_ALU | BPF_ADD | BPF_X:
	case BPF_ALU64 | BPF_ADD | BPF_X:
		emit_alu(ADD, src, dst, ctx);
		goto do_alu32_trunc;
	case BPF_ALU | BPF_SUB | BPF_X:
	case BPF_ALU64 | BPF_SUB | BPF_X:
		emit_alu(SUB, src, dst, ctx);
		goto do_alu32_trunc;
	case BPF_ALU | BPF_AND | BPF_X:
	case BPF_ALU64 | BPF_AND | BPF_X:
		emit_alu(AND, src, dst, ctx);
		goto do_alu32_trunc;
	case BPF_ALU | BPF_OR | BPF_X:
	case BPF_ALU64 | BPF_OR | BPF_X:
		emit_alu(OR, src, dst, ctx);
		goto do_alu32_trunc;
	case BPF_ALU | BPF_XOR | BPF_X:
	case BPF_ALU64 | BPF_XOR | BPF_X:
		emit_alu(XOR, src, dst, ctx);
		goto do_alu32_trunc;
	case BPF_ALU | BPF_MUL | BPF_X:
		emit_alu(MUL, src, dst, ctx);
		goto do_alu32_trunc;
	case BPF_ALU64 | BPF_MUL | BPF_X:
		emit_alu(MULX, src, dst, ctx);
		break;
	case BPF_ALU | BPF_DIV | BPF_X:
		emit_cmp(src, G0, ctx);
		emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
		emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);

		emit_write_y(G0, ctx);
		emit_alu(DIV, src, dst, ctx);
		break;

	case BPF_ALU64 | BPF_DIV | BPF_X:
		emit_cmp(src, G0, ctx);
		emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
		emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);

		emit_alu(UDIVX, src, dst, ctx);
		break;

	case BPF_ALU | BPF_MOD | BPF_X: {
		const u8 tmp = bpf2sparc[TMP_REG_1];

		ctx->tmp_1_used = true;

		emit_cmp(src, G0, ctx);
		emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
		emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);

		emit_write_y(G0, ctx);
		emit_alu3(DIV, dst, src, tmp, ctx);
		emit_alu3(MULX, tmp, src, tmp, ctx);
		emit_alu3(SUB, dst, tmp, dst, ctx);
		goto do_alu32_trunc;
	}
	case BPF_ALU64 | BPF_MOD | BPF_X: {
		const u8 tmp = bpf2sparc[TMP_REG_1];

		ctx->tmp_1_used = true;

		emit_cmp(src, G0, ctx);
		emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
		emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);

		emit_alu3(UDIVX, dst, src, tmp, ctx);
		emit_alu3(MULX, tmp, src, tmp, ctx);
		emit_alu3(SUB, dst, tmp, dst, ctx);
		break;
	}
	case BPF_ALU | BPF_LSH | BPF_X:
		emit_alu(SLL, src, dst, ctx);
		goto do_alu32_trunc;
	case BPF_ALU64 | BPF_LSH | BPF_X:
		emit_alu(SLLX, src, dst, ctx);
		break;
	case BPF_ALU | BPF_RSH | BPF_X:
		emit_alu(SRL, src, dst, ctx);
		break;
	case BPF_ALU64 | BPF_RSH | BPF_X:
		emit_alu(SRLX, src, dst, ctx);
		break;
	case BPF_ALU | BPF_ARSH | BPF_X:
		emit_alu(SRA, src, dst, ctx);
		goto do_alu32_trunc;
	case BPF_ALU64 | BPF_ARSH | BPF_X:
		emit_alu(SRAX, src, dst, ctx);
		break;

	/* dst = -dst */
	case BPF_ALU | BPF_NEG:
	case BPF_ALU64 | BPF_NEG:
		emit(SUB | RS1(0) | RS2(dst) | RD(dst), ctx);
		goto do_alu32_trunc;

	case BPF_ALU | BPF_END | BPF_FROM_BE:
		switch (imm) {
		case 16:
			emit_alu_K(SLL, dst, 16, ctx);
			emit_alu_K(SRL, dst, 16, ctx);
			break;
		case 32:
			emit_alu_K(SRL, dst, 0, ctx);
			break;
		case 64:
			/* nop */
			break;

		}
		break;

	/* dst = BSWAP##imm(dst) */
	case BPF_ALU | BPF_END | BPF_FROM_LE: {
		const u8 tmp = bpf2sparc[TMP_REG_1];
		const u8 tmp2 = bpf2sparc[TMP_REG_2];

		ctx->tmp_1_used = true;
		switch (imm) {
		case 16:
			emit_alu3_K(AND, dst, 0xff, tmp, ctx);
			emit_alu3_K(SRL, dst, 8, dst, ctx);
			emit_alu3_K(AND, dst, 0xff, dst, ctx);
			emit_alu3_K(SLL, tmp, 8, tmp, ctx);
			emit_alu(OR, tmp, dst, ctx);
			break;

		case 32:
			ctx->tmp_2_used = true;
			emit_alu3_K(SRL, dst, 24, tmp, ctx);	/* tmp  = dst >> 24 */
			emit_alu3_K(SRL, dst, 16, tmp2, ctx);	/* tmp2 = dst >> 16 */
			emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
			emit_alu3_K(SLL, tmp2, 8, tmp2, ctx);	/* tmp2 = tmp2 << 8 */
			emit_alu(OR, tmp2, tmp, ctx);		/* tmp  = tmp | tmp2 */
			emit_alu3_K(SRL, dst, 8, tmp2, ctx);	/* tmp2 = dst >> 8 */
			emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
			emit_alu3_K(SLL, tmp2, 16, tmp2, ctx);	/* tmp2 = tmp2 << 16 */
			emit_alu(OR, tmp2, tmp, ctx);		/* tmp  = tmp | tmp2 */
			emit_alu3_K(AND, dst, 0xff, dst, ctx);	/* dst	= dst & 0xff */
			emit_alu3_K(SLL, dst, 24, dst, ctx);	/* dst  = dst << 24 */
			emit_alu(OR, tmp, dst, ctx);		/* dst  = dst | tmp */
			break;

		case 64:
			emit_alu3_K(ADD, SP, STACK_BIAS + 128, tmp, ctx);
			emit(ST64 | RS1(tmp) | RS2(G0) | RD(dst), ctx);
			emit(LD64A | ASI(ASI_PL) | RS1(tmp) | RS2(G0) | RD(dst), ctx);
			break;
		}
		break;
	}
	/* dst = imm */
	case BPF_ALU | BPF_MOV | BPF_K:
		emit_loadimm32(imm, dst, ctx);
		break;
	case BPF_ALU64 | BPF_MOV | BPF_K:
		emit_loadimm_sext(imm, dst, ctx);
		break;
	/* dst = dst OP imm */
	case BPF_ALU | BPF_ADD | BPF_K:
	case BPF_ALU64 | BPF_ADD | BPF_K:
		emit_alu_K(ADD, dst, imm, ctx);
		goto do_alu32_trunc;
	case BPF_ALU | BPF_SUB | BPF_K:
	case BPF_ALU64 | BPF_SUB | BPF_K:
		emit_alu_K(SUB, dst, imm, ctx);
		goto do_alu32_trunc;
	case BPF_ALU | BPF_AND | BPF_K:
	case BPF_ALU64 | BPF_AND | BPF_K:
		emit_alu_K(AND, dst, imm, ctx);
		goto do_alu32_trunc;
	case BPF_ALU | BPF_OR | BPF_K:
	case BPF_ALU64 | BPF_OR | BPF_K:
		emit_alu_K(OR, dst, imm, ctx);
		goto do_alu32_trunc;
	case BPF_ALU | BPF_XOR | BPF_K:
	case BPF_ALU64 | BPF_XOR | BPF_K:
		emit_alu_K(XOR, dst, imm, ctx);
		goto do_alu32_trunc;
	case BPF_ALU | BPF_MUL | BPF_K:
		emit_alu_K(MUL, dst, imm, ctx);
		goto do_alu32_trunc;
	case BPF_ALU64 | BPF_MUL | BPF_K:
		emit_alu_K(MULX, dst, imm, ctx);
		break;
	case BPF_ALU | BPF_DIV | BPF_K:
		if (imm == 0)
			return -EINVAL;

		emit_write_y(G0, ctx);
		emit_alu_K(DIV, dst, imm, ctx);
		goto do_alu32_trunc;
	case BPF_ALU64 | BPF_DIV | BPF_K:
		if (imm == 0)
			return -EINVAL;

		emit_alu_K(UDIVX, dst, imm, ctx);
		break;
	case BPF_ALU64 | BPF_MOD | BPF_K:
	case BPF_ALU | BPF_MOD | BPF_K: {
		const u8 tmp = bpf2sparc[TMP_REG_2];
		unsigned int div;

		if (imm == 0)
			return -EINVAL;

		div = (BPF_CLASS(code) == BPF_ALU64) ? UDIVX : DIV;

		ctx->tmp_2_used = true;

		if (BPF_CLASS(code) != BPF_ALU64)
			emit_write_y(G0, ctx);
		if (is_simm13(imm)) {
			emit(div | IMMED | RS1(dst) | S13(imm) | RD(tmp), ctx);
			emit(MULX | IMMED | RS1(tmp) | S13(imm) | RD(tmp), ctx);
			emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
		} else {
			const u8 tmp1 = bpf2sparc[TMP_REG_1];

			ctx->tmp_1_used = true;

			emit_set_const_sext(imm, tmp1, ctx);
			emit(div | RS1(dst) | RS2(tmp1) | RD(tmp), ctx);
			emit(MULX | RS1(tmp) | RS2(tmp1) | RD(tmp), ctx);
			emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
		}
		goto do_alu32_trunc;
	}
	case BPF_ALU | BPF_LSH | BPF_K:
		emit_alu_K(SLL, dst, imm, ctx);
		goto do_alu32_trunc;
	case BPF_ALU64 | BPF_LSH | BPF_K:
		emit_alu_K(SLLX, dst, imm, ctx);
		break;
	case BPF_ALU | BPF_RSH | BPF_K:
		emit_alu_K(SRL, dst, imm, ctx);
		break;
	case BPF_ALU64 | BPF_RSH | BPF_K:
		emit_alu_K(SRLX, dst, imm, ctx);
		break;
	case BPF_ALU | BPF_ARSH | BPF_K:
		emit_alu_K(SRA, dst, imm, ctx);
		goto do_alu32_trunc;
	case BPF_ALU64 | BPF_ARSH | BPF_K:
		emit_alu_K(SRAX, dst, imm, ctx);
		break;

	do_alu32_trunc:
		if (BPF_CLASS(code) == BPF_ALU)
			emit_alu_K(SRL, dst, 0, ctx);
		break;

	/* JUMP off */
	case BPF_JMP | BPF_JA:
		emit_branch(BA, ctx->idx, ctx->offset[i + off], ctx);
		emit_nop(ctx);
		break;
	/* IF (dst COND src) JUMP off */
	case BPF_JMP | BPF_JEQ | BPF_X:
	case BPF_JMP | BPF_JGT | BPF_X:
	case BPF_JMP | BPF_JGE | BPF_X:
	case BPF_JMP | BPF_JNE | BPF_X:
	case BPF_JMP | BPF_JSGT | BPF_X:
	case BPF_JMP | BPF_JSGE | BPF_X:
	case BPF_JMP | BPF_JSET | BPF_X: {
		int err;

		err = emit_compare_and_branch(code, dst, src, 0, false, i + off, ctx);
		if (err)
			return err;
		break;
	}
	/* IF (dst COND imm) JUMP off */
	case BPF_JMP | BPF_JEQ | BPF_K:
	case BPF_JMP | BPF_JGT | BPF_K:
	case BPF_JMP | BPF_JGE | BPF_K:
	case BPF_JMP | BPF_JNE | BPF_K:
	case BPF_JMP | BPF_JSGT | BPF_K:
	case BPF_JMP | BPF_JSGE | BPF_K:
	case BPF_JMP | BPF_JSET | BPF_K: {
		int err;

		err = emit_compare_and_branch(code, dst, 0, imm, true, i + off, ctx);
		if (err)
			return err;
		break;
	}

	/* function call */
	case BPF_JMP | BPF_CALL:
	{
		u8 *func = ((u8 *)__bpf_call_base) + imm;

		ctx->saw_call = true;

		emit_call((u32 *)func, ctx);
		emit_nop(ctx);

		emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);

		if (bpf_helper_changes_pkt_data(func) && ctx->saw_ld_abs_ind)
			load_skb_regs(ctx, bpf2sparc[BPF_REG_6]);
		break;
	}

	/* tail call */
	case BPF_JMP | BPF_CALL |BPF_X:
		emit_tail_call(ctx);
		break;

	/* function return */
	case BPF_JMP | BPF_EXIT:
		/* Optimization: when last instruction is EXIT,
		   simply fallthrough to epilogue. */
		if (i == ctx->prog->len - 1)
			break;
		emit_branch(BA, ctx->idx, ctx->epilogue_offset, ctx);
		emit_nop(ctx);
		break;

	/* dst = imm64 */
	case BPF_LD | BPF_IMM | BPF_DW:
	{
		const struct bpf_insn insn1 = insn[1];
		u64 imm64;

		imm64 = (u64)insn1.imm << 32 | (u32)imm;
		emit_loadimm64(imm64, dst, ctx);

		return 1;
	}

	/* LDX: dst = *(size *)(src + off) */
	case BPF_LDX | BPF_MEM | BPF_W:
	case BPF_LDX | BPF_MEM | BPF_H:
	case BPF_LDX | BPF_MEM | BPF_B:
	case BPF_LDX | BPF_MEM | BPF_DW: {
		const u8 tmp = bpf2sparc[TMP_REG_1];
		u32 opcode = 0, rs2;

		ctx->tmp_1_used = true;
		switch (BPF_SIZE(code)) {
		case BPF_W:
			opcode = LD32;
			break;
		case BPF_H:
			opcode = LD16;
			break;
		case BPF_B:
			opcode = LD8;
			break;
		case BPF_DW:
			opcode = LD64;
			break;
		}

		if (is_simm13(off)) {
			opcode |= IMMED;
			rs2 = S13(off);
		} else {
			emit_loadimm(off, tmp, ctx);
			rs2 = RS2(tmp);
		}
		emit(opcode | RS1(src) | rs2 | RD(dst), ctx);
		break;
	}
	/* ST: *(size *)(dst + off) = imm */
	case BPF_ST | BPF_MEM | BPF_W:
	case BPF_ST | BPF_MEM | BPF_H:
	case BPF_ST | BPF_MEM | BPF_B:
	case BPF_ST | BPF_MEM | BPF_DW: {
		const u8 tmp = bpf2sparc[TMP_REG_1];
		const u8 tmp2 = bpf2sparc[TMP_REG_2];
		u32 opcode = 0, rs2;

		ctx->tmp_2_used = true;
		emit_loadimm(imm, tmp2, ctx);

		switch (BPF_SIZE(code)) {
		case BPF_W:
			opcode = ST32;
			break;
		case BPF_H:
			opcode = ST16;
			break;
		case BPF_B:
			opcode = ST8;
			break;
		case BPF_DW:
			opcode = ST64;
			break;
		}

		if (is_simm13(off)) {
			opcode |= IMMED;
			rs2 = S13(off);
		} else {
			ctx->tmp_1_used = true;
			emit_loadimm(off, tmp, ctx);
			rs2 = RS2(tmp);
		}
		emit(opcode | RS1(dst) | rs2 | RD(tmp2), ctx);
		break;
	}

	/* STX: *(size *)(dst + off) = src */
	case BPF_STX | BPF_MEM | BPF_W:
	case BPF_STX | BPF_MEM | BPF_H:
	case BPF_STX | BPF_MEM | BPF_B:
	case BPF_STX | BPF_MEM | BPF_DW: {
		const u8 tmp = bpf2sparc[TMP_REG_1];
		u32 opcode = 0, rs2;

		switch (BPF_SIZE(code)) {
		case BPF_W:
			opcode = ST32;
			break;
		case BPF_H:
			opcode = ST16;
			break;
		case BPF_B:
			opcode = ST8;
			break;
		case BPF_DW:
			opcode = ST64;
			break;
		}
		if (is_simm13(off)) {
			opcode |= IMMED;
			rs2 = S13(off);
		} else {
			ctx->tmp_1_used = true;
			emit_loadimm(off, tmp, ctx);
			rs2 = RS2(tmp);
		}
		emit(opcode | RS1(dst) | rs2 | RD(src), ctx);
		break;
	}

	/* STX XADD: lock *(u32 *)(dst + off) += src */
	case BPF_STX | BPF_XADD | BPF_W: {
		const u8 tmp = bpf2sparc[TMP_REG_1];
		const u8 tmp2 = bpf2sparc[TMP_REG_2];
		const u8 tmp3 = bpf2sparc[TMP_REG_3];

		ctx->tmp_1_used = true;
		ctx->tmp_2_used = true;
		ctx->tmp_3_used = true;
		emit_loadimm(off, tmp, ctx);
		emit_alu3(ADD, dst, tmp, tmp, ctx);

		emit(LD32 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
		emit_alu3(ADD, tmp2, src, tmp3, ctx);
		emit(CAS | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
		emit_cmp(tmp2, tmp3, ctx);
		emit_branch(BNE, 4, 0, ctx);
		emit_nop(ctx);
		break;
	}
	/* STX XADD: lock *(u64 *)(dst + off) += src */
	case BPF_STX | BPF_XADD | BPF_DW: {
		const u8 tmp = bpf2sparc[TMP_REG_1];
		const u8 tmp2 = bpf2sparc[TMP_REG_2];
		const u8 tmp3 = bpf2sparc[TMP_REG_3];

		ctx->tmp_1_used = true;
		ctx->tmp_2_used = true;
		ctx->tmp_3_used = true;
		emit_loadimm(off, tmp, ctx);
		emit_alu3(ADD, dst, tmp, tmp, ctx);

		emit(LD64 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
		emit_alu3(ADD, tmp2, src, tmp3, ctx);
		emit(CASX | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
		emit_cmp(tmp2, tmp3, ctx);
		emit_branch(BNE, 4, 0, ctx);
		emit_nop(ctx);
		break;
	}
#define CHOOSE_LOAD_FUNC(K, func) \
		((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)

	/* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + imm)) */
	case BPF_LD | BPF_ABS | BPF_W:
		func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_word);
		goto common_load;
	case BPF_LD | BPF_ABS | BPF_H:
		func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_half);
		goto common_load;
	case BPF_LD | BPF_ABS | BPF_B:
		func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_byte);
		goto common_load;
	/* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + src + imm)) */
	case BPF_LD | BPF_IND | BPF_W:
		func = bpf_jit_load_word;
		goto common_load;
	case BPF_LD | BPF_IND | BPF_H:
		func = bpf_jit_load_half;
		goto common_load;

	case BPF_LD | BPF_IND | BPF_B:
		func = bpf_jit_load_byte;
	common_load:
		ctx->saw_ld_abs_ind = true;

		emit_reg_move(bpf2sparc[BPF_REG_6], O0, ctx);
		emit_loadimm(imm, O1, ctx);

		if (BPF_MODE(code) == BPF_IND)
			emit_alu(ADD, src, O1, ctx);

		emit_call(func, ctx);
		emit_alu_K(SRA, O1, 0, ctx);

		emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
		break;

	default:
		pr_err_once("unknown opcode %02x\n", code);
		return -EINVAL;
	}

	return 0;
}

static int build_body(struct jit_ctx *ctx)
{
	const struct bpf_prog *prog = ctx->prog;
	int i;

	for (i = 0; i < prog->len; i++) {
		const struct bpf_insn *insn = &prog->insnsi[i];
		int ret;

		ret = build_insn(insn, ctx);
		ctx->offset[i] = ctx->idx;

		if (ret > 0) {
			i++;
			continue;
		}
		if (ret)
			return ret;
	}
	return 0;
}

static void jit_fill_hole(void *area, unsigned int size)
{
	u32 *ptr;
	/* We are guaranteed to have aligned memory. */
	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
		*ptr++ = 0x91d02005; /* ta 5 */
}

struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
{
	struct bpf_prog *tmp, *orig_prog = prog;
	struct bpf_binary_header *header;
	bool tmp_blinded = false;
	struct jit_ctx ctx;
	u32 image_size;
	u8 *image_ptr;
	int pass;

	if (!bpf_jit_enable)
		return orig_prog;

	tmp = bpf_jit_blind_constants(prog);
	/* If blinding was requested and we failed during blinding,
	 * we must fall back to the interpreter.
	 */
	if (IS_ERR(tmp))
		return orig_prog;
	if (tmp != prog) {
		tmp_blinded = true;
		prog = tmp;
	}

	memset(&ctx, 0, sizeof(ctx));
	ctx.prog = prog;

	ctx.offset = kcalloc(prog->len, sizeof(unsigned int), GFP_KERNEL);
	if (ctx.offset == NULL) {
		prog = orig_prog;
		goto out;
	}

	/* Fake pass to detect features used, and get an accurate assessment
	 * of what the final image size will be.
	 */
	if (build_body(&ctx)) {
		prog = orig_prog;
		goto out_off;
	}
	build_prologue(&ctx);
	build_epilogue(&ctx);

	/* Now we know the actual image size. */
	image_size = sizeof(u32) * ctx.idx;
	header = bpf_jit_binary_alloc(image_size, &image_ptr,
				      sizeof(u32), jit_fill_hole);
	if (header == NULL) {
		prog = orig_prog;
		goto out_off;
	}

	ctx.image = (u32 *)image_ptr;

	for (pass = 1; pass < 3; pass++) {
		ctx.idx = 0;

		build_prologue(&ctx);

		if (build_body(&ctx)) {
			bpf_jit_binary_free(header);
			prog = orig_prog;
			goto out_off;
		}

		build_epilogue(&ctx);

		if (bpf_jit_enable > 1)
			pr_info("Pass %d: shrink = %d, seen = [%c%c%c%c%c%c%c]\n", pass,
				image_size - (ctx.idx * 4),
				ctx.tmp_1_used ? '1' : ' ',
				ctx.tmp_2_used ? '2' : ' ',
				ctx.tmp_3_used ? '3' : ' ',
				ctx.saw_ld_abs_ind ? 'L' : ' ',
				ctx.saw_frame_pointer ? 'F' : ' ',
				ctx.saw_call ? 'C' : ' ',
				ctx.saw_tail_call ? 'T' : ' ');
	}

	if (bpf_jit_enable > 1)
		bpf_jit_dump(prog->len, image_size, pass, ctx.image);

	bpf_flush_icache(header, (u8 *)header + (header->pages * PAGE_SIZE));

	bpf_jit_binary_lock_ro(header);

	prog->bpf_func = (void *)ctx.image;
	prog->jited = 1;

out_off:
	kfree(ctx.offset);
out:
	if (tmp_blinded)
		bpf_jit_prog_release_other(prog, prog == orig_prog ?
					   tmp : orig_prog);
	return prog;
}