summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/fpu/core.c
blob: 779813126f49a4fc2ea5edbcd04b1107cc10493e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
/*
 *  Copyright (C) 1994 Linus Torvalds
 *
 *  Pentium III FXSR, SSE support
 *  General FPU state handling cleanups
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 */
#include <asm/fpu-internal.h>

/*
 * Track whether the kernel is using the FPU state
 * currently.
 *
 * This flag is used:
 *
 *   - by IRQ context code to potentially use the FPU
 *     if it's unused.
 *
 *   - to debug kernel_fpu_begin()/end() correctness
 */
static DEFINE_PER_CPU(bool, in_kernel_fpu);

/*
 * Track which context is using the FPU on the CPU:
 */
DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);

static void kernel_fpu_disable(void)
{
	WARN_ON(this_cpu_read(in_kernel_fpu));
	this_cpu_write(in_kernel_fpu, true);
}

static void kernel_fpu_enable(void)
{
	WARN_ON_ONCE(!this_cpu_read(in_kernel_fpu));
	this_cpu_write(in_kernel_fpu, false);
}

static bool kernel_fpu_disabled(void)
{
	return this_cpu_read(in_kernel_fpu);
}

/*
 * Were we in an interrupt that interrupted kernel mode?
 *
 * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
 * pair does nothing at all: the thread must not have fpu (so
 * that we don't try to save the FPU state), and TS must
 * be set (so that the clts/stts pair does nothing that is
 * visible in the interrupted kernel thread).
 *
 * Except for the eagerfpu case when we return true; in the likely case
 * the thread has FPU but we are not going to set/clear TS.
 */
static bool interrupted_kernel_fpu_idle(void)
{
	if (kernel_fpu_disabled())
		return false;

	if (use_eager_fpu())
		return true;

	return !current->thread.fpu.has_fpu && (read_cr0() & X86_CR0_TS);
}

/*
 * Were we in user mode (or vm86 mode) when we were
 * interrupted?
 *
 * Doing kernel_fpu_begin/end() is ok if we are running
 * in an interrupt context from user mode - we'll just
 * save the FPU state as required.
 */
static bool interrupted_user_mode(void)
{
	struct pt_regs *regs = get_irq_regs();
	return regs && user_mode(regs);
}

/*
 * Can we use the FPU in kernel mode with the
 * whole "kernel_fpu_begin/end()" sequence?
 *
 * It's always ok in process context (ie "not interrupt")
 * but it is sometimes ok even from an irq.
 */
bool irq_fpu_usable(void)
{
	return !in_interrupt() ||
		interrupted_user_mode() ||
		interrupted_kernel_fpu_idle();
}
EXPORT_SYMBOL(irq_fpu_usable);

void __kernel_fpu_begin(void)
{
	struct fpu *fpu = &current->thread.fpu;

	kernel_fpu_disable();

	if (fpu->has_fpu) {
		fpu_save_init(fpu);
	} else {
		this_cpu_write(fpu_fpregs_owner_ctx, NULL);
		if (!use_eager_fpu())
			clts();
	}
}
EXPORT_SYMBOL(__kernel_fpu_begin);

void __kernel_fpu_end(void)
{
	struct task_struct *me = current;
	struct fpu *fpu = &me->thread.fpu;

	if (fpu->has_fpu) {
		if (WARN_ON(restore_fpu_checking(me)))
			fpu_reset_state(me);
	} else if (!use_eager_fpu()) {
		stts();
	}

	kernel_fpu_enable();
}
EXPORT_SYMBOL(__kernel_fpu_end);

/*
 * Save the FPU state (initialize it if necessary):
 *
 * This only ever gets called for the current task.
 */
void fpu__save(struct task_struct *tsk)
{
	struct fpu *fpu = &tsk->thread.fpu;

	WARN_ON(tsk != current);

	preempt_disable();
	if (fpu->has_fpu) {
		if (use_eager_fpu()) {
			__save_fpu(tsk);
		} else {
			fpu_save_init(fpu);
			__thread_fpu_end(fpu);
		}
	}
	preempt_enable();
}
EXPORT_SYMBOL_GPL(fpu__save);

void fpstate_init(struct fpu *fpu)
{
	if (!cpu_has_fpu) {
		finit_soft_fpu(&fpu->state->soft);
		return;
	}

	memset(fpu->state, 0, xstate_size);

	if (cpu_has_fxsr) {
		fx_finit(&fpu->state->fxsave);
	} else {
		struct i387_fsave_struct *fp = &fpu->state->fsave;
		fp->cwd = 0xffff037fu;
		fp->swd = 0xffff0000u;
		fp->twd = 0xffffffffu;
		fp->fos = 0xffff0000u;
	}
}
EXPORT_SYMBOL_GPL(fpstate_init);

/*
 * FPU state allocation:
 */
static struct kmem_cache *task_xstate_cachep;

void fpstate_cache_init(void)
{
	task_xstate_cachep =
		kmem_cache_create("task_xstate", xstate_size,
				  __alignof__(union thread_xstate),
				  SLAB_PANIC | SLAB_NOTRACK, NULL);
	setup_xstate_comp();
}

int fpstate_alloc(struct fpu *fpu)
{
	if (fpu->state)
		return 0;

	fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
	if (!fpu->state)
		return -ENOMEM;

	/* The CPU requires the FPU state to be aligned to 16 byte boundaries: */
	WARN_ON((unsigned long)fpu->state & 15);

	return 0;
}
EXPORT_SYMBOL_GPL(fpstate_alloc);

void fpstate_free(struct fpu *fpu)
{
	if (fpu->state) {
		kmem_cache_free(task_xstate_cachep, fpu->state);
		fpu->state = NULL;
	}
}
EXPORT_SYMBOL_GPL(fpstate_free);

/*
 * Copy the current task's FPU state to a new task's FPU context.
 *
 * In the 'eager' case we just save to the destination context.
 *
 * In the 'lazy' case we save to the source context, mark the FPU lazy
 * via stts() and copy the source context into the destination context.
 */
static void fpu_copy(struct task_struct *dst, struct task_struct *src)
{
	WARN_ON(src != current);

	if (use_eager_fpu()) {
		memset(&dst->thread.fpu.state->xsave, 0, xstate_size);
		__save_fpu(dst);
	} else {
		struct fpu *dfpu = &dst->thread.fpu;
		struct fpu *sfpu = &src->thread.fpu;

		fpu__save(src);
		memcpy(dfpu->state, sfpu->state, xstate_size);
	}
}

int fpu__copy(struct task_struct *dst, struct task_struct *src)
{
	dst->thread.fpu.counter = 0;
	dst->thread.fpu.has_fpu = 0;
	dst->thread.fpu.state = NULL;

	task_disable_lazy_fpu_restore(dst);

	if (src->flags & PF_USED_MATH) {
		int err = fpstate_alloc(&dst->thread.fpu);

		if (err)
			return err;
		fpu_copy(dst, src);
	}
	return 0;
}

/*
 * Allocate the backing store for the current task's FPU registers
 * and initialize the registers themselves as well.
 *
 * Can fail.
 */
int fpstate_alloc_init(struct task_struct *curr)
{
	int ret;

	if (WARN_ON_ONCE(curr != current))
		return -EINVAL;
	if (WARN_ON_ONCE(curr->flags & PF_USED_MATH))
		return -EINVAL;

	/*
	 * Memory allocation at the first usage of the FPU and other state.
	 */
	ret = fpstate_alloc(&curr->thread.fpu);
	if (ret)
		return ret;

	fpstate_init(&curr->thread.fpu);

	/* Safe to do for the current task: */
	curr->flags |= PF_USED_MATH;

	return 0;
}
EXPORT_SYMBOL_GPL(fpstate_alloc_init);

/*
 * This function is called before we modify a stopped child's
 * FPU state context.
 *
 * If the child has not used the FPU before then initialize its
 * FPU context.
 *
 * If the child has used the FPU before then unlazy it.
 *
 * [ After this function call, after the context is modified and
 *   the child task is woken up, the child task will restore
 *   the modified FPU state from the modified context. If we
 *   didn't clear its lazy status here then the lazy in-registers
 *   state pending on its former CPU could be restored, losing
 *   the modifications. ]
 *
 * This function is also called before we read a stopped child's
 * FPU state - to make sure it's modified.
 *
 * TODO: A future optimization would be to skip the unlazying in
 *       the read-only case, it's not strictly necessary for
 *       read-only access to the context.
 */
static int fpu__unlazy_stopped(struct task_struct *child)
{
	int ret;

	if (WARN_ON_ONCE(child == current))
		return -EINVAL;

	if (child->flags & PF_USED_MATH) {
		task_disable_lazy_fpu_restore(child);
		return 0;
	}

	/*
	 * Memory allocation at the first usage of the FPU and other state.
	 */
	ret = fpstate_alloc(&child->thread.fpu);
	if (ret)
		return ret;

	fpstate_init(&child->thread.fpu);

	/* Safe to do for stopped child tasks: */
	child->flags |= PF_USED_MATH;

	return 0;
}

/*
 * 'fpu__restore()' saves the current math information in the
 * old math state array, and gets the new ones from the current task
 *
 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
 * Don't touch unless you *really* know how it works.
 *
 * Must be called with kernel preemption disabled (eg with local
 * local interrupts as in the case of do_device_not_available).
 */
void fpu__restore(void)
{
	struct task_struct *tsk = current;
	struct fpu *fpu = &tsk->thread.fpu;

	if (!(tsk->flags & PF_USED_MATH)) {
		local_irq_enable();
		/*
		 * does a slab alloc which can sleep
		 */
		if (fpstate_alloc_init(tsk)) {
			/*
			 * ran out of memory!
			 */
			do_group_exit(SIGKILL);
			return;
		}
		local_irq_disable();
	}

	/* Avoid __kernel_fpu_begin() right after __thread_fpu_begin() */
	kernel_fpu_disable();
	__thread_fpu_begin(fpu);
	if (unlikely(restore_fpu_checking(tsk))) {
		fpu_reset_state(tsk);
		force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
	} else {
		tsk->thread.fpu.counter++;
	}
	kernel_fpu_enable();
}
EXPORT_SYMBOL_GPL(fpu__restore);

void fpu__flush_thread(struct task_struct *tsk)
{
	WARN_ON(tsk != current);

	if (!use_eager_fpu()) {
		/* FPU state will be reallocated lazily at the first use. */
		drop_fpu(tsk);
		fpstate_free(&tsk->thread.fpu);
	} else {
		if (!(tsk->flags & PF_USED_MATH)) {
			/* kthread execs. TODO: cleanup this horror. */
		if (WARN_ON(fpstate_alloc_init(tsk)))
				force_sig(SIGKILL, tsk);
			user_fpu_begin();
		}
		restore_init_xstate();
	}
}

/*
 * The xstateregs_active() routine is the same as the fpregs_active() routine,
 * as the "regset->n" for the xstate regset will be updated based on the feature
 * capabilites supported by the xsave.
 */
int fpregs_active(struct task_struct *target, const struct user_regset *regset)
{
	return (target->flags & PF_USED_MATH) ? regset->n : 0;
}

int xfpregs_active(struct task_struct *target, const struct user_regset *regset)
{
	return (cpu_has_fxsr && (target->flags & PF_USED_MATH)) ? regset->n : 0;
}

int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
		unsigned int pos, unsigned int count,
		void *kbuf, void __user *ubuf)
{
	int ret;

	if (!cpu_has_fxsr)
		return -ENODEV;

	ret = fpu__unlazy_stopped(target);
	if (ret)
		return ret;

	sanitize_i387_state(target);

	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
				   &target->thread.fpu.state->fxsave, 0, -1);
}

int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
		unsigned int pos, unsigned int count,
		const void *kbuf, const void __user *ubuf)
{
	int ret;

	if (!cpu_has_fxsr)
		return -ENODEV;

	ret = fpu__unlazy_stopped(target);
	if (ret)
		return ret;

	sanitize_i387_state(target);

	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
				 &target->thread.fpu.state->fxsave, 0, -1);

	/*
	 * mxcsr reserved bits must be masked to zero for security reasons.
	 */
	target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;

	/*
	 * update the header bits in the xsave header, indicating the
	 * presence of FP and SSE state.
	 */
	if (cpu_has_xsave)
		target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FPSSE;

	return ret;
}

int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
		unsigned int pos, unsigned int count,
		void *kbuf, void __user *ubuf)
{
	struct xsave_struct *xsave;
	int ret;

	if (!cpu_has_xsave)
		return -ENODEV;

	ret = fpu__unlazy_stopped(target);
	if (ret)
		return ret;

	xsave = &target->thread.fpu.state->xsave;

	/*
	 * Copy the 48bytes defined by the software first into the xstate
	 * memory layout in the thread struct, so that we can copy the entire
	 * xstateregs to the user using one user_regset_copyout().
	 */
	memcpy(&xsave->i387.sw_reserved,
		xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
	/*
	 * Copy the xstate memory layout.
	 */
	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
	return ret;
}

int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
		  unsigned int pos, unsigned int count,
		  const void *kbuf, const void __user *ubuf)
{
	struct xsave_struct *xsave;
	int ret;

	if (!cpu_has_xsave)
		return -ENODEV;

	ret = fpu__unlazy_stopped(target);
	if (ret)
		return ret;

	xsave = &target->thread.fpu.state->xsave;

	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
	/*
	 * mxcsr reserved bits must be masked to zero for security reasons.
	 */
	xsave->i387.mxcsr &= mxcsr_feature_mask;
	xsave->xsave_hdr.xstate_bv &= pcntxt_mask;
	/*
	 * These bits must be zero.
	 */
	memset(&xsave->xsave_hdr.reserved, 0, 48);
	return ret;
}

#if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION

/*
 * FPU tag word conversions.
 */

static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
{
	unsigned int tmp; /* to avoid 16 bit prefixes in the code */

	/* Transform each pair of bits into 01 (valid) or 00 (empty) */
	tmp = ~twd;
	tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
	/* and move the valid bits to the lower byte. */
	tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
	tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
	tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */

	return tmp;
}

#define FPREG_ADDR(f, n)	((void *)&(f)->st_space + (n) * 16)
#define FP_EXP_TAG_VALID	0
#define FP_EXP_TAG_ZERO		1
#define FP_EXP_TAG_SPECIAL	2
#define FP_EXP_TAG_EMPTY	3

static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
{
	struct _fpxreg *st;
	u32 tos = (fxsave->swd >> 11) & 7;
	u32 twd = (unsigned long) fxsave->twd;
	u32 tag;
	u32 ret = 0xffff0000u;
	int i;

	for (i = 0; i < 8; i++, twd >>= 1) {
		if (twd & 0x1) {
			st = FPREG_ADDR(fxsave, (i - tos) & 7);

			switch (st->exponent & 0x7fff) {
			case 0x7fff:
				tag = FP_EXP_TAG_SPECIAL;
				break;
			case 0x0000:
				if (!st->significand[0] &&
				    !st->significand[1] &&
				    !st->significand[2] &&
				    !st->significand[3])
					tag = FP_EXP_TAG_ZERO;
				else
					tag = FP_EXP_TAG_SPECIAL;
				break;
			default:
				if (st->significand[3] & 0x8000)
					tag = FP_EXP_TAG_VALID;
				else
					tag = FP_EXP_TAG_SPECIAL;
				break;
			}
		} else {
			tag = FP_EXP_TAG_EMPTY;
		}
		ret |= tag << (2 * i);
	}
	return ret;
}

/*
 * FXSR floating point environment conversions.
 */

void
convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
{
	struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
	struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
	struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
	int i;

	env->cwd = fxsave->cwd | 0xffff0000u;
	env->swd = fxsave->swd | 0xffff0000u;
	env->twd = twd_fxsr_to_i387(fxsave);

#ifdef CONFIG_X86_64
	env->fip = fxsave->rip;
	env->foo = fxsave->rdp;
	/*
	 * should be actually ds/cs at fpu exception time, but
	 * that information is not available in 64bit mode.
	 */
	env->fcs = task_pt_regs(tsk)->cs;
	if (tsk == current) {
		savesegment(ds, env->fos);
	} else {
		env->fos = tsk->thread.ds;
	}
	env->fos |= 0xffff0000;
#else
	env->fip = fxsave->fip;
	env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
	env->foo = fxsave->foo;
	env->fos = fxsave->fos;
#endif

	for (i = 0; i < 8; ++i)
		memcpy(&to[i], &from[i], sizeof(to[0]));
}

void convert_to_fxsr(struct task_struct *tsk,
		     const struct user_i387_ia32_struct *env)

{
	struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
	struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
	struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
	int i;

	fxsave->cwd = env->cwd;
	fxsave->swd = env->swd;
	fxsave->twd = twd_i387_to_fxsr(env->twd);
	fxsave->fop = (u16) ((u32) env->fcs >> 16);
#ifdef CONFIG_X86_64
	fxsave->rip = env->fip;
	fxsave->rdp = env->foo;
	/* cs and ds ignored */
#else
	fxsave->fip = env->fip;
	fxsave->fcs = (env->fcs & 0xffff);
	fxsave->foo = env->foo;
	fxsave->fos = env->fos;
#endif

	for (i = 0; i < 8; ++i)
		memcpy(&to[i], &from[i], sizeof(from[0]));
}

int fpregs_get(struct task_struct *target, const struct user_regset *regset,
	       unsigned int pos, unsigned int count,
	       void *kbuf, void __user *ubuf)
{
	struct user_i387_ia32_struct env;
	int ret;

	ret = fpu__unlazy_stopped(target);
	if (ret)
		return ret;

	if (!static_cpu_has(X86_FEATURE_FPU))
		return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);

	if (!cpu_has_fxsr)
		return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
					   &target->thread.fpu.state->fsave, 0,
					   -1);

	sanitize_i387_state(target);

	if (kbuf && pos == 0 && count == sizeof(env)) {
		convert_from_fxsr(kbuf, target);
		return 0;
	}

	convert_from_fxsr(&env, target);

	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
}

int fpregs_set(struct task_struct *target, const struct user_regset *regset,
	       unsigned int pos, unsigned int count,
	       const void *kbuf, const void __user *ubuf)
{
	struct user_i387_ia32_struct env;
	int ret;

	ret = fpu__unlazy_stopped(target);
	if (ret)
		return ret;

	sanitize_i387_state(target);

	if (!static_cpu_has(X86_FEATURE_FPU))
		return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);

	if (!cpu_has_fxsr)
		return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
					  &target->thread.fpu.state->fsave, 0,
					  -1);

	if (pos > 0 || count < sizeof(env))
		convert_from_fxsr(&env, target);

	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
	if (!ret)
		convert_to_fxsr(target, &env);

	/*
	 * update the header bit in the xsave header, indicating the
	 * presence of FP.
	 */
	if (cpu_has_xsave)
		target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;
	return ret;
}

/*
 * FPU state for core dumps.
 * This is only used for a.out dumps now.
 * It is declared generically using elf_fpregset_t (which is
 * struct user_i387_struct) but is in fact only used for 32-bit
 * dumps, so on 64-bit it is really struct user_i387_ia32_struct.
 */
int dump_fpu(struct pt_regs *regs, struct user_i387_struct *fpu)
{
	struct task_struct *tsk = current;
	int fpvalid;

	fpvalid = !!(tsk->flags & PF_USED_MATH);
	if (fpvalid)
		fpvalid = !fpregs_get(tsk, NULL,
				      0, sizeof(struct user_i387_ia32_struct),
				      fpu, NULL);

	return fpvalid;
}
EXPORT_SYMBOL(dump_fpu);

#endif	/* CONFIG_X86_32 || CONFIG_IA32_EMULATION */