1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
|
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019, Intel Corporation. */
#include <net/xdp_sock_drv.h>
#include "ice_base.h"
#include "ice_lib.h"
#include "ice_dcb_lib.h"
#include "ice_sriov.h"
/**
* __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
* @qs_cfg: gathered variables needed for PF->VSI queues assignment
*
* Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
*/
static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
{
unsigned int offset, i;
mutex_lock(qs_cfg->qs_mutex);
offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
0, qs_cfg->q_count, 0);
if (offset >= qs_cfg->pf_map_size) {
mutex_unlock(qs_cfg->qs_mutex);
return -ENOMEM;
}
bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
for (i = 0; i < qs_cfg->q_count; i++)
qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
mutex_unlock(qs_cfg->qs_mutex);
return 0;
}
/**
* __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
* @qs_cfg: gathered variables needed for pf->vsi queues assignment
*
* Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
*/
static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
{
unsigned int i, index = 0;
mutex_lock(qs_cfg->qs_mutex);
for (i = 0; i < qs_cfg->q_count; i++) {
index = find_next_zero_bit(qs_cfg->pf_map,
qs_cfg->pf_map_size, index);
if (index >= qs_cfg->pf_map_size)
goto err_scatter;
set_bit(index, qs_cfg->pf_map);
qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
}
mutex_unlock(qs_cfg->qs_mutex);
return 0;
err_scatter:
for (index = 0; index < i; index++) {
clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
}
mutex_unlock(qs_cfg->qs_mutex);
return -ENOMEM;
}
/**
* ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
* @pf: the PF being configured
* @pf_q: the PF queue
* @ena: enable or disable state of the queue
*
* This routine will wait for the given Rx queue of the PF to reach the
* enabled or disabled state.
* Returns -ETIMEDOUT in case of failing to reach the requested state after
* multiple retries; else will return 0 in case of success.
*/
static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
{
int i;
for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
QRX_CTRL_QENA_STAT_M))
return 0;
usleep_range(20, 40);
}
return -ETIMEDOUT;
}
/**
* ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
* @vsi: the VSI being configured
* @v_idx: index of the vector in the VSI struct
*
* We allocate one q_vector and set default value for ITR setting associated
* with this q_vector. If allocation fails we return -ENOMEM.
*/
static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
{
struct ice_pf *pf = vsi->back;
struct ice_q_vector *q_vector;
int err;
/* allocate q_vector */
q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL);
if (!q_vector)
return -ENOMEM;
q_vector->vsi = vsi;
q_vector->v_idx = v_idx;
q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
q_vector->tx.itr_mode = ITR_DYNAMIC;
q_vector->rx.itr_mode = ITR_DYNAMIC;
q_vector->tx.type = ICE_TX_CONTAINER;
q_vector->rx.type = ICE_RX_CONTAINER;
q_vector->irq.index = -ENOENT;
if (vsi->type == ICE_VSI_VF) {
ice_calc_vf_reg_idx(vsi->vf, q_vector);
goto out;
} else if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi);
if (ctrl_vsi) {
if (unlikely(!ctrl_vsi->q_vectors)) {
err = -ENOENT;
goto err_free_q_vector;
}
q_vector->irq = ctrl_vsi->q_vectors[0]->irq;
goto skip_alloc;
}
}
q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc);
if (q_vector->irq.index < 0) {
err = -ENOMEM;
goto err_free_q_vector;
}
skip_alloc:
q_vector->reg_idx = q_vector->irq.index;
q_vector->vf_reg_idx = q_vector->irq.index;
/* only set affinity_mask if the CPU is online */
if (cpu_online(v_idx))
cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
/* This will not be called in the driver load path because the netdev
* will not be created yet. All other cases with register the NAPI
* handler here (i.e. resume, reset/rebuild, etc.)
*/
if (vsi->netdev)
netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll);
out:
/* tie q_vector and VSI together */
vsi->q_vectors[v_idx] = q_vector;
return 0;
err_free_q_vector:
kfree(q_vector);
return err;
}
/**
* ice_free_q_vector - Free memory allocated for a specific interrupt vector
* @vsi: VSI having the memory freed
* @v_idx: index of the vector to be freed
*/
static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
{
struct ice_q_vector *q_vector;
struct ice_pf *pf = vsi->back;
struct ice_tx_ring *tx_ring;
struct ice_rx_ring *rx_ring;
struct device *dev;
dev = ice_pf_to_dev(pf);
if (!vsi->q_vectors[v_idx]) {
dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
return;
}
q_vector = vsi->q_vectors[v_idx];
ice_for_each_tx_ring(tx_ring, q_vector->tx) {
ice_queue_set_napi(vsi, tx_ring->q_index, NETDEV_QUEUE_TYPE_TX,
NULL);
tx_ring->q_vector = NULL;
}
ice_for_each_rx_ring(rx_ring, q_vector->rx) {
ice_queue_set_napi(vsi, rx_ring->q_index, NETDEV_QUEUE_TYPE_RX,
NULL);
rx_ring->q_vector = NULL;
}
/* only VSI with an associated netdev is set up with NAPI */
if (vsi->netdev)
netif_napi_del(&q_vector->napi);
/* release MSIX interrupt if q_vector had interrupt allocated */
if (q_vector->irq.index < 0)
goto free_q_vector;
/* only free last VF ctrl vsi interrupt */
if (vsi->type == ICE_VSI_CTRL && vsi->vf &&
ice_get_vf_ctrl_vsi(pf, vsi))
goto free_q_vector;
ice_free_irq(pf, q_vector->irq);
free_q_vector:
kfree(q_vector);
vsi->q_vectors[v_idx] = NULL;
}
/**
* ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
* @hw: board specific structure
*/
static void ice_cfg_itr_gran(struct ice_hw *hw)
{
u32 regval = rd32(hw, GLINT_CTL);
/* no need to update global register if ITR gran is already set */
if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
(FIELD_GET(GLINT_CTL_ITR_GRAN_200_M, regval) == ICE_ITR_GRAN_US) &&
(FIELD_GET(GLINT_CTL_ITR_GRAN_100_M, regval) == ICE_ITR_GRAN_US) &&
(FIELD_GET(GLINT_CTL_ITR_GRAN_50_M, regval) == ICE_ITR_GRAN_US) &&
(FIELD_GET(GLINT_CTL_ITR_GRAN_25_M, regval) == ICE_ITR_GRAN_US))
return;
regval = FIELD_PREP(GLINT_CTL_ITR_GRAN_200_M, ICE_ITR_GRAN_US) |
FIELD_PREP(GLINT_CTL_ITR_GRAN_100_M, ICE_ITR_GRAN_US) |
FIELD_PREP(GLINT_CTL_ITR_GRAN_50_M, ICE_ITR_GRAN_US) |
FIELD_PREP(GLINT_CTL_ITR_GRAN_25_M, ICE_ITR_GRAN_US);
wr32(hw, GLINT_CTL, regval);
}
/**
* ice_calc_txq_handle - calculate the queue handle
* @vsi: VSI that ring belongs to
* @ring: ring to get the absolute queue index
* @tc: traffic class number
*/
static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
{
WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
if (ring->ch)
return ring->q_index - ring->ch->base_q;
/* Idea here for calculation is that we subtract the number of queue
* count from TC that ring belongs to from it's absolute queue index
* and as a result we get the queue's index within TC.
*/
return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
}
/**
* ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
* @ring: The Tx ring to configure
*
* This enables/disables XPS for a given Tx descriptor ring
* based on the TCs enabled for the VSI that ring belongs to.
*/
static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
{
if (!ring->q_vector || !ring->netdev)
return;
/* We only initialize XPS once, so as not to overwrite user settings */
if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
return;
netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
ring->q_index);
}
/**
* ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
* @ring: The Tx ring to configure
* @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
* @pf_q: queue index in the PF space
*
* Configure the Tx descriptor ring in TLAN context.
*/
static void
ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
{
struct ice_vsi *vsi = ring->vsi;
struct ice_hw *hw = &vsi->back->hw;
tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
tlan_ctx->port_num = vsi->port_info->lport;
/* Transmit Queue Length */
tlan_ctx->qlen = ring->count;
ice_set_cgd_num(tlan_ctx, ring->dcb_tc);
/* PF number */
tlan_ctx->pf_num = hw->pf_id;
/* queue belongs to a specific VSI type
* VF / VM index should be programmed per vmvf_type setting:
* for vmvf_type = VF, it is VF number between 0-256
* for vmvf_type = VM, it is VM number between 0-767
* for PF or EMP this field should be set to zero
*/
switch (vsi->type) {
case ICE_VSI_LB:
case ICE_VSI_CTRL:
case ICE_VSI_PF:
if (ring->ch)
tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
else
tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
break;
case ICE_VSI_VF:
/* Firmware expects vmvf_num to be absolute VF ID */
tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id;
tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
break;
default:
return;
}
/* make sure the context is associated with the right VSI */
if (ring->ch)
tlan_ctx->src_vsi = ring->ch->vsi_num;
else
tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
/* Restrict Tx timestamps to the PF VSI */
switch (vsi->type) {
case ICE_VSI_PF:
tlan_ctx->tsyn_ena = 1;
break;
default:
break;
}
tlan_ctx->tso_ena = ICE_TX_LEGACY;
tlan_ctx->tso_qnum = pf_q;
/* Legacy or Advanced Host Interface:
* 0: Advanced Host Interface
* 1: Legacy Host Interface
*/
tlan_ctx->legacy_int = ICE_TX_LEGACY;
}
/**
* ice_rx_offset - Return expected offset into page to access data
* @rx_ring: Ring we are requesting offset of
*
* Returns the offset value for ring into the data buffer.
*/
static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring)
{
if (ice_ring_uses_build_skb(rx_ring))
return ICE_SKB_PAD;
return 0;
}
/**
* ice_setup_rx_ctx - Configure a receive ring context
* @ring: The Rx ring to configure
*
* Configure the Rx descriptor ring in RLAN context.
*/
static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
{
struct ice_vsi *vsi = ring->vsi;
u32 rxdid = ICE_RXDID_FLEX_NIC;
struct ice_rlan_ctx rlan_ctx;
struct ice_hw *hw;
u16 pf_q;
int err;
hw = &vsi->back->hw;
/* what is Rx queue number in global space of 2K Rx queues */
pf_q = vsi->rxq_map[ring->q_index];
/* clear the context structure first */
memset(&rlan_ctx, 0, sizeof(rlan_ctx));
/* Receive Queue Base Address.
* Indicates the starting address of the descriptor queue defined in
* 128 Byte units.
*/
rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S;
rlan_ctx.qlen = ring->count;
/* Receive Packet Data Buffer Size.
* The Packet Data Buffer Size is defined in 128 byte units.
*/
rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len,
BIT_ULL(ICE_RLAN_CTX_DBUF_S));
/* use 32 byte descriptors */
rlan_ctx.dsize = 1;
/* Strip the Ethernet CRC bytes before the packet is posted to host
* memory.
*/
rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS);
/* L2TSEL flag defines the reported L2 Tags in the receive descriptor
* and it needs to remain 1 for non-DVM capable configurations to not
* break backward compatibility for VF drivers. Setting this field to 0
* will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND
* field in the Rx descriptor. Setting it to 1 allows the VLAN tag to
* be stripped in L2TAG1 of the Rx descriptor, which is where VFs will
* check for the tag
*/
if (ice_is_dvm_ena(hw))
if (vsi->type == ICE_VSI_VF &&
ice_vf_is_port_vlan_ena(vsi->vf))
rlan_ctx.l2tsel = 1;
else
rlan_ctx.l2tsel = 0;
else
rlan_ctx.l2tsel = 1;
rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
/* This controls whether VLAN is stripped from inner headers
* The VLAN in the inner L2 header is stripped to the receive
* descriptor if enabled by this flag.
*/
rlan_ctx.showiv = 0;
/* Max packet size for this queue - must not be set to a larger value
* than 5 x DBUF
*/
rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len);
/* Rx queue threshold in units of 64 */
rlan_ctx.lrxqthresh = 1;
/* PF acts as uplink for switchdev; set flex descriptor with src_vsi
* metadata and flags to allow redirecting to PR netdev
*/
if (ice_is_eswitch_mode_switchdev(vsi->back)) {
ring->flags |= ICE_RX_FLAGS_MULTIDEV;
rxdid = ICE_RXDID_FLEX_NIC_2;
}
/* Enable Flexible Descriptors in the queue context which
* allows this driver to select a specific receive descriptor format
* increasing context priority to pick up profile ID; default is 0x01;
* setting to 0x03 to ensure profile is programming if prev context is
* of same priority
*/
if (vsi->type != ICE_VSI_VF)
ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
else
ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
false);
/* Absolute queue number out of 2K needs to be passed */
err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
if (err) {
dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
pf_q, err);
return -EIO;
}
if (vsi->type == ICE_VSI_VF)
return 0;
/* configure Rx buffer alignment */
if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
ice_clear_ring_build_skb_ena(ring);
else
ice_set_ring_build_skb_ena(ring);
ring->rx_offset = ice_rx_offset(ring);
/* init queue specific tail register */
ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
writel(0, ring->tail);
return 0;
}
static void ice_xsk_pool_fill_cb(struct ice_rx_ring *ring)
{
void *ctx_ptr = &ring->pkt_ctx;
struct xsk_cb_desc desc = {};
XSK_CHECK_PRIV_TYPE(struct ice_xdp_buff);
desc.src = &ctx_ptr;
desc.off = offsetof(struct ice_xdp_buff, pkt_ctx) -
sizeof(struct xdp_buff);
desc.bytes = sizeof(ctx_ptr);
xsk_pool_fill_cb(ring->xsk_pool, &desc);
}
/**
* ice_get_frame_sz - calculate xdp_buff::frame_sz
* @rx_ring: the ring being configured
*
* Return frame size based on underlying PAGE_SIZE
*/
static unsigned int ice_get_frame_sz(struct ice_rx_ring *rx_ring)
{
unsigned int frame_sz;
#if (PAGE_SIZE >= 8192)
frame_sz = rx_ring->rx_buf_len;
#else
frame_sz = ice_rx_pg_size(rx_ring) / 2;
#endif
return frame_sz;
}
/**
* ice_vsi_cfg_rxq - Configure an Rx queue
* @ring: the ring being configured
*
* Return 0 on success and a negative value on error.
*/
static int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
{
struct device *dev = ice_pf_to_dev(ring->vsi->back);
u32 num_bufs = ICE_RX_DESC_UNUSED(ring);
int err;
ring->rx_buf_len = ring->vsi->rx_buf_len;
if (ring->vsi->type == ICE_VSI_PF) {
if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
ring->q_index,
ring->q_vector->napi.napi_id,
ring->rx_buf_len);
if (err)
return err;
}
ice_rx_xsk_pool(ring);
if (ring->xsk_pool) {
xdp_rxq_info_unreg(&ring->xdp_rxq);
ring->rx_buf_len =
xsk_pool_get_rx_frame_size(ring->xsk_pool);
err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
ring->q_index,
ring->q_vector->napi.napi_id,
ring->rx_buf_len);
if (err)
return err;
err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
MEM_TYPE_XSK_BUFF_POOL,
NULL);
if (err)
return err;
xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
ice_xsk_pool_fill_cb(ring);
dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
ring->q_index);
} else {
if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
ring->q_index,
ring->q_vector->napi.napi_id,
ring->rx_buf_len);
if (err)
return err;
}
err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
MEM_TYPE_PAGE_SHARED,
NULL);
if (err)
return err;
}
}
xdp_init_buff(&ring->xdp, ice_get_frame_sz(ring), &ring->xdp_rxq);
ring->xdp.data = NULL;
ring->xdp_ext.pkt_ctx = &ring->pkt_ctx;
err = ice_setup_rx_ctx(ring);
if (err) {
dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
ring->q_index, err);
return err;
}
if (ring->xsk_pool) {
bool ok;
if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
num_bufs, ring->q_index);
dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
return 0;
}
ok = ice_alloc_rx_bufs_zc(ring, ring->xsk_pool, num_bufs);
if (!ok) {
u16 pf_q = ring->vsi->rxq_map[ring->q_index];
dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
ring->q_index, pf_q);
}
return 0;
}
ice_alloc_rx_bufs(ring, num_bufs);
return 0;
}
int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
{
if (q_idx >= vsi->num_rxq)
return -EINVAL;
return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
}
/**
* ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
* @vsi: VSI
*/
static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
{
if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX;
vsi->rx_buf_len = ICE_RXBUF_1664;
#if (PAGE_SIZE < 8192)
} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
(vsi->netdev->mtu <= ETH_DATA_LEN)) {
vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
#endif
} else {
vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
vsi->rx_buf_len = ICE_RXBUF_3072;
}
}
/**
* ice_vsi_cfg_rxqs - Configure the VSI for Rx
* @vsi: the VSI being configured
*
* Return 0 on success and a negative value on error
* Configure the Rx VSI for operation.
*/
int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
{
u16 i;
if (vsi->type == ICE_VSI_VF)
goto setup_rings;
ice_vsi_cfg_frame_size(vsi);
setup_rings:
/* set up individual rings */
ice_for_each_rxq(vsi, i) {
int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
if (err)
return err;
}
return 0;
}
/**
* __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
* @qs_cfg: gathered variables needed for pf->vsi queues assignment
*
* This function first tries to find contiguous space. If it is not successful,
* it tries with the scatter approach.
*
* Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
*/
int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
{
int ret = 0;
ret = __ice_vsi_get_qs_contig(qs_cfg);
if (ret) {
/* contig failed, so try with scatter approach */
qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
qs_cfg->scatter_count);
ret = __ice_vsi_get_qs_sc(qs_cfg);
}
return ret;
}
/**
* ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
* @vsi: the VSI being configured
* @ena: start or stop the Rx ring
* @rxq_idx: 0-based Rx queue index for the VSI passed in
* @wait: wait or don't wait for configuration to finish in hardware
*
* Return 0 on success and negative on error.
*/
int
ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
{
int pf_q = vsi->rxq_map[rxq_idx];
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
u32 rx_reg;
rx_reg = rd32(hw, QRX_CTRL(pf_q));
/* Skip if the queue is already in the requested state */
if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
return 0;
/* turn on/off the queue */
if (ena)
rx_reg |= QRX_CTRL_QENA_REQ_M;
else
rx_reg &= ~QRX_CTRL_QENA_REQ_M;
wr32(hw, QRX_CTRL(pf_q), rx_reg);
if (!wait)
return 0;
ice_flush(hw);
return ice_pf_rxq_wait(pf, pf_q, ena);
}
/**
* ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
* @vsi: the VSI being configured
* @ena: true/false to verify Rx ring has been enabled/disabled respectively
* @rxq_idx: 0-based Rx queue index for the VSI passed in
*
* This routine will wait for the given Rx queue of the VSI to reach the
* enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
* the requested state after multiple retries; else will return 0 in case of
* success.
*/
int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
{
int pf_q = vsi->rxq_map[rxq_idx];
struct ice_pf *pf = vsi->back;
return ice_pf_rxq_wait(pf, pf_q, ena);
}
/**
* ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
* @vsi: the VSI being configured
*
* We allocate one q_vector per queue interrupt. If allocation fails we
* return -ENOMEM.
*/
int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
{
struct device *dev = ice_pf_to_dev(vsi->back);
u16 v_idx;
int err;
if (vsi->q_vectors[0]) {
dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
return -EEXIST;
}
for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
err = ice_vsi_alloc_q_vector(vsi, v_idx);
if (err)
goto err_out;
}
return 0;
err_out:
while (v_idx--)
ice_free_q_vector(vsi, v_idx);
dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
vsi->num_q_vectors, vsi->vsi_num, err);
vsi->num_q_vectors = 0;
return err;
}
/**
* ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
* @vsi: the VSI being configured
*
* This function maps descriptor rings to the queue-specific vectors allotted
* through the MSI-X enabling code. On a constrained vector budget, we map Tx
* and Rx rings to the vector as "efficiently" as possible.
*/
void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
{
int q_vectors = vsi->num_q_vectors;
u16 tx_rings_rem, rx_rings_rem;
int v_id;
/* initially assigning remaining rings count to VSIs num queue value */
tx_rings_rem = vsi->num_txq;
rx_rings_rem = vsi->num_rxq;
for (v_id = 0; v_id < q_vectors; v_id++) {
struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
u8 tx_rings_per_v, rx_rings_per_v;
u16 q_id, q_base;
/* Tx rings mapping to vector */
tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
q_vectors - v_id);
q_vector->num_ring_tx = tx_rings_per_v;
q_vector->tx.tx_ring = NULL;
q_vector->tx.itr_idx = ICE_TX_ITR;
q_base = vsi->num_txq - tx_rings_rem;
for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];
tx_ring->q_vector = q_vector;
tx_ring->next = q_vector->tx.tx_ring;
q_vector->tx.tx_ring = tx_ring;
}
tx_rings_rem -= tx_rings_per_v;
/* Rx rings mapping to vector */
rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
q_vectors - v_id);
q_vector->num_ring_rx = rx_rings_per_v;
q_vector->rx.rx_ring = NULL;
q_vector->rx.itr_idx = ICE_RX_ITR;
q_base = vsi->num_rxq - rx_rings_rem;
for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];
rx_ring->q_vector = q_vector;
rx_ring->next = q_vector->rx.rx_ring;
q_vector->rx.rx_ring = rx_ring;
}
rx_rings_rem -= rx_rings_per_v;
}
if (ice_is_xdp_ena_vsi(vsi))
ice_map_xdp_rings(vsi);
}
/**
* ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
* @vsi: the VSI having memory freed
*/
void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
{
int v_idx;
ice_for_each_q_vector(vsi, v_idx)
ice_free_q_vector(vsi, v_idx);
vsi->num_q_vectors = 0;
}
/**
* ice_vsi_cfg_txq - Configure single Tx queue
* @vsi: the VSI that queue belongs to
* @ring: Tx ring to be configured
* @qg_buf: queue group buffer
*/
static int
ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring,
struct ice_aqc_add_tx_qgrp *qg_buf)
{
u8 buf_len = struct_size(qg_buf, txqs, 1);
struct ice_tlan_ctx tlan_ctx = { 0 };
struct ice_aqc_add_txqs_perq *txq;
struct ice_channel *ch = ring->ch;
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
int status;
u16 pf_q;
u8 tc;
/* Configure XPS */
ice_cfg_xps_tx_ring(ring);
pf_q = ring->reg_idx;
ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
/* copy context contents into the qg_buf */
qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
ice_tlan_ctx_info);
/* init queue specific tail reg. It is referred as
* transmit comm scheduler queue doorbell.
*/
ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
if (IS_ENABLED(CONFIG_DCB))
tc = ring->dcb_tc;
else
tc = 0;
/* Add unique software queue handle of the Tx queue per
* TC into the VSI Tx ring
*/
ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
if (ch)
status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0,
ring->q_handle, 1, qg_buf, buf_len,
NULL);
else
status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
ring->q_handle, 1, qg_buf, buf_len,
NULL);
if (status) {
dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
status);
return status;
}
/* Add Tx Queue TEID into the VSI Tx ring from the
* response. This will complete configuring and
* enabling the queue.
*/
txq = &qg_buf->txqs[0];
if (pf_q == le16_to_cpu(txq->txq_id))
ring->txq_teid = le32_to_cpu(txq->q_teid);
return 0;
}
int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings,
u16 q_idx)
{
DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
return -EINVAL;
qg_buf->num_txqs = 1;
return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
}
/**
* ice_vsi_cfg_txqs - Configure the VSI for Tx
* @vsi: the VSI being configured
* @rings: Tx ring array to be configured
* @count: number of Tx ring array elements
*
* Return 0 on success and a negative value on error
* Configure the Tx VSI for operation.
*/
static int
ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
{
DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
int err = 0;
u16 q_idx;
qg_buf->num_txqs = 1;
for (q_idx = 0; q_idx < count; q_idx++) {
err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
if (err)
break;
}
return err;
}
/**
* ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
* @vsi: the VSI being configured
*
* Return 0 on success and a negative value on error
* Configure the Tx VSI for operation.
*/
int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
{
return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
}
/**
* ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
* @vsi: the VSI being configured
*
* Return 0 on success and a negative value on error
* Configure the Tx queues dedicated for XDP in given VSI for operation.
*/
int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
{
int ret;
int i;
ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
if (ret)
return ret;
ice_for_each_rxq(vsi, i)
ice_tx_xsk_pool(vsi, i);
return 0;
}
/**
* ice_cfg_itr - configure the initial interrupt throttle values
* @hw: pointer to the HW structure
* @q_vector: interrupt vector that's being configured
*
* Configure interrupt throttling values for the ring containers that are
* associated with the interrupt vector passed in.
*/
void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
{
ice_cfg_itr_gran(hw);
if (q_vector->num_ring_rx)
ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
if (q_vector->num_ring_tx)
ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
ice_write_intrl(q_vector, q_vector->intrl);
}
/**
* ice_cfg_txq_interrupt - configure interrupt on Tx queue
* @vsi: the VSI being configured
* @txq: Tx queue being mapped to MSI-X vector
* @msix_idx: MSI-X vector index within the function
* @itr_idx: ITR index of the interrupt cause
*
* Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
* within the function space.
*/
void
ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
u32 val;
itr_idx = FIELD_PREP(QINT_TQCTL_ITR_INDX_M, itr_idx);
val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
FIELD_PREP(QINT_TQCTL_MSIX_INDX_M, msix_idx);
wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
if (ice_is_xdp_ena_vsi(vsi)) {
u32 xdp_txq = txq + vsi->num_xdp_txq;
wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
val);
}
ice_flush(hw);
}
/**
* ice_cfg_rxq_interrupt - configure interrupt on Rx queue
* @vsi: the VSI being configured
* @rxq: Rx queue being mapped to MSI-X vector
* @msix_idx: MSI-X vector index within the function
* @itr_idx: ITR index of the interrupt cause
*
* Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
* within the function space.
*/
void
ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
u32 val;
itr_idx = FIELD_PREP(QINT_RQCTL_ITR_INDX_M, itr_idx);
val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
FIELD_PREP(QINT_RQCTL_MSIX_INDX_M, msix_idx);
wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
ice_flush(hw);
}
/**
* ice_trigger_sw_intr - trigger a software interrupt
* @hw: pointer to the HW structure
* @q_vector: interrupt vector to trigger the software interrupt for
*/
void ice_trigger_sw_intr(struct ice_hw *hw, const struct ice_q_vector *q_vector)
{
wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
(ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
GLINT_DYN_CTL_SWINT_TRIG_M |
GLINT_DYN_CTL_INTENA_M);
}
/**
* ice_vsi_stop_tx_ring - Disable single Tx ring
* @vsi: the VSI being configured
* @rst_src: reset source
* @rel_vmvf_num: Relative ID of VF/VM
* @ring: Tx ring to be stopped
* @txq_meta: Meta data of Tx ring to be stopped
*/
int
ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
u16 rel_vmvf_num, struct ice_tx_ring *ring,
struct ice_txq_meta *txq_meta)
{
struct ice_pf *pf = vsi->back;
struct ice_q_vector *q_vector;
struct ice_hw *hw = &pf->hw;
int status;
u32 val;
/* clear cause_ena bit for disabled queues */
val = rd32(hw, QINT_TQCTL(ring->reg_idx));
val &= ~QINT_TQCTL_CAUSE_ENA_M;
wr32(hw, QINT_TQCTL(ring->reg_idx), val);
/* software is expected to wait for 100 ns */
ndelay(100);
/* trigger a software interrupt for the vector
* associated to the queue to schedule NAPI handler
*/
q_vector = ring->q_vector;
if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf)))
ice_trigger_sw_intr(hw, q_vector);
status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
txq_meta->tc, 1, &txq_meta->q_handle,
&txq_meta->q_id, &txq_meta->q_teid, rst_src,
rel_vmvf_num, NULL);
/* if the disable queue command was exercised during an
* active reset flow, -EBUSY is returned.
* This is not an error as the reset operation disables
* queues at the hardware level anyway.
*/
if (status == -EBUSY) {
dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
} else if (status == -ENOENT) {
dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
} else if (status) {
dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
status);
return status;
}
return 0;
}
/**
* ice_fill_txq_meta - Prepare the Tx queue's meta data
* @vsi: VSI that ring belongs to
* @ring: ring that txq_meta will be based on
* @txq_meta: a helper struct that wraps Tx queue's information
*
* Set up a helper struct that will contain all the necessary fields that
* are needed for stopping Tx queue
*/
void
ice_fill_txq_meta(const struct ice_vsi *vsi, struct ice_tx_ring *ring,
struct ice_txq_meta *txq_meta)
{
struct ice_channel *ch = ring->ch;
u8 tc;
if (IS_ENABLED(CONFIG_DCB))
tc = ring->dcb_tc;
else
tc = 0;
txq_meta->q_id = ring->reg_idx;
txq_meta->q_teid = ring->txq_teid;
txq_meta->q_handle = ring->q_handle;
if (ch) {
txq_meta->vsi_idx = ch->ch_vsi->idx;
txq_meta->tc = 0;
} else {
txq_meta->vsi_idx = vsi->idx;
txq_meta->tc = tc;
}
}
|