1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
|
// SPDX-License-Identifier: GPL-2.0+
//
// Freescale i.MX7ULP LPSPI driver
//
// Copyright 2016 Freescale Semiconductor, Inc.
// Copyright 2018 NXP Semiconductors
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/dma/imx-dma.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
#include <linux/types.h>
#define DRIVER_NAME "fsl_lpspi"
#define FSL_LPSPI_RPM_TIMEOUT 50 /* 50ms */
/* The maximum bytes that edma can transfer once.*/
#define FSL_LPSPI_MAX_EDMA_BYTES ((1 << 15) - 1)
/* i.MX7ULP LPSPI registers */
#define IMX7ULP_VERID 0x0
#define IMX7ULP_PARAM 0x4
#define IMX7ULP_CR 0x10
#define IMX7ULP_SR 0x14
#define IMX7ULP_IER 0x18
#define IMX7ULP_DER 0x1c
#define IMX7ULP_CFGR0 0x20
#define IMX7ULP_CFGR1 0x24
#define IMX7ULP_DMR0 0x30
#define IMX7ULP_DMR1 0x34
#define IMX7ULP_CCR 0x40
#define IMX7ULP_FCR 0x58
#define IMX7ULP_FSR 0x5c
#define IMX7ULP_TCR 0x60
#define IMX7ULP_TDR 0x64
#define IMX7ULP_RSR 0x70
#define IMX7ULP_RDR 0x74
/* General control register field define */
#define CR_RRF BIT(9)
#define CR_RTF BIT(8)
#define CR_RST BIT(1)
#define CR_MEN BIT(0)
#define SR_MBF BIT(24)
#define SR_TCF BIT(10)
#define SR_FCF BIT(9)
#define SR_RDF BIT(1)
#define SR_TDF BIT(0)
#define IER_TCIE BIT(10)
#define IER_FCIE BIT(9)
#define IER_RDIE BIT(1)
#define IER_TDIE BIT(0)
#define DER_RDDE BIT(1)
#define DER_TDDE BIT(0)
#define CFGR1_PCSCFG BIT(27)
#define CFGR1_PINCFG (BIT(24)|BIT(25))
#define CFGR1_PCSPOL BIT(8)
#define CFGR1_NOSTALL BIT(3)
#define CFGR1_MASTER BIT(0)
#define FSR_TXCOUNT (0xFF)
#define RSR_RXEMPTY BIT(1)
#define TCR_CPOL BIT(31)
#define TCR_CPHA BIT(30)
#define TCR_CONT BIT(21)
#define TCR_CONTC BIT(20)
#define TCR_RXMSK BIT(19)
#define TCR_TXMSK BIT(18)
struct lpspi_config {
u8 bpw;
u8 chip_select;
u8 prescale;
u16 mode;
u32 speed_hz;
};
struct fsl_lpspi_data {
struct device *dev;
void __iomem *base;
unsigned long base_phys;
struct clk *clk_ipg;
struct clk *clk_per;
bool is_slave;
u32 num_cs;
bool is_only_cs1;
bool is_first_byte;
void *rx_buf;
const void *tx_buf;
void (*tx)(struct fsl_lpspi_data *);
void (*rx)(struct fsl_lpspi_data *);
u32 remain;
u8 watermark;
u8 txfifosize;
u8 rxfifosize;
struct lpspi_config config;
struct completion xfer_done;
bool slave_aborted;
/* DMA */
bool usedma;
struct completion dma_rx_completion;
struct completion dma_tx_completion;
};
static const struct of_device_id fsl_lpspi_dt_ids[] = {
{ .compatible = "fsl,imx7ulp-spi", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_lpspi_dt_ids);
#define LPSPI_BUF_RX(type) \
static void fsl_lpspi_buf_rx_##type(struct fsl_lpspi_data *fsl_lpspi) \
{ \
unsigned int val = readl(fsl_lpspi->base + IMX7ULP_RDR); \
\
if (fsl_lpspi->rx_buf) { \
*(type *)fsl_lpspi->rx_buf = val; \
fsl_lpspi->rx_buf += sizeof(type); \
} \
}
#define LPSPI_BUF_TX(type) \
static void fsl_lpspi_buf_tx_##type(struct fsl_lpspi_data *fsl_lpspi) \
{ \
type val = 0; \
\
if (fsl_lpspi->tx_buf) { \
val = *(type *)fsl_lpspi->tx_buf; \
fsl_lpspi->tx_buf += sizeof(type); \
} \
\
fsl_lpspi->remain -= sizeof(type); \
writel(val, fsl_lpspi->base + IMX7ULP_TDR); \
}
LPSPI_BUF_RX(u8)
LPSPI_BUF_TX(u8)
LPSPI_BUF_RX(u16)
LPSPI_BUF_TX(u16)
LPSPI_BUF_RX(u32)
LPSPI_BUF_TX(u32)
static void fsl_lpspi_intctrl(struct fsl_lpspi_data *fsl_lpspi,
unsigned int enable)
{
writel(enable, fsl_lpspi->base + IMX7ULP_IER);
}
static int fsl_lpspi_bytes_per_word(const int bpw)
{
return DIV_ROUND_UP(bpw, BITS_PER_BYTE);
}
static bool fsl_lpspi_can_dma(struct spi_controller *controller,
struct spi_device *spi,
struct spi_transfer *transfer)
{
unsigned int bytes_per_word;
if (!controller->dma_rx)
return false;
bytes_per_word = fsl_lpspi_bytes_per_word(transfer->bits_per_word);
switch (bytes_per_word) {
case 1:
case 2:
case 4:
break;
default:
return false;
}
return true;
}
static int lpspi_prepare_xfer_hardware(struct spi_controller *controller)
{
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(controller);
int ret;
ret = pm_runtime_resume_and_get(fsl_lpspi->dev);
if (ret < 0) {
dev_err(fsl_lpspi->dev, "failed to enable clock\n");
return ret;
}
return 0;
}
static int lpspi_unprepare_xfer_hardware(struct spi_controller *controller)
{
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(controller);
pm_runtime_mark_last_busy(fsl_lpspi->dev);
pm_runtime_put_autosuspend(fsl_lpspi->dev);
return 0;
}
static void fsl_lpspi_write_tx_fifo(struct fsl_lpspi_data *fsl_lpspi)
{
u8 txfifo_cnt;
u32 temp;
txfifo_cnt = readl(fsl_lpspi->base + IMX7ULP_FSR) & 0xff;
while (txfifo_cnt < fsl_lpspi->txfifosize) {
if (!fsl_lpspi->remain)
break;
fsl_lpspi->tx(fsl_lpspi);
txfifo_cnt++;
}
if (txfifo_cnt < fsl_lpspi->txfifosize) {
if (!fsl_lpspi->is_slave) {
temp = readl(fsl_lpspi->base + IMX7ULP_TCR);
temp &= ~TCR_CONTC;
writel(temp, fsl_lpspi->base + IMX7ULP_TCR);
}
fsl_lpspi_intctrl(fsl_lpspi, IER_FCIE);
} else
fsl_lpspi_intctrl(fsl_lpspi, IER_TDIE);
}
static void fsl_lpspi_read_rx_fifo(struct fsl_lpspi_data *fsl_lpspi)
{
while (!(readl(fsl_lpspi->base + IMX7ULP_RSR) & RSR_RXEMPTY))
fsl_lpspi->rx(fsl_lpspi);
}
static void fsl_lpspi_set_cmd(struct fsl_lpspi_data *fsl_lpspi)
{
u32 temp = 0;
temp |= fsl_lpspi->config.bpw - 1;
temp |= (fsl_lpspi->config.mode & 0x3) << 30;
temp |= (fsl_lpspi->config.chip_select & 0x3) << 24;
if (!fsl_lpspi->is_slave) {
temp |= fsl_lpspi->config.prescale << 27;
/*
* Set TCR_CONT will keep SS asserted after current transfer.
* For the first transfer, clear TCR_CONTC to assert SS.
* For subsequent transfer, set TCR_CONTC to keep SS asserted.
*/
if (!fsl_lpspi->usedma) {
temp |= TCR_CONT;
if (fsl_lpspi->is_first_byte)
temp &= ~TCR_CONTC;
else
temp |= TCR_CONTC;
}
}
writel(temp, fsl_lpspi->base + IMX7ULP_TCR);
dev_dbg(fsl_lpspi->dev, "TCR=0x%x\n", temp);
}
static void fsl_lpspi_set_watermark(struct fsl_lpspi_data *fsl_lpspi)
{
u32 temp;
if (!fsl_lpspi->usedma)
temp = fsl_lpspi->watermark >> 1 |
(fsl_lpspi->watermark >> 1) << 16;
else
temp = fsl_lpspi->watermark >> 1;
writel(temp, fsl_lpspi->base + IMX7ULP_FCR);
dev_dbg(fsl_lpspi->dev, "FCR=0x%x\n", temp);
}
static int fsl_lpspi_set_bitrate(struct fsl_lpspi_data *fsl_lpspi)
{
struct lpspi_config config = fsl_lpspi->config;
unsigned int perclk_rate, scldiv;
u8 prescale;
perclk_rate = clk_get_rate(fsl_lpspi->clk_per);
if (!config.speed_hz) {
dev_err(fsl_lpspi->dev,
"error: the transmission speed provided is 0!\n");
return -EINVAL;
}
if (config.speed_hz > perclk_rate / 2) {
dev_err(fsl_lpspi->dev,
"per-clk should be at least two times of transfer speed");
return -EINVAL;
}
for (prescale = 0; prescale < 8; prescale++) {
scldiv = perclk_rate / config.speed_hz / (1 << prescale) - 2;
if (scldiv < 256) {
fsl_lpspi->config.prescale = prescale;
break;
}
}
if (scldiv >= 256)
return -EINVAL;
writel(scldiv | (scldiv << 8) | ((scldiv >> 1) << 16),
fsl_lpspi->base + IMX7ULP_CCR);
dev_dbg(fsl_lpspi->dev, "perclk=%d, speed=%d, prescale=%d, scldiv=%d\n",
perclk_rate, config.speed_hz, prescale, scldiv);
return 0;
}
static int fsl_lpspi_dma_configure(struct spi_controller *controller)
{
int ret;
enum dma_slave_buswidth buswidth;
struct dma_slave_config rx = {}, tx = {};
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(controller);
switch (fsl_lpspi_bytes_per_word(fsl_lpspi->config.bpw)) {
case 4:
buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
break;
case 2:
buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
break;
case 1:
buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
break;
default:
return -EINVAL;
}
tx.direction = DMA_MEM_TO_DEV;
tx.dst_addr = fsl_lpspi->base_phys + IMX7ULP_TDR;
tx.dst_addr_width = buswidth;
tx.dst_maxburst = 1;
ret = dmaengine_slave_config(controller->dma_tx, &tx);
if (ret) {
dev_err(fsl_lpspi->dev, "TX dma configuration failed with %d\n",
ret);
return ret;
}
rx.direction = DMA_DEV_TO_MEM;
rx.src_addr = fsl_lpspi->base_phys + IMX7ULP_RDR;
rx.src_addr_width = buswidth;
rx.src_maxburst = 1;
ret = dmaengine_slave_config(controller->dma_rx, &rx);
if (ret) {
dev_err(fsl_lpspi->dev, "RX dma configuration failed with %d\n",
ret);
return ret;
}
return 0;
}
static int fsl_lpspi_config(struct fsl_lpspi_data *fsl_lpspi)
{
u32 temp;
int ret;
if (!fsl_lpspi->is_slave) {
ret = fsl_lpspi_set_bitrate(fsl_lpspi);
if (ret)
return ret;
}
fsl_lpspi_set_watermark(fsl_lpspi);
if (!fsl_lpspi->is_slave)
temp = CFGR1_MASTER;
else
temp = CFGR1_PINCFG;
if (fsl_lpspi->config.mode & SPI_CS_HIGH)
temp |= CFGR1_PCSPOL;
writel(temp, fsl_lpspi->base + IMX7ULP_CFGR1);
temp = readl(fsl_lpspi->base + IMX7ULP_CR);
temp |= CR_RRF | CR_RTF | CR_MEN;
writel(temp, fsl_lpspi->base + IMX7ULP_CR);
temp = 0;
if (fsl_lpspi->usedma)
temp = DER_TDDE | DER_RDDE;
writel(temp, fsl_lpspi->base + IMX7ULP_DER);
return 0;
}
static int fsl_lpspi_setup_transfer(struct spi_controller *controller,
struct spi_device *spi,
struct spi_transfer *t)
{
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(spi->controller);
if (t == NULL)
return -EINVAL;
fsl_lpspi->config.mode = spi->mode;
fsl_lpspi->config.bpw = t->bits_per_word;
fsl_lpspi->config.speed_hz = t->speed_hz;
if (fsl_lpspi->is_only_cs1)
fsl_lpspi->config.chip_select = 1;
else
fsl_lpspi->config.chip_select = spi_get_chipselect(spi, 0);
if (!fsl_lpspi->config.speed_hz)
fsl_lpspi->config.speed_hz = spi->max_speed_hz;
if (!fsl_lpspi->config.bpw)
fsl_lpspi->config.bpw = spi->bits_per_word;
/* Initialize the functions for transfer */
if (fsl_lpspi->config.bpw <= 8) {
fsl_lpspi->rx = fsl_lpspi_buf_rx_u8;
fsl_lpspi->tx = fsl_lpspi_buf_tx_u8;
} else if (fsl_lpspi->config.bpw <= 16) {
fsl_lpspi->rx = fsl_lpspi_buf_rx_u16;
fsl_lpspi->tx = fsl_lpspi_buf_tx_u16;
} else {
fsl_lpspi->rx = fsl_lpspi_buf_rx_u32;
fsl_lpspi->tx = fsl_lpspi_buf_tx_u32;
}
if (t->len <= fsl_lpspi->txfifosize)
fsl_lpspi->watermark = t->len;
else
fsl_lpspi->watermark = fsl_lpspi->txfifosize;
if (fsl_lpspi_can_dma(controller, spi, t))
fsl_lpspi->usedma = true;
else
fsl_lpspi->usedma = false;
return fsl_lpspi_config(fsl_lpspi);
}
static int fsl_lpspi_slave_abort(struct spi_controller *controller)
{
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(controller);
fsl_lpspi->slave_aborted = true;
if (!fsl_lpspi->usedma)
complete(&fsl_lpspi->xfer_done);
else {
complete(&fsl_lpspi->dma_tx_completion);
complete(&fsl_lpspi->dma_rx_completion);
}
return 0;
}
static int fsl_lpspi_wait_for_completion(struct spi_controller *controller)
{
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(controller);
if (fsl_lpspi->is_slave) {
if (wait_for_completion_interruptible(&fsl_lpspi->xfer_done) ||
fsl_lpspi->slave_aborted) {
dev_dbg(fsl_lpspi->dev, "interrupted\n");
return -EINTR;
}
} else {
if (!wait_for_completion_timeout(&fsl_lpspi->xfer_done, HZ)) {
dev_dbg(fsl_lpspi->dev, "wait for completion timeout\n");
return -ETIMEDOUT;
}
}
return 0;
}
static int fsl_lpspi_reset(struct fsl_lpspi_data *fsl_lpspi)
{
u32 temp;
if (!fsl_lpspi->usedma) {
/* Disable all interrupt */
fsl_lpspi_intctrl(fsl_lpspi, 0);
}
/* W1C for all flags in SR */
temp = 0x3F << 8;
writel(temp, fsl_lpspi->base + IMX7ULP_SR);
/* Clear FIFO and disable module */
temp = CR_RRF | CR_RTF;
writel(temp, fsl_lpspi->base + IMX7ULP_CR);
return 0;
}
static void fsl_lpspi_dma_rx_callback(void *cookie)
{
struct fsl_lpspi_data *fsl_lpspi = (struct fsl_lpspi_data *)cookie;
complete(&fsl_lpspi->dma_rx_completion);
}
static void fsl_lpspi_dma_tx_callback(void *cookie)
{
struct fsl_lpspi_data *fsl_lpspi = (struct fsl_lpspi_data *)cookie;
complete(&fsl_lpspi->dma_tx_completion);
}
static int fsl_lpspi_calculate_timeout(struct fsl_lpspi_data *fsl_lpspi,
int size)
{
unsigned long timeout = 0;
/* Time with actual data transfer and CS change delay related to HW */
timeout = (8 + 4) * size / fsl_lpspi->config.speed_hz;
/* Add extra second for scheduler related activities */
timeout += 1;
/* Double calculated timeout */
return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC);
}
static int fsl_lpspi_dma_transfer(struct spi_controller *controller,
struct fsl_lpspi_data *fsl_lpspi,
struct spi_transfer *transfer)
{
struct dma_async_tx_descriptor *desc_tx, *desc_rx;
unsigned long transfer_timeout;
unsigned long timeout;
struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg;
int ret;
ret = fsl_lpspi_dma_configure(controller);
if (ret)
return ret;
desc_rx = dmaengine_prep_slave_sg(controller->dma_rx,
rx->sgl, rx->nents, DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc_rx)
return -EINVAL;
desc_rx->callback = fsl_lpspi_dma_rx_callback;
desc_rx->callback_param = (void *)fsl_lpspi;
dmaengine_submit(desc_rx);
reinit_completion(&fsl_lpspi->dma_rx_completion);
dma_async_issue_pending(controller->dma_rx);
desc_tx = dmaengine_prep_slave_sg(controller->dma_tx,
tx->sgl, tx->nents, DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc_tx) {
dmaengine_terminate_all(controller->dma_tx);
return -EINVAL;
}
desc_tx->callback = fsl_lpspi_dma_tx_callback;
desc_tx->callback_param = (void *)fsl_lpspi;
dmaengine_submit(desc_tx);
reinit_completion(&fsl_lpspi->dma_tx_completion);
dma_async_issue_pending(controller->dma_tx);
fsl_lpspi->slave_aborted = false;
if (!fsl_lpspi->is_slave) {
transfer_timeout = fsl_lpspi_calculate_timeout(fsl_lpspi,
transfer->len);
/* Wait eDMA to finish the data transfer.*/
timeout = wait_for_completion_timeout(&fsl_lpspi->dma_tx_completion,
transfer_timeout);
if (!timeout) {
dev_err(fsl_lpspi->dev, "I/O Error in DMA TX\n");
dmaengine_terminate_all(controller->dma_tx);
dmaengine_terminate_all(controller->dma_rx);
fsl_lpspi_reset(fsl_lpspi);
return -ETIMEDOUT;
}
timeout = wait_for_completion_timeout(&fsl_lpspi->dma_rx_completion,
transfer_timeout);
if (!timeout) {
dev_err(fsl_lpspi->dev, "I/O Error in DMA RX\n");
dmaengine_terminate_all(controller->dma_tx);
dmaengine_terminate_all(controller->dma_rx);
fsl_lpspi_reset(fsl_lpspi);
return -ETIMEDOUT;
}
} else {
if (wait_for_completion_interruptible(&fsl_lpspi->dma_tx_completion) ||
fsl_lpspi->slave_aborted) {
dev_dbg(fsl_lpspi->dev,
"I/O Error in DMA TX interrupted\n");
dmaengine_terminate_all(controller->dma_tx);
dmaengine_terminate_all(controller->dma_rx);
fsl_lpspi_reset(fsl_lpspi);
return -EINTR;
}
if (wait_for_completion_interruptible(&fsl_lpspi->dma_rx_completion) ||
fsl_lpspi->slave_aborted) {
dev_dbg(fsl_lpspi->dev,
"I/O Error in DMA RX interrupted\n");
dmaengine_terminate_all(controller->dma_tx);
dmaengine_terminate_all(controller->dma_rx);
fsl_lpspi_reset(fsl_lpspi);
return -EINTR;
}
}
fsl_lpspi_reset(fsl_lpspi);
return 0;
}
static void fsl_lpspi_dma_exit(struct spi_controller *controller)
{
if (controller->dma_rx) {
dma_release_channel(controller->dma_rx);
controller->dma_rx = NULL;
}
if (controller->dma_tx) {
dma_release_channel(controller->dma_tx);
controller->dma_tx = NULL;
}
}
static int fsl_lpspi_dma_init(struct device *dev,
struct fsl_lpspi_data *fsl_lpspi,
struct spi_controller *controller)
{
int ret;
/* Prepare for TX DMA: */
controller->dma_tx = dma_request_chan(dev, "tx");
if (IS_ERR(controller->dma_tx)) {
ret = PTR_ERR(controller->dma_tx);
dev_dbg(dev, "can't get the TX DMA channel, error %d!\n", ret);
controller->dma_tx = NULL;
goto err;
}
/* Prepare for RX DMA: */
controller->dma_rx = dma_request_chan(dev, "rx");
if (IS_ERR(controller->dma_rx)) {
ret = PTR_ERR(controller->dma_rx);
dev_dbg(dev, "can't get the RX DMA channel, error %d\n", ret);
controller->dma_rx = NULL;
goto err;
}
init_completion(&fsl_lpspi->dma_rx_completion);
init_completion(&fsl_lpspi->dma_tx_completion);
controller->can_dma = fsl_lpspi_can_dma;
controller->max_dma_len = FSL_LPSPI_MAX_EDMA_BYTES;
return 0;
err:
fsl_lpspi_dma_exit(controller);
return ret;
}
static int fsl_lpspi_pio_transfer(struct spi_controller *controller,
struct spi_transfer *t)
{
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(controller);
int ret;
fsl_lpspi->tx_buf = t->tx_buf;
fsl_lpspi->rx_buf = t->rx_buf;
fsl_lpspi->remain = t->len;
reinit_completion(&fsl_lpspi->xfer_done);
fsl_lpspi->slave_aborted = false;
fsl_lpspi_write_tx_fifo(fsl_lpspi);
ret = fsl_lpspi_wait_for_completion(controller);
if (ret)
return ret;
fsl_lpspi_reset(fsl_lpspi);
return 0;
}
static int fsl_lpspi_transfer_one(struct spi_controller *controller,
struct spi_device *spi,
struct spi_transfer *t)
{
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(controller);
int ret;
fsl_lpspi->is_first_byte = true;
ret = fsl_lpspi_setup_transfer(controller, spi, t);
if (ret < 0)
return ret;
fsl_lpspi_set_cmd(fsl_lpspi);
fsl_lpspi->is_first_byte = false;
if (fsl_lpspi->usedma)
ret = fsl_lpspi_dma_transfer(controller, fsl_lpspi, t);
else
ret = fsl_lpspi_pio_transfer(controller, t);
if (ret < 0)
return ret;
return 0;
}
static irqreturn_t fsl_lpspi_isr(int irq, void *dev_id)
{
u32 temp_SR, temp_IER;
struct fsl_lpspi_data *fsl_lpspi = dev_id;
temp_IER = readl(fsl_lpspi->base + IMX7ULP_IER);
fsl_lpspi_intctrl(fsl_lpspi, 0);
temp_SR = readl(fsl_lpspi->base + IMX7ULP_SR);
fsl_lpspi_read_rx_fifo(fsl_lpspi);
if ((temp_SR & SR_TDF) && (temp_IER & IER_TDIE)) {
fsl_lpspi_write_tx_fifo(fsl_lpspi);
return IRQ_HANDLED;
}
if (temp_SR & SR_MBF ||
readl(fsl_lpspi->base + IMX7ULP_FSR) & FSR_TXCOUNT) {
writel(SR_FCF, fsl_lpspi->base + IMX7ULP_SR);
fsl_lpspi_intctrl(fsl_lpspi, IER_FCIE);
return IRQ_HANDLED;
}
if (temp_SR & SR_FCF && (temp_IER & IER_FCIE)) {
writel(SR_FCF, fsl_lpspi->base + IMX7ULP_SR);
complete(&fsl_lpspi->xfer_done);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
#ifdef CONFIG_PM
static int fsl_lpspi_runtime_resume(struct device *dev)
{
struct spi_controller *controller = dev_get_drvdata(dev);
struct fsl_lpspi_data *fsl_lpspi;
int ret;
fsl_lpspi = spi_controller_get_devdata(controller);
ret = clk_prepare_enable(fsl_lpspi->clk_per);
if (ret)
return ret;
ret = clk_prepare_enable(fsl_lpspi->clk_ipg);
if (ret) {
clk_disable_unprepare(fsl_lpspi->clk_per);
return ret;
}
return 0;
}
static int fsl_lpspi_runtime_suspend(struct device *dev)
{
struct spi_controller *controller = dev_get_drvdata(dev);
struct fsl_lpspi_data *fsl_lpspi;
fsl_lpspi = spi_controller_get_devdata(controller);
clk_disable_unprepare(fsl_lpspi->clk_per);
clk_disable_unprepare(fsl_lpspi->clk_ipg);
return 0;
}
#endif
static int fsl_lpspi_init_rpm(struct fsl_lpspi_data *fsl_lpspi)
{
struct device *dev = fsl_lpspi->dev;
pm_runtime_enable(dev);
pm_runtime_set_autosuspend_delay(dev, FSL_LPSPI_RPM_TIMEOUT);
pm_runtime_use_autosuspend(dev);
return 0;
}
static int fsl_lpspi_probe(struct platform_device *pdev)
{
struct fsl_lpspi_data *fsl_lpspi;
struct spi_controller *controller;
struct resource *res;
int ret, irq;
u32 temp;
bool is_slave;
is_slave = of_property_read_bool((&pdev->dev)->of_node, "spi-slave");
if (is_slave)
controller = spi_alloc_slave(&pdev->dev,
sizeof(struct fsl_lpspi_data));
else
controller = spi_alloc_master(&pdev->dev,
sizeof(struct fsl_lpspi_data));
if (!controller)
return -ENOMEM;
platform_set_drvdata(pdev, controller);
fsl_lpspi = spi_controller_get_devdata(controller);
fsl_lpspi->dev = &pdev->dev;
fsl_lpspi->is_slave = is_slave;
fsl_lpspi->is_only_cs1 = of_property_read_bool((&pdev->dev)->of_node,
"fsl,spi-only-use-cs1-sel");
if (of_property_read_u32((&pdev->dev)->of_node, "num-cs",
&fsl_lpspi->num_cs))
fsl_lpspi->num_cs = 1;
controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
controller->transfer_one = fsl_lpspi_transfer_one;
controller->prepare_transfer_hardware = lpspi_prepare_xfer_hardware;
controller->unprepare_transfer_hardware = lpspi_unprepare_xfer_hardware;
controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
controller->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX;
controller->dev.of_node = pdev->dev.of_node;
controller->bus_num = pdev->id;
controller->num_chipselect = fsl_lpspi->num_cs;
controller->slave_abort = fsl_lpspi_slave_abort;
if (!fsl_lpspi->is_slave)
controller->use_gpio_descriptors = true;
init_completion(&fsl_lpspi->xfer_done);
fsl_lpspi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(fsl_lpspi->base)) {
ret = PTR_ERR(fsl_lpspi->base);
goto out_controller_put;
}
fsl_lpspi->base_phys = res->start;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = irq;
goto out_controller_put;
}
ret = devm_request_irq(&pdev->dev, irq, fsl_lpspi_isr, 0,
dev_name(&pdev->dev), fsl_lpspi);
if (ret) {
dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
goto out_controller_put;
}
fsl_lpspi->clk_per = devm_clk_get(&pdev->dev, "per");
if (IS_ERR(fsl_lpspi->clk_per)) {
ret = PTR_ERR(fsl_lpspi->clk_per);
goto out_controller_put;
}
fsl_lpspi->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
if (IS_ERR(fsl_lpspi->clk_ipg)) {
ret = PTR_ERR(fsl_lpspi->clk_ipg);
goto out_controller_put;
}
/* enable the clock */
ret = fsl_lpspi_init_rpm(fsl_lpspi);
if (ret)
goto out_controller_put;
ret = pm_runtime_get_sync(fsl_lpspi->dev);
if (ret < 0) {
dev_err(fsl_lpspi->dev, "failed to enable clock\n");
goto out_pm_get;
}
temp = readl(fsl_lpspi->base + IMX7ULP_PARAM);
fsl_lpspi->txfifosize = 1 << (temp & 0x0f);
fsl_lpspi->rxfifosize = 1 << ((temp >> 8) & 0x0f);
ret = fsl_lpspi_dma_init(&pdev->dev, fsl_lpspi, controller);
if (ret == -EPROBE_DEFER)
goto out_pm_get;
if (ret < 0)
dev_warn(&pdev->dev, "dma setup error %d, use pio\n", ret);
else
/*
* disable LPSPI module IRQ when enable DMA mode successfully,
* to prevent the unexpected LPSPI module IRQ events.
*/
disable_irq(irq);
ret = devm_spi_register_controller(&pdev->dev, controller);
if (ret < 0) {
dev_err_probe(&pdev->dev, ret, "spi_register_controller error\n");
goto free_dma;
}
pm_runtime_mark_last_busy(fsl_lpspi->dev);
pm_runtime_put_autosuspend(fsl_lpspi->dev);
return 0;
free_dma:
fsl_lpspi_dma_exit(controller);
out_pm_get:
pm_runtime_dont_use_autosuspend(fsl_lpspi->dev);
pm_runtime_put_sync(fsl_lpspi->dev);
pm_runtime_disable(fsl_lpspi->dev);
out_controller_put:
spi_controller_put(controller);
return ret;
}
static void fsl_lpspi_remove(struct platform_device *pdev)
{
struct spi_controller *controller = platform_get_drvdata(pdev);
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(controller);
fsl_lpspi_dma_exit(controller);
pm_runtime_disable(fsl_lpspi->dev);
}
static int __maybe_unused fsl_lpspi_suspend(struct device *dev)
{
pinctrl_pm_select_sleep_state(dev);
return pm_runtime_force_suspend(dev);
}
static int __maybe_unused fsl_lpspi_resume(struct device *dev)
{
int ret;
ret = pm_runtime_force_resume(dev);
if (ret) {
dev_err(dev, "Error in resume: %d\n", ret);
return ret;
}
pinctrl_pm_select_default_state(dev);
return 0;
}
static const struct dev_pm_ops fsl_lpspi_pm_ops = {
SET_RUNTIME_PM_OPS(fsl_lpspi_runtime_suspend,
fsl_lpspi_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(fsl_lpspi_suspend, fsl_lpspi_resume)
};
static struct platform_driver fsl_lpspi_driver = {
.driver = {
.name = DRIVER_NAME,
.of_match_table = fsl_lpspi_dt_ids,
.pm = &fsl_lpspi_pm_ops,
},
.probe = fsl_lpspi_probe,
.remove_new = fsl_lpspi_remove,
};
module_platform_driver(fsl_lpspi_driver);
MODULE_DESCRIPTION("LPSPI Controller driver");
MODULE_AUTHOR("Gao Pan <pandy.gao@nxp.com>");
MODULE_LICENSE("GPL");
|