summaryrefslogtreecommitdiff
path: root/fs/f2fs/verity.c
blob: 65395ae188aac19742520f2496651996924cda8e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
// SPDX-License-Identifier: GPL-2.0
/*
 * fs/f2fs/verity.c: fs-verity support for f2fs
 *
 * Copyright 2019 Google LLC
 */

/*
 * Implementation of fsverity_operations for f2fs.
 *
 * Like ext4, f2fs stores the verity metadata (Merkle tree and
 * fsverity_descriptor) past the end of the file, starting at the first 64K
 * boundary beyond i_size.  This approach works because (a) verity files are
 * readonly, and (b) pages fully beyond i_size aren't visible to userspace but
 * can be read/written internally by f2fs with only some relatively small
 * changes to f2fs.  Extended attributes cannot be used because (a) f2fs limits
 * the total size of an inode's xattr entries to 4096 bytes, which wouldn't be
 * enough for even a single Merkle tree block, and (b) f2fs encryption doesn't
 * encrypt xattrs, yet the verity metadata *must* be encrypted when the file is
 * because it contains hashes of the plaintext data.
 *
 * Using a 64K boundary rather than a 4K one keeps things ready for
 * architectures with 64K pages, and it doesn't necessarily waste space on-disk
 * since there can be a hole between i_size and the start of the Merkle tree.
 */

#include <linux/f2fs_fs.h>

#include "f2fs.h"
#include "xattr.h"

#define F2FS_VERIFY_VER	(1)

static inline loff_t f2fs_verity_metadata_pos(const struct inode *inode)
{
	return round_up(inode->i_size, 65536);
}

/*
 * Read some verity metadata from the inode.  __vfs_read() can't be used because
 * we need to read beyond i_size.
 */
static int pagecache_read(struct inode *inode, void *buf, size_t count,
			  loff_t pos)
{
	while (count) {
		size_t n = min_t(size_t, count,
				 PAGE_SIZE - offset_in_page(pos));
		struct page *page;
		void *addr;

		page = read_mapping_page(inode->i_mapping, pos >> PAGE_SHIFT,
					 NULL);
		if (IS_ERR(page))
			return PTR_ERR(page);

		addr = kmap_atomic(page);
		memcpy(buf, addr + offset_in_page(pos), n);
		kunmap_atomic(addr);

		put_page(page);

		buf += n;
		pos += n;
		count -= n;
	}
	return 0;
}

/*
 * Write some verity metadata to the inode for FS_IOC_ENABLE_VERITY.
 * kernel_write() can't be used because the file descriptor is readonly.
 */
static int pagecache_write(struct inode *inode, const void *buf, size_t count,
			   loff_t pos)
{
	struct address_space *mapping = inode->i_mapping;
	const struct address_space_operations *aops = mapping->a_ops;

	if (pos + count > inode->i_sb->s_maxbytes)
		return -EFBIG;

	while (count) {
		size_t n = min_t(size_t, count,
				 PAGE_SIZE - offset_in_page(pos));
		struct page *page;
		void *fsdata;
		void *addr;
		int res;

		res = aops->write_begin(NULL, mapping, pos, n, &page, &fsdata);
		if (res)
			return res;

		addr = kmap_atomic(page);
		memcpy(addr + offset_in_page(pos), buf, n);
		kunmap_atomic(addr);

		res = aops->write_end(NULL, mapping, pos, n, n, page, fsdata);
		if (res < 0)
			return res;
		if (res != n)
			return -EIO;

		buf += n;
		pos += n;
		count -= n;
	}
	return 0;
}

/*
 * Format of f2fs verity xattr.  This points to the location of the verity
 * descriptor within the file data rather than containing it directly because
 * the verity descriptor *must* be encrypted when f2fs encryption is used.  But,
 * f2fs encryption does not encrypt xattrs.
 */
struct fsverity_descriptor_location {
	__le32 version;
	__le32 size;
	__le64 pos;
};

static int f2fs_begin_enable_verity(struct file *filp)
{
	struct inode *inode = file_inode(filp);
	int err;

	if (f2fs_verity_in_progress(inode))
		return -EBUSY;

	if (f2fs_is_atomic_file(inode) || f2fs_is_volatile_file(inode))
		return -EOPNOTSUPP;

	/*
	 * Since the file was opened readonly, we have to initialize the quotas
	 * here and not rely on ->open() doing it.  This must be done before
	 * evicting the inline data.
	 */
	err = f2fs_dquot_initialize(inode);
	if (err)
		return err;

	err = f2fs_convert_inline_inode(inode);
	if (err)
		return err;

	set_inode_flag(inode, FI_VERITY_IN_PROGRESS);
	return 0;
}

static int f2fs_end_enable_verity(struct file *filp, const void *desc,
				  size_t desc_size, u64 merkle_tree_size)
{
	struct inode *inode = file_inode(filp);
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	u64 desc_pos = f2fs_verity_metadata_pos(inode) + merkle_tree_size;
	struct fsverity_descriptor_location dloc = {
		.version = cpu_to_le32(F2FS_VERIFY_VER),
		.size = cpu_to_le32(desc_size),
		.pos = cpu_to_le64(desc_pos),
	};
	int err = 0, err2 = 0;

	/*
	 * If an error already occurred (which fs/verity/ signals by passing
	 * desc == NULL), then only clean-up is needed.
	 */
	if (desc == NULL)
		goto cleanup;

	/* Append the verity descriptor. */
	err = pagecache_write(inode, desc, desc_size, desc_pos);
	if (err)
		goto cleanup;

	/*
	 * Write all pages (both data and verity metadata).  Note that this must
	 * happen before clearing FI_VERITY_IN_PROGRESS; otherwise pages beyond
	 * i_size won't be written properly.  For crash consistency, this also
	 * must happen before the verity inode flag gets persisted.
	 */
	err = filemap_write_and_wait(inode->i_mapping);
	if (err)
		goto cleanup;

	/* Set the verity xattr. */
	err = f2fs_setxattr(inode, F2FS_XATTR_INDEX_VERITY,
			    F2FS_XATTR_NAME_VERITY, &dloc, sizeof(dloc),
			    NULL, XATTR_CREATE);
	if (err)
		goto cleanup;

	/* Finally, set the verity inode flag. */
	file_set_verity(inode);
	f2fs_set_inode_flags(inode);
	f2fs_mark_inode_dirty_sync(inode, true);

	clear_inode_flag(inode, FI_VERITY_IN_PROGRESS);
	return 0;

cleanup:
	/*
	 * Verity failed to be enabled, so clean up by truncating any verity
	 * metadata that was written beyond i_size (both from cache and from
	 * disk) and clearing FI_VERITY_IN_PROGRESS.
	 *
	 * Taking i_gc_rwsem[WRITE] is needed to stop f2fs garbage collection
	 * from re-instantiating cached pages we are truncating (since unlike
	 * normal file accesses, garbage collection isn't limited by i_size).
	 */
	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
	truncate_inode_pages(inode->i_mapping, inode->i_size);
	err2 = f2fs_truncate(inode);
	if (err2) {
		f2fs_err(sbi, "Truncating verity metadata failed (errno=%d)",
			 err2);
		set_sbi_flag(sbi, SBI_NEED_FSCK);
	}
	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
	clear_inode_flag(inode, FI_VERITY_IN_PROGRESS);
	return err ?: err2;
}

static int f2fs_get_verity_descriptor(struct inode *inode, void *buf,
				      size_t buf_size)
{
	struct fsverity_descriptor_location dloc;
	int res;
	u32 size;
	u64 pos;

	/* Get the descriptor location */
	res = f2fs_getxattr(inode, F2FS_XATTR_INDEX_VERITY,
			    F2FS_XATTR_NAME_VERITY, &dloc, sizeof(dloc), NULL);
	if (res < 0 && res != -ERANGE)
		return res;
	if (res != sizeof(dloc) || dloc.version != cpu_to_le32(F2FS_VERIFY_VER)) {
		f2fs_warn(F2FS_I_SB(inode), "unknown verity xattr format");
		return -EINVAL;
	}
	size = le32_to_cpu(dloc.size);
	pos = le64_to_cpu(dloc.pos);

	/* Get the descriptor */
	if (pos + size < pos || pos + size > inode->i_sb->s_maxbytes ||
	    pos < f2fs_verity_metadata_pos(inode) || size > INT_MAX) {
		f2fs_warn(F2FS_I_SB(inode), "invalid verity xattr");
		return -EFSCORRUPTED;
	}
	if (buf_size) {
		if (size > buf_size)
			return -ERANGE;
		res = pagecache_read(inode, buf, size, pos);
		if (res)
			return res;
	}
	return size;
}

static struct page *f2fs_read_merkle_tree_page(struct inode *inode,
					       pgoff_t index,
					       unsigned long num_ra_pages)
{
	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, index);
	struct page *page;

	index += f2fs_verity_metadata_pos(inode) >> PAGE_SHIFT;

	page = find_get_page_flags(inode->i_mapping, index, FGP_ACCESSED);
	if (!page || !PageUptodate(page)) {
		if (page)
			put_page(page);
		else if (num_ra_pages > 1)
			page_cache_ra_unbounded(&ractl, num_ra_pages, 0);
		page = read_mapping_page(inode->i_mapping, index, NULL);
	}
	return page;
}

static int f2fs_write_merkle_tree_block(struct inode *inode, const void *buf,
					u64 index, int log_blocksize)
{
	loff_t pos = f2fs_verity_metadata_pos(inode) + (index << log_blocksize);

	return pagecache_write(inode, buf, 1 << log_blocksize, pos);
}

const struct fsverity_operations f2fs_verityops = {
	.begin_enable_verity	= f2fs_begin_enable_verity,
	.end_enable_verity	= f2fs_end_enable_verity,
	.get_verity_descriptor	= f2fs_get_verity_descriptor,
	.read_merkle_tree_page	= f2fs_read_merkle_tree_page,
	.write_merkle_tree_block = f2fs_write_merkle_tree_block,
};