summaryrefslogtreecommitdiff
path: root/fs/udf/partition.c
blob: eeb4714b36410f9da676d905bcd3b7f23d2e667a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/*
 * partition.c
 *
 * PURPOSE
 *      Partition handling routines for the OSTA-UDF(tm) filesystem.
 *
 * COPYRIGHT
 *      This file is distributed under the terms of the GNU General Public
 *      License (GPL). Copies of the GPL can be obtained from:
 *              ftp://prep.ai.mit.edu/pub/gnu/GPL
 *      Each contributing author retains all rights to their own work.
 *
 *  (C) 1998-2001 Ben Fennema
 *
 * HISTORY
 *
 * 12/06/98 blf  Created file.
 *
 */

#include "udfdecl.h"
#include "udf_sb.h"
#include "udf_i.h"

#include <linux/fs.h>
#include <linux/string.h>
#include <linux/udf_fs.h>
#include <linux/slab.h>
#include <linux/buffer_head.h>

inline uint32_t udf_get_pblock(struct super_block *sb, uint32_t block,
			       uint16_t partition, uint32_t offset)
{
	struct udf_sb_info *sbi = UDF_SB(sb);
	struct udf_part_map *map;
	if (partition >= sbi->s_partitions) {
		udf_debug("block=%d, partition=%d, offset=%d: invalid partition\n",
			  block, partition, offset);
		return 0xFFFFFFFF;
	}
	map = &sbi->s_partmaps[partition];
	if (map->s_partition_func)
		return map->s_partition_func(sb, block, partition, offset);
	else
		return map->s_partition_root + block + offset;
}

uint32_t udf_get_pblock_virt15(struct super_block *sb, uint32_t block,
			       uint16_t partition, uint32_t offset)
{
	struct buffer_head *bh = NULL;
	uint32_t newblock;
	uint32_t index;
	uint32_t loc;
	struct udf_sb_info *sbi = UDF_SB(sb);
	struct udf_part_map *map;

	map = &sbi->s_partmaps[partition];
	index = (sb->s_blocksize - map->s_type_specific.s_virtual.s_start_offset) / sizeof(uint32_t);

	if (block > map->s_type_specific.s_virtual.s_num_entries) {
		udf_debug("Trying to access block beyond end of VAT (%d max %d)\n",
			  block, map->s_type_specific.s_virtual.s_num_entries);
		return 0xFFFFFFFF;
	}

	if (block >= index) {
		block -= index;
		newblock = 1 + (block / (sb->s_blocksize / sizeof(uint32_t)));
		index = block % (sb->s_blocksize / sizeof(uint32_t));
	} else {
		newblock = 0;
		index = map->s_type_specific.s_virtual.s_start_offset / sizeof(uint32_t) + block;
	}

	loc = udf_block_map(sbi->s_vat_inode, newblock);

	if (!(bh = sb_bread(sb, loc))) {
		udf_debug("get_pblock(UDF_VIRTUAL_MAP:%p,%d,%d) VAT: %d[%d]\n",
			  sb, block, partition, loc, index);
		return 0xFFFFFFFF;
	}

	loc = le32_to_cpu(((__le32 *)bh->b_data)[index]);

	brelse(bh);

	if (UDF_I_LOCATION(sbi->s_vat_inode).partitionReferenceNum == partition) {
		udf_debug("recursive call to udf_get_pblock!\n");
		return 0xFFFFFFFF;
	}

	return udf_get_pblock(sb, loc,
			      UDF_I_LOCATION(sbi->s_vat_inode).partitionReferenceNum,
			      offset);
}

inline uint32_t udf_get_pblock_virt20(struct super_block * sb, uint32_t block,
				      uint16_t partition, uint32_t offset)
{
	return udf_get_pblock_virt15(sb, block, partition, offset);
}

uint32_t udf_get_pblock_spar15(struct super_block *sb, uint32_t block,
			       uint16_t partition, uint32_t offset)
{
	int i;
	struct sparingTable *st = NULL;
	struct udf_sb_info *sbi = UDF_SB(sb);
	struct udf_part_map *map;
	uint32_t packet;

	map = &sbi->s_partmaps[partition];
	packet = (block + offset) & ~(map->s_type_specific.s_sparing.s_packet_len - 1);

	for (i = 0; i < 4; i++) {
		if (map->s_type_specific.s_sparing.s_spar_map[i] != NULL) {
			st = (struct sparingTable *)map->s_type_specific.s_sparing.s_spar_map[i]->b_data;
			break;
		}
	}

	if (st) {
		for (i = 0; i < le16_to_cpu(st->reallocationTableLen); i++) {
			if (le32_to_cpu(st->mapEntry[i].origLocation) >= 0xFFFFFFF0) {
				break;
			} else if (le32_to_cpu(st->mapEntry[i].origLocation) == packet) {
				return le32_to_cpu(st->mapEntry[i].mappedLocation) +
					((block + offset) & (map->s_type_specific.s_sparing.s_packet_len - 1));
			} else if (le32_to_cpu(st->mapEntry[i].origLocation) > packet) {
				break;
			}
		}
	}

	return map->s_partition_root + block + offset;
}

int udf_relocate_blocks(struct super_block *sb, long old_block, long *new_block)
{
	struct udf_sparing_data *sdata;
	struct sparingTable *st = NULL;
	struct sparingEntry mapEntry;
	uint32_t packet;
	int i, j, k, l;
	struct udf_sb_info *sbi = UDF_SB(sb);

	for (i = 0; i < sbi->s_partitions; i++) {
		struct udf_part_map *map = &sbi->s_partmaps[i];
		if (old_block > map->s_partition_root &&
		    old_block < map->s_partition_root + map->s_partition_len) {
			sdata = &map->s_type_specific.s_sparing;
			packet = (old_block - map->s_partition_root) & ~(sdata->s_packet_len - 1);

			for (j = 0; j < 4; j++) {
				if (map->s_type_specific.s_sparing.s_spar_map[j] != NULL) {
					st = (struct sparingTable *)sdata->s_spar_map[j]->b_data;
					break;
				}
			}

			if (!st)
				return 1;

			for (k = 0; k < le16_to_cpu(st->reallocationTableLen); k++) {
				if (le32_to_cpu(st->mapEntry[k].origLocation) == 0xFFFFFFFF) {
					for (; j < 4; j++) {
						if (sdata->s_spar_map[j]) {
							st = (struct sparingTable *)sdata->s_spar_map[j]->b_data;
							st->mapEntry[k].origLocation = cpu_to_le32(packet);
							udf_update_tag((char *)st, sizeof(struct sparingTable) + le16_to_cpu(st->reallocationTableLen) * sizeof(struct sparingEntry));
							mark_buffer_dirty(sdata->s_spar_map[j]);
						}
					}
					*new_block = le32_to_cpu(st->mapEntry[k].mappedLocation) +
						((old_block - map->s_partition_root) & (sdata->s_packet_len - 1));
					return 0;
				} else if (le32_to_cpu(st->mapEntry[k].origLocation) == packet) {
					*new_block = le32_to_cpu(st->mapEntry[k].mappedLocation) +
						((old_block - map->s_partition_root) & (sdata->s_packet_len - 1));
					return 0;
				} else if (le32_to_cpu(st->mapEntry[k].origLocation) > packet) {
					break;
				}
			}

			for (l = k; l < le16_to_cpu(st->reallocationTableLen); l++) {
				if (le32_to_cpu(st->mapEntry[l].origLocation) == 0xFFFFFFFF) {
					for (; j < 4; j++) {
						if (sdata->s_spar_map[j]) {
							st = (struct sparingTable *)sdata->s_spar_map[j]->b_data;
							mapEntry = st->mapEntry[l];
							mapEntry.origLocation = cpu_to_le32(packet);
							memmove(&st->mapEntry[k + 1], &st->mapEntry[k], (l - k) * sizeof(struct sparingEntry));
							st->mapEntry[k] = mapEntry;
							udf_update_tag((char *)st, sizeof(struct sparingTable) + le16_to_cpu(st->reallocationTableLen) * sizeof(struct sparingEntry));
							mark_buffer_dirty(sdata->s_spar_map[j]);
						}
					}
					*new_block = le32_to_cpu(st->mapEntry[k].mappedLocation) +
						((old_block - map->s_partition_root) & (sdata->s_packet_len - 1));
					return 0;
				}
			}

			return 1;
		} /* if old_block */
	}

	if (i == sbi->s_partitions) {
		/* outside of partitions */
		/* for now, fail =) */
		return 1;
	}

	return 0;
}