summaryrefslogtreecommitdiff
path: root/include/linux/bitmap.h
blob: 262b6596eca5eafe12daf781a81cdee0f1824bd8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_BITMAP_H
#define __LINUX_BITMAP_H

#ifndef __ASSEMBLY__

#include <linux/align.h>
#include <linux/bitops.h>
#include <linux/cleanup.h>
#include <linux/errno.h>
#include <linux/find.h>
#include <linux/limits.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/bitmap-str.h>

struct device;

/*
 * bitmaps provide bit arrays that consume one or more unsigned
 * longs.  The bitmap interface and available operations are listed
 * here, in bitmap.h
 *
 * Function implementations generic to all architectures are in
 * lib/bitmap.c.  Functions implementations that are architecture
 * specific are in various include/asm-<arch>/bitops.h headers
 * and other arch/<arch> specific files.
 *
 * See lib/bitmap.c for more details.
 */

/**
 * DOC: bitmap overview
 *
 * The available bitmap operations and their rough meaning in the
 * case that the bitmap is a single unsigned long are thus:
 *
 * The generated code is more efficient when nbits is known at
 * compile-time and at most BITS_PER_LONG.
 *
 * ::
 *
 *  bitmap_zero(dst, nbits)                     *dst = 0UL
 *  bitmap_fill(dst, nbits)                     *dst = ~0UL
 *  bitmap_copy(dst, src, nbits)                *dst = *src
 *  bitmap_and(dst, src1, src2, nbits)          *dst = *src1 & *src2
 *  bitmap_or(dst, src1, src2, nbits)           *dst = *src1 | *src2
 *  bitmap_xor(dst, src1, src2, nbits)          *dst = *src1 ^ *src2
 *  bitmap_andnot(dst, src1, src2, nbits)       *dst = *src1 & ~(*src2)
 *  bitmap_complement(dst, src, nbits)          *dst = ~(*src)
 *  bitmap_equal(src1, src2, nbits)             Are *src1 and *src2 equal?
 *  bitmap_intersects(src1, src2, nbits)        Do *src1 and *src2 overlap?
 *  bitmap_subset(src1, src2, nbits)            Is *src1 a subset of *src2?
 *  bitmap_empty(src, nbits)                    Are all bits zero in *src?
 *  bitmap_full(src, nbits)                     Are all bits set in *src?
 *  bitmap_weight(src, nbits)                   Hamming Weight: number set bits
 *  bitmap_weight_and(src1, src2, nbits)        Hamming Weight of and'ed bitmap
 *  bitmap_weight_andnot(src1, src2, nbits)     Hamming Weight of andnot'ed bitmap
 *  bitmap_set(dst, pos, nbits)                 Set specified bit area
 *  bitmap_clear(dst, pos, nbits)               Clear specified bit area
 *  bitmap_find_next_zero_area(buf, len, pos, n, mask)  Find bit free area
 *  bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off)  as above
 *  bitmap_shift_right(dst, src, n, nbits)      *dst = *src >> n
 *  bitmap_shift_left(dst, src, n, nbits)       *dst = *src << n
 *  bitmap_cut(dst, src, first, n, nbits)       Cut n bits from first, copy rest
 *  bitmap_replace(dst, old, new, mask, nbits)  *dst = (*old & ~(*mask)) | (*new & *mask)
 *  bitmap_scatter(dst, src, mask, nbits)	*dst = map(dense, sparse)(src)
 *  bitmap_gather(dst, src, mask, nbits)	*dst = map(sparse, dense)(src)
 *  bitmap_remap(dst, src, old, new, nbits)     *dst = map(old, new)(src)
 *  bitmap_bitremap(oldbit, old, new, nbits)    newbit = map(old, new)(oldbit)
 *  bitmap_onto(dst, orig, relmap, nbits)       *dst = orig relative to relmap
 *  bitmap_fold(dst, orig, sz, nbits)           dst bits = orig bits mod sz
 *  bitmap_parse(buf, buflen, dst, nbits)       Parse bitmap dst from kernel buf
 *  bitmap_parse_user(ubuf, ulen, dst, nbits)   Parse bitmap dst from user buf
 *  bitmap_parselist(buf, dst, nbits)           Parse bitmap dst from kernel buf
 *  bitmap_parselist_user(buf, dst, nbits)      Parse bitmap dst from user buf
 *  bitmap_find_free_region(bitmap, bits, order)  Find and allocate bit region
 *  bitmap_release_region(bitmap, pos, order)   Free specified bit region
 *  bitmap_allocate_region(bitmap, pos, order)  Allocate specified bit region
 *  bitmap_from_arr32(dst, buf, nbits)          Copy nbits from u32[] buf to dst
 *  bitmap_from_arr64(dst, buf, nbits)          Copy nbits from u64[] buf to dst
 *  bitmap_to_arr32(buf, src, nbits)            Copy nbits from buf to u32[] dst
 *  bitmap_to_arr64(buf, src, nbits)            Copy nbits from buf to u64[] dst
 *  bitmap_get_value8(map, start)               Get 8bit value from map at start
 *  bitmap_set_value8(map, value, start)        Set 8bit value to map at start
 *  bitmap_read(map, start, nbits)              Read an nbits-sized value from
 *                                              map at start
 *  bitmap_write(map, value, start, nbits)      Write an nbits-sized value to
 *                                              map at start
 *
 * Note, bitmap_zero() and bitmap_fill() operate over the region of
 * unsigned longs, that is, bits behind bitmap till the unsigned long
 * boundary will be zeroed or filled as well. Consider to use
 * bitmap_clear() or bitmap_set() to make explicit zeroing or filling
 * respectively.
 */

/**
 * DOC: bitmap bitops
 *
 * Also the following operations in asm/bitops.h apply to bitmaps.::
 *
 *  set_bit(bit, addr)                  *addr |= bit
 *  clear_bit(bit, addr)                *addr &= ~bit
 *  change_bit(bit, addr)               *addr ^= bit
 *  test_bit(bit, addr)                 Is bit set in *addr?
 *  test_and_set_bit(bit, addr)         Set bit and return old value
 *  test_and_clear_bit(bit, addr)       Clear bit and return old value
 *  test_and_change_bit(bit, addr)      Change bit and return old value
 *  find_first_zero_bit(addr, nbits)    Position first zero bit in *addr
 *  find_first_bit(addr, nbits)         Position first set bit in *addr
 *  find_next_zero_bit(addr, nbits, bit)
 *                                      Position next zero bit in *addr >= bit
 *  find_next_bit(addr, nbits, bit)     Position next set bit in *addr >= bit
 *  find_next_and_bit(addr1, addr2, nbits, bit)
 *                                      Same as find_next_bit, but in
 *                                      (*addr1 & *addr2)
 *
 */

/**
 * DOC: declare bitmap
 * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used
 * to declare an array named 'name' of just enough unsigned longs to
 * contain all bit positions from 0 to 'bits' - 1.
 */

/*
 * Allocation and deallocation of bitmap.
 * Provided in lib/bitmap.c to avoid circular dependency.
 */
unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags);
unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags);
unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node);
unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node);
void bitmap_free(const unsigned long *bitmap);

DEFINE_FREE(bitmap, unsigned long *, if (_T) bitmap_free(_T))

/* Managed variants of the above. */
unsigned long *devm_bitmap_alloc(struct device *dev,
				 unsigned int nbits, gfp_t flags);
unsigned long *devm_bitmap_zalloc(struct device *dev,
				  unsigned int nbits, gfp_t flags);

/*
 * lib/bitmap.c provides these functions:
 */

bool __bitmap_equal(const unsigned long *bitmap1,
		    const unsigned long *bitmap2, unsigned int nbits);
bool __pure __bitmap_or_equal(const unsigned long *src1,
			      const unsigned long *src2,
			      const unsigned long *src3,
			      unsigned int nbits);
void __bitmap_complement(unsigned long *dst, const unsigned long *src,
			 unsigned int nbits);
void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
			  unsigned int shift, unsigned int nbits);
void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
			 unsigned int shift, unsigned int nbits);
void bitmap_cut(unsigned long *dst, const unsigned long *src,
		unsigned int first, unsigned int cut, unsigned int nbits);
bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
		 const unsigned long *bitmap2, unsigned int nbits);
void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
		 const unsigned long *bitmap2, unsigned int nbits);
void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
		  const unsigned long *bitmap2, unsigned int nbits);
bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
		    const unsigned long *bitmap2, unsigned int nbits);
void __bitmap_replace(unsigned long *dst,
		      const unsigned long *old, const unsigned long *new,
		      const unsigned long *mask, unsigned int nbits);
bool __bitmap_intersects(const unsigned long *bitmap1,
			 const unsigned long *bitmap2, unsigned int nbits);
bool __bitmap_subset(const unsigned long *bitmap1,
		     const unsigned long *bitmap2, unsigned int nbits);
unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits);
unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
				 const unsigned long *bitmap2, unsigned int nbits);
unsigned int __bitmap_weight_andnot(const unsigned long *bitmap1,
				    const unsigned long *bitmap2, unsigned int nbits);
void __bitmap_set(unsigned long *map, unsigned int start, int len);
void __bitmap_clear(unsigned long *map, unsigned int start, int len);

unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
					     unsigned long size,
					     unsigned long start,
					     unsigned int nr,
					     unsigned long align_mask,
					     unsigned long align_offset);

/**
 * bitmap_find_next_zero_area - find a contiguous aligned zero area
 * @map: The address to base the search on
 * @size: The bitmap size in bits
 * @start: The bitnumber to start searching at
 * @nr: The number of zeroed bits we're looking for
 * @align_mask: Alignment mask for zero area
 *
 * The @align_mask should be one less than a power of 2; the effect is that
 * the bit offset of all zero areas this function finds is multiples of that
 * power of 2. A @align_mask of 0 means no alignment is required.
 */
static __always_inline
unsigned long bitmap_find_next_zero_area(unsigned long *map,
					 unsigned long size,
					 unsigned long start,
					 unsigned int nr,
					 unsigned long align_mask)
{
	return bitmap_find_next_zero_area_off(map, size, start, nr,
					      align_mask, 0);
}

void bitmap_remap(unsigned long *dst, const unsigned long *src,
		const unsigned long *old, const unsigned long *new, unsigned int nbits);
int bitmap_bitremap(int oldbit,
		const unsigned long *old, const unsigned long *new, int bits);
void bitmap_onto(unsigned long *dst, const unsigned long *orig,
		const unsigned long *relmap, unsigned int bits);
void bitmap_fold(unsigned long *dst, const unsigned long *orig,
		unsigned int sz, unsigned int nbits);

#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
#define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))

#define bitmap_size(nbits)	(ALIGN(nbits, BITS_PER_LONG) / BITS_PER_BYTE)

static __always_inline void bitmap_zero(unsigned long *dst, unsigned int nbits)
{
	unsigned int len = bitmap_size(nbits);

	if (small_const_nbits(nbits))
		*dst = 0;
	else
		memset(dst, 0, len);
}

static __always_inline void bitmap_fill(unsigned long *dst, unsigned int nbits)
{
	unsigned int len = bitmap_size(nbits);

	if (small_const_nbits(nbits))
		*dst = ~0UL;
	else
		memset(dst, 0xff, len);
}

static __always_inline
void bitmap_copy(unsigned long *dst, const unsigned long *src, unsigned int nbits)
{
	unsigned int len = bitmap_size(nbits);

	if (small_const_nbits(nbits))
		*dst = *src;
	else
		memcpy(dst, src, len);
}

/*
 * Copy bitmap and clear tail bits in last word.
 */
static __always_inline
void bitmap_copy_clear_tail(unsigned long *dst, const unsigned long *src, unsigned int nbits)
{
	bitmap_copy(dst, src, nbits);
	if (nbits % BITS_PER_LONG)
		dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits);
}

static inline void bitmap_copy_and_extend(unsigned long *to,
					  const unsigned long *from,
					  unsigned int count, unsigned int size)
{
	unsigned int copy = BITS_TO_LONGS(count);

	memcpy(to, from, copy * sizeof(long));
	if (count % BITS_PER_LONG)
		to[copy - 1] &= BITMAP_LAST_WORD_MASK(count);
	memset(to + copy, 0, bitmap_size(size) - copy * sizeof(long));
}

/*
 * On 32-bit systems bitmaps are represented as u32 arrays internally. On LE64
 * machines the order of hi and lo parts of numbers match the bitmap structure.
 * In both cases conversion is not needed when copying data from/to arrays of
 * u32. But in LE64 case, typecast in bitmap_copy_clear_tail() may lead
 * to out-of-bound access. To avoid that, both LE and BE variants of 64-bit
 * architectures are not using bitmap_copy_clear_tail().
 */
#if BITS_PER_LONG == 64
void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf,
							unsigned int nbits);
void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap,
							unsigned int nbits);
#else
#define bitmap_from_arr32(bitmap, buf, nbits)			\
	bitmap_copy_clear_tail((unsigned long *) (bitmap),	\
			(const unsigned long *) (buf), (nbits))
#define bitmap_to_arr32(buf, bitmap, nbits)			\
	bitmap_copy_clear_tail((unsigned long *) (buf),		\
			(const unsigned long *) (bitmap), (nbits))
#endif

/*
 * On 64-bit systems bitmaps are represented as u64 arrays internally. So,
 * the conversion is not needed when copying data from/to arrays of u64.
 */
#if BITS_PER_LONG == 32
void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits);
void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits);
#else
#define bitmap_from_arr64(bitmap, buf, nbits)			\
	bitmap_copy_clear_tail((unsigned long *)(bitmap), (const unsigned long *)(buf), (nbits))
#define bitmap_to_arr64(buf, bitmap, nbits)			\
	bitmap_copy_clear_tail((unsigned long *)(buf), (const unsigned long *)(bitmap), (nbits))
#endif

static __always_inline
bool bitmap_and(unsigned long *dst, const unsigned long *src1,
		const unsigned long *src2, unsigned int nbits)
{
	if (small_const_nbits(nbits))
		return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0;
	return __bitmap_and(dst, src1, src2, nbits);
}

static __always_inline
void bitmap_or(unsigned long *dst, const unsigned long *src1,
	       const unsigned long *src2, unsigned int nbits)
{
	if (small_const_nbits(nbits))
		*dst = *src1 | *src2;
	else
		__bitmap_or(dst, src1, src2, nbits);
}

static __always_inline
void bitmap_xor(unsigned long *dst, const unsigned long *src1,
		const unsigned long *src2, unsigned int nbits)
{
	if (small_const_nbits(nbits))
		*dst = *src1 ^ *src2;
	else
		__bitmap_xor(dst, src1, src2, nbits);
}

static __always_inline
bool bitmap_andnot(unsigned long *dst, const unsigned long *src1,
		   const unsigned long *src2, unsigned int nbits)
{
	if (small_const_nbits(nbits))
		return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
	return __bitmap_andnot(dst, src1, src2, nbits);
}

static __always_inline
void bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int nbits)
{
	if (small_const_nbits(nbits))
		*dst = ~(*src);
	else
		__bitmap_complement(dst, src, nbits);
}

#ifdef __LITTLE_ENDIAN
#define BITMAP_MEM_ALIGNMENT 8
#else
#define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long))
#endif
#define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1)

static __always_inline
bool bitmap_equal(const unsigned long *src1, const unsigned long *src2, unsigned int nbits)
{
	if (small_const_nbits(nbits))
		return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits));
	if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
	    IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
		return !memcmp(src1, src2, nbits / 8);
	return __bitmap_equal(src1, src2, nbits);
}

/**
 * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third
 * @src1:	Pointer to bitmap 1
 * @src2:	Pointer to bitmap 2 will be or'ed with bitmap 1
 * @src3:	Pointer to bitmap 3. Compare to the result of *@src1 | *@src2
 * @nbits:	number of bits in each of these bitmaps
 *
 * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise
 */
static __always_inline
bool bitmap_or_equal(const unsigned long *src1, const unsigned long *src2,
		     const unsigned long *src3, unsigned int nbits)
{
	if (!small_const_nbits(nbits))
		return __bitmap_or_equal(src1, src2, src3, nbits);

	return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits));
}

static __always_inline
bool bitmap_intersects(const unsigned long *src1, const unsigned long *src2, unsigned int nbits)
{
	if (small_const_nbits(nbits))
		return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
	else
		return __bitmap_intersects(src1, src2, nbits);
}

static __always_inline
bool bitmap_subset(const unsigned long *src1, const unsigned long *src2, unsigned int nbits)
{
	if (small_const_nbits(nbits))
		return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits));
	else
		return __bitmap_subset(src1, src2, nbits);
}

static __always_inline
bool bitmap_empty(const unsigned long *src, unsigned nbits)
{
	if (small_const_nbits(nbits))
		return ! (*src & BITMAP_LAST_WORD_MASK(nbits));

	return find_first_bit(src, nbits) == nbits;
}

static __always_inline
bool bitmap_full(const unsigned long *src, unsigned int nbits)
{
	if (small_const_nbits(nbits))
		return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits));

	return find_first_zero_bit(src, nbits) == nbits;
}

static __always_inline
unsigned int bitmap_weight(const unsigned long *src, unsigned int nbits)
{
	if (small_const_nbits(nbits))
		return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits));
	return __bitmap_weight(src, nbits);
}

static __always_inline
unsigned long bitmap_weight_and(const unsigned long *src1,
				const unsigned long *src2, unsigned int nbits)
{
	if (small_const_nbits(nbits))
		return hweight_long(*src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits));
	return __bitmap_weight_and(src1, src2, nbits);
}

static __always_inline
unsigned long bitmap_weight_andnot(const unsigned long *src1,
				   const unsigned long *src2, unsigned int nbits)
{
	if (small_const_nbits(nbits))
		return hweight_long(*src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits));
	return __bitmap_weight_andnot(src1, src2, nbits);
}

static __always_inline
void bitmap_set(unsigned long *map, unsigned int start, unsigned int nbits)
{
	if (__builtin_constant_p(nbits) && nbits == 1)
		__set_bit(start, map);
	else if (small_const_nbits(start + nbits))
		*map |= GENMASK(start + nbits - 1, start);
	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
		memset((char *)map + start / 8, 0xff, nbits / 8);
	else
		__bitmap_set(map, start, nbits);
}

static __always_inline
void bitmap_clear(unsigned long *map, unsigned int start, unsigned int nbits)
{
	if (__builtin_constant_p(nbits) && nbits == 1)
		__clear_bit(start, map);
	else if (small_const_nbits(start + nbits))
		*map &= ~GENMASK(start + nbits - 1, start);
	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
		memset((char *)map + start / 8, 0, nbits / 8);
	else
		__bitmap_clear(map, start, nbits);
}

static __always_inline
void bitmap_shift_right(unsigned long *dst, const unsigned long *src,
			unsigned int shift, unsigned int nbits)
{
	if (small_const_nbits(nbits))
		*dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift;
	else
		__bitmap_shift_right(dst, src, shift, nbits);
}

static __always_inline
void bitmap_shift_left(unsigned long *dst, const unsigned long *src,
		       unsigned int shift, unsigned int nbits)
{
	if (small_const_nbits(nbits))
		*dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits);
	else
		__bitmap_shift_left(dst, src, shift, nbits);
}

static __always_inline
void bitmap_replace(unsigned long *dst,
		    const unsigned long *old,
		    const unsigned long *new,
		    const unsigned long *mask,
		    unsigned int nbits)
{
	if (small_const_nbits(nbits))
		*dst = (*old & ~(*mask)) | (*new & *mask);
	else
		__bitmap_replace(dst, old, new, mask, nbits);
}

/**
 * bitmap_scatter - Scatter a bitmap according to the given mask
 * @dst: scattered bitmap
 * @src: gathered bitmap
 * @mask: mask representing bits to assign to in the scattered bitmap
 * @nbits: number of bits in each of these bitmaps
 *
 * Scatters bitmap with sequential bits according to the given @mask.
 *
 * Example:
 * If @src bitmap = 0x005a, with @mask = 0x1313, @dst will be 0x0302.
 *
 * Or in binary form
 * @src			@mask			@dst
 * 0000000001011010	0001001100010011	0000001100000010
 *
 * (Bits 0, 1, 2, 3, 4, 5 are copied to the bits 0, 1, 4, 8, 9, 12)
 *
 * A more 'visual' description of the operation::
 *
 *	src:  0000000001011010
 *	                ||||||
 *	         +------+|||||
 *	         |  +----+||||
 *	         |  |+----+|||
 *	         |  ||   +-+||
 *	         |  ||   |  ||
 *	mask: ...v..vv...v..vv
 *	      ...0..11...0..10
 *	dst:  0000001100000010
 *
 * A relationship exists between bitmap_scatter() and bitmap_gather().
 * bitmap_gather() can be seen as the 'reverse' bitmap_scatter() operation.
 * See bitmap_scatter() for details related to this relationship.
 */
static __always_inline
void bitmap_scatter(unsigned long *dst, const unsigned long *src,
		    const unsigned long *mask, unsigned int nbits)
{
	unsigned int n = 0;
	unsigned int bit;

	bitmap_zero(dst, nbits);

	for_each_set_bit(bit, mask, nbits)
		__assign_bit(bit, dst, test_bit(n++, src));
}

/**
 * bitmap_gather - Gather a bitmap according to given mask
 * @dst: gathered bitmap
 * @src: scattered bitmap
 * @mask: mask representing bits to extract from in the scattered bitmap
 * @nbits: number of bits in each of these bitmaps
 *
 * Gathers bitmap with sparse bits according to the given @mask.
 *
 * Example:
 * If @src bitmap = 0x0302, with @mask = 0x1313, @dst will be 0x001a.
 *
 * Or in binary form
 * @src			@mask			@dst
 * 0000001100000010	0001001100010011	0000000000011010
 *
 * (Bits 0, 1, 4, 8, 9, 12 are copied to the bits 0, 1, 2, 3, 4, 5)
 *
 * A more 'visual' description of the operation::
 *
 *	mask: ...v..vv...v..vv
 *	src:  0000001100000010
 *	         ^  ^^   ^   0
 *	         |  ||   |  10
 *	         |  ||   > 010
 *	         |  |+--> 1010
 *	         |  +--> 11010
 *	         +----> 011010
 *	dst:  0000000000011010
 *
 * A relationship exists between bitmap_gather() and bitmap_scatter(). See
 * bitmap_scatter() for the bitmap scatter detailed operations.
 * Suppose scattered computed using bitmap_scatter(scattered, src, mask, n).
 * The operation bitmap_gather(result, scattered, mask, n) leads to a result
 * equal or equivalent to src.
 *
 * The result can be 'equivalent' because bitmap_scatter() and bitmap_gather()
 * are not bijective.
 * The result and src values are equivalent in that sense that a call to
 * bitmap_scatter(res, src, mask, n) and a call to
 * bitmap_scatter(res, result, mask, n) will lead to the same res value.
 */
static __always_inline
void bitmap_gather(unsigned long *dst, const unsigned long *src,
		   const unsigned long *mask, unsigned int nbits)
{
	unsigned int n = 0;
	unsigned int bit;

	bitmap_zero(dst, nbits);

	for_each_set_bit(bit, mask, nbits)
		__assign_bit(n++, dst, test_bit(bit, src));
}

static __always_inline
void bitmap_next_set_region(unsigned long *bitmap, unsigned int *rs,
			    unsigned int *re, unsigned int end)
{
	*rs = find_next_bit(bitmap, end, *rs);
	*re = find_next_zero_bit(bitmap, end, *rs + 1);
}

/**
 * bitmap_release_region - release allocated bitmap region
 *	@bitmap: array of unsigned longs corresponding to the bitmap
 *	@pos: beginning of bit region to release
 *	@order: region size (log base 2 of number of bits) to release
 *
 * This is the complement to __bitmap_find_free_region() and releases
 * the found region (by clearing it in the bitmap).
 */
static __always_inline
void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
{
	bitmap_clear(bitmap, pos, BIT(order));
}

/**
 * bitmap_allocate_region - allocate bitmap region
 *	@bitmap: array of unsigned longs corresponding to the bitmap
 *	@pos: beginning of bit region to allocate
 *	@order: region size (log base 2 of number of bits) to allocate
 *
 * Allocate (set bits in) a specified region of a bitmap.
 *
 * Returns: 0 on success, or %-EBUSY if specified region wasn't
 * free (not all bits were zero).
 */
static __always_inline
int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
{
	unsigned int len = BIT(order);

	if (find_next_bit(bitmap, pos + len, pos) < pos + len)
		return -EBUSY;
	bitmap_set(bitmap, pos, len);
	return 0;
}

/**
 * bitmap_find_free_region - find a contiguous aligned mem region
 *	@bitmap: array of unsigned longs corresponding to the bitmap
 *	@bits: number of bits in the bitmap
 *	@order: region size (log base 2 of number of bits) to find
 *
 * Find a region of free (zero) bits in a @bitmap of @bits bits and
 * allocate them (set them to one).  Only consider regions of length
 * a power (@order) of two, aligned to that power of two, which
 * makes the search algorithm much faster.
 *
 * Returns: the bit offset in bitmap of the allocated region,
 * or -errno on failure.
 */
static __always_inline
int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
{
	unsigned int pos, end;		/* scans bitmap by regions of size order */

	for (pos = 0; (end = pos + BIT(order)) <= bits; pos = end) {
		if (!bitmap_allocate_region(bitmap, pos, order))
			return pos;
	}
	return -ENOMEM;
}

/**
 * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap.
 * @n: u64 value
 *
 * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit
 * integers in 32-bit environment, and 64-bit integers in 64-bit one.
 *
 * There are four combinations of endianness and length of the word in linux
 * ABIs: LE64, BE64, LE32 and BE32.
 *
 * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in
 * bitmaps and therefore don't require any special handling.
 *
 * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory
 * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the
 * other hand is represented as an array of 32-bit words and the position of
 * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that
 * word.  For example, bit #42 is located at 10th position of 2nd word.
 * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit
 * values in memory as it usually does. But for BE we need to swap hi and lo
 * words manually.
 *
 * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and
 * lo parts of u64.  For LE32 it does nothing, and for BE environment it swaps
 * hi and lo words, as is expected by bitmap.
 */
#if __BITS_PER_LONG == 64
#define BITMAP_FROM_U64(n) (n)
#else
#define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \
				((unsigned long) ((u64)(n) >> 32))
#endif

/**
 * bitmap_from_u64 - Check and swap words within u64.
 *  @mask: source bitmap
 *  @dst:  destination bitmap
 *
 * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]``
 * to read u64 mask, we will get the wrong word.
 * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits,
 * but we expect the lower 32-bits of u64.
 */
static __always_inline void bitmap_from_u64(unsigned long *dst, u64 mask)
{
	bitmap_from_arr64(dst, &mask, 64);
}

/**
 * bitmap_read - read a value of n-bits from the memory region
 * @map: address to the bitmap memory region
 * @start: bit offset of the n-bit value
 * @nbits: size of value in bits, nonzero, up to BITS_PER_LONG
 *
 * Returns: value of @nbits bits located at the @start bit offset within the
 * @map memory region. For @nbits = 0 and @nbits > BITS_PER_LONG the return
 * value is undefined.
 */
static __always_inline
unsigned long bitmap_read(const unsigned long *map, unsigned long start, unsigned long nbits)
{
	size_t index = BIT_WORD(start);
	unsigned long offset = start % BITS_PER_LONG;
	unsigned long space = BITS_PER_LONG - offset;
	unsigned long value_low, value_high;

	if (unlikely(!nbits || nbits > BITS_PER_LONG))
		return 0;

	if (space >= nbits)
		return (map[index] >> offset) & BITMAP_LAST_WORD_MASK(nbits);

	value_low = map[index] & BITMAP_FIRST_WORD_MASK(start);
	value_high = map[index + 1] & BITMAP_LAST_WORD_MASK(start + nbits);
	return (value_low >> offset) | (value_high << space);
}

/**
 * bitmap_write - write n-bit value within a memory region
 * @map: address to the bitmap memory region
 * @value: value to write, clamped to nbits
 * @start: bit offset of the n-bit value
 * @nbits: size of value in bits, nonzero, up to BITS_PER_LONG.
 *
 * bitmap_write() behaves as-if implemented as @nbits calls of __assign_bit(),
 * i.e. bits beyond @nbits are ignored:
 *
 *   for (bit = 0; bit < nbits; bit++)
 *           __assign_bit(start + bit, bitmap, val & BIT(bit));
 *
 * For @nbits == 0 and @nbits > BITS_PER_LONG no writes are performed.
 */
static __always_inline
void bitmap_write(unsigned long *map, unsigned long value,
		  unsigned long start, unsigned long nbits)
{
	size_t index;
	unsigned long offset;
	unsigned long space;
	unsigned long mask;
	bool fit;

	if (unlikely(!nbits || nbits > BITS_PER_LONG))
		return;

	mask = BITMAP_LAST_WORD_MASK(nbits);
	value &= mask;
	offset = start % BITS_PER_LONG;
	space = BITS_PER_LONG - offset;
	fit = space >= nbits;
	index = BIT_WORD(start);

	map[index] &= (fit ? (~(mask << offset)) : ~BITMAP_FIRST_WORD_MASK(start));
	map[index] |= value << offset;
	if (fit)
		return;

	map[index + 1] &= BITMAP_FIRST_WORD_MASK(start + nbits);
	map[index + 1] |= (value >> space);
}

#define bitmap_get_value8(map, start)			\
	bitmap_read(map, start, BITS_PER_BYTE)
#define bitmap_set_value8(map, value, start)		\
	bitmap_write(map, value, start, BITS_PER_BYTE)

#endif /* __ASSEMBLY__ */

#endif /* __LINUX_BITMAP_H */