1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
|
/*
* Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* The full GNU General Public License is included in this distribution in the
* file called COPYING.
*/
#ifndef LINUX_DMAENGINE_H
#define LINUX_DMAENGINE_H
#include <linux/device.h>
#include <linux/err.h>
#include <linux/uio.h>
#include <linux/bug.h>
#include <linux/scatterlist.h>
#include <linux/bitmap.h>
#include <linux/types.h>
#include <asm/page.h>
/**
* typedef dma_cookie_t - an opaque DMA cookie
*
* if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
*/
typedef s32 dma_cookie_t;
#define DMA_MIN_COOKIE 1
static inline int dma_submit_error(dma_cookie_t cookie)
{
return cookie < 0 ? cookie : 0;
}
/**
* enum dma_status - DMA transaction status
* @DMA_COMPLETE: transaction completed
* @DMA_IN_PROGRESS: transaction not yet processed
* @DMA_PAUSED: transaction is paused
* @DMA_ERROR: transaction failed
*/
enum dma_status {
DMA_COMPLETE,
DMA_IN_PROGRESS,
DMA_PAUSED,
DMA_ERROR,
};
/**
* enum dma_transaction_type - DMA transaction types/indexes
*
* Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
* automatically set as dma devices are registered.
*/
enum dma_transaction_type {
DMA_MEMCPY,
DMA_XOR,
DMA_PQ,
DMA_XOR_VAL,
DMA_PQ_VAL,
DMA_INTERRUPT,
DMA_SG,
DMA_PRIVATE,
DMA_ASYNC_TX,
DMA_SLAVE,
DMA_CYCLIC,
DMA_INTERLEAVE,
/* last transaction type for creation of the capabilities mask */
DMA_TX_TYPE_END,
};
/**
* enum dma_transfer_direction - dma transfer mode and direction indicator
* @DMA_MEM_TO_MEM: Async/Memcpy mode
* @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
* @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
* @DMA_DEV_TO_DEV: Slave mode & From Device to Device
*/
enum dma_transfer_direction {
DMA_MEM_TO_MEM,
DMA_MEM_TO_DEV,
DMA_DEV_TO_MEM,
DMA_DEV_TO_DEV,
DMA_TRANS_NONE,
};
/**
* Interleaved Transfer Request
* ----------------------------
* A chunk is collection of contiguous bytes to be transfered.
* The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
* ICGs may or maynot change between chunks.
* A FRAME is the smallest series of contiguous {chunk,icg} pairs,
* that when repeated an integral number of times, specifies the transfer.
* A transfer template is specification of a Frame, the number of times
* it is to be repeated and other per-transfer attributes.
*
* Practically, a client driver would have ready a template for each
* type of transfer it is going to need during its lifetime and
* set only 'src_start' and 'dst_start' before submitting the requests.
*
*
* | Frame-1 | Frame-2 | ~ | Frame-'numf' |
* |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
*
* == Chunk size
* ... ICG
*/
/**
* struct data_chunk - Element of scatter-gather list that makes a frame.
* @size: Number of bytes to read from source.
* size_dst := fn(op, size_src), so doesn't mean much for destination.
* @icg: Number of bytes to jump after last src/dst address of this
* chunk and before first src/dst address for next chunk.
* Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
* Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
*/
struct data_chunk {
size_t size;
size_t icg;
};
/**
* struct dma_interleaved_template - Template to convey DMAC the transfer pattern
* and attributes.
* @src_start: Bus address of source for the first chunk.
* @dst_start: Bus address of destination for the first chunk.
* @dir: Specifies the type of Source and Destination.
* @src_inc: If the source address increments after reading from it.
* @dst_inc: If the destination address increments after writing to it.
* @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
* Otherwise, source is read contiguously (icg ignored).
* Ignored if src_inc is false.
* @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
* Otherwise, destination is filled contiguously (icg ignored).
* Ignored if dst_inc is false.
* @numf: Number of frames in this template.
* @frame_size: Number of chunks in a frame i.e, size of sgl[].
* @sgl: Array of {chunk,icg} pairs that make up a frame.
*/
struct dma_interleaved_template {
dma_addr_t src_start;
dma_addr_t dst_start;
enum dma_transfer_direction dir;
bool src_inc;
bool dst_inc;
bool src_sgl;
bool dst_sgl;
size_t numf;
size_t frame_size;
struct data_chunk sgl[0];
};
/**
* enum dma_ctrl_flags - DMA flags to augment operation preparation,
* control completion, and communicate status.
* @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
* this transaction
* @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
* acknowledges receipt, i.e. has has a chance to establish any dependency
* chains
* @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
* @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
* @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
* sources that were the result of a previous operation, in the case of a PQ
* operation it continues the calculation with new sources
* @DMA_PREP_FENCE - tell the driver that subsequent operations depend
* on the result of this operation
*/
enum dma_ctrl_flags {
DMA_PREP_INTERRUPT = (1 << 0),
DMA_CTRL_ACK = (1 << 1),
DMA_PREP_PQ_DISABLE_P = (1 << 2),
DMA_PREP_PQ_DISABLE_Q = (1 << 3),
DMA_PREP_CONTINUE = (1 << 4),
DMA_PREP_FENCE = (1 << 5),
};
/**
* enum sum_check_bits - bit position of pq_check_flags
*/
enum sum_check_bits {
SUM_CHECK_P = 0,
SUM_CHECK_Q = 1,
};
/**
* enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
* @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
* @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
*/
enum sum_check_flags {
SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
};
/**
* dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
* See linux/cpumask.h
*/
typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
/**
* struct dma_chan_percpu - the per-CPU part of struct dma_chan
* @memcpy_count: transaction counter
* @bytes_transferred: byte counter
*/
struct dma_chan_percpu {
/* stats */
unsigned long memcpy_count;
unsigned long bytes_transferred;
};
/**
* struct dma_chan - devices supply DMA channels, clients use them
* @device: ptr to the dma device who supplies this channel, always !%NULL
* @cookie: last cookie value returned to client
* @completed_cookie: last completed cookie for this channel
* @chan_id: channel ID for sysfs
* @dev: class device for sysfs
* @device_node: used to add this to the device chan list
* @local: per-cpu pointer to a struct dma_chan_percpu
* @client_count: how many clients are using this channel
* @table_count: number of appearances in the mem-to-mem allocation table
* @private: private data for certain client-channel associations
*/
struct dma_chan {
struct dma_device *device;
dma_cookie_t cookie;
dma_cookie_t completed_cookie;
/* sysfs */
int chan_id;
struct dma_chan_dev *dev;
struct list_head device_node;
struct dma_chan_percpu __percpu *local;
int client_count;
int table_count;
void *private;
};
/**
* struct dma_chan_dev - relate sysfs device node to backing channel device
* @chan: driver channel device
* @device: sysfs device
* @dev_id: parent dma_device dev_id
* @idr_ref: reference count to gate release of dma_device dev_id
*/
struct dma_chan_dev {
struct dma_chan *chan;
struct device device;
int dev_id;
atomic_t *idr_ref;
};
/**
* enum dma_slave_buswidth - defines bus width of the DMA slave
* device, source or target buses
*/
enum dma_slave_buswidth {
DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
};
/**
* struct dma_slave_config - dma slave channel runtime config
* @direction: whether the data shall go in or out on this slave
* channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
* legal values. DEPRECATED, drivers should use the direction argument
* to the device_prep_slave_sg and device_prep_dma_cyclic functions or
* the dir field in the dma_interleaved_template structure.
* @src_addr: this is the physical address where DMA slave data
* should be read (RX), if the source is memory this argument is
* ignored.
* @dst_addr: this is the physical address where DMA slave data
* should be written (TX), if the source is memory this argument
* is ignored.
* @src_addr_width: this is the width in bytes of the source (RX)
* register where DMA data shall be read. If the source
* is memory this may be ignored depending on architecture.
* Legal values: 1, 2, 4, 8.
* @dst_addr_width: same as src_addr_width but for destination
* target (TX) mutatis mutandis.
* @src_maxburst: the maximum number of words (note: words, as in
* units of the src_addr_width member, not bytes) that can be sent
* in one burst to the device. Typically something like half the
* FIFO depth on I/O peripherals so you don't overflow it. This
* may or may not be applicable on memory sources.
* @dst_maxburst: same as src_maxburst but for destination target
* mutatis mutandis.
* @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
* with 'true' if peripheral should be flow controller. Direction will be
* selected at Runtime.
* @slave_id: Slave requester id. Only valid for slave channels. The dma
* slave peripheral will have unique id as dma requester which need to be
* pass as slave config.
*
* This struct is passed in as configuration data to a DMA engine
* in order to set up a certain channel for DMA transport at runtime.
* The DMA device/engine has to provide support for an additional
* callback in the dma_device structure, device_config and this struct
* will then be passed in as an argument to the function.
*
* The rationale for adding configuration information to this struct is as
* follows: if it is likely that more than one DMA slave controllers in
* the world will support the configuration option, then make it generic.
* If not: if it is fixed so that it be sent in static from the platform
* data, then prefer to do that.
*/
struct dma_slave_config {
enum dma_transfer_direction direction;
dma_addr_t src_addr;
dma_addr_t dst_addr;
enum dma_slave_buswidth src_addr_width;
enum dma_slave_buswidth dst_addr_width;
u32 src_maxburst;
u32 dst_maxburst;
bool device_fc;
unsigned int slave_id;
};
/**
* enum dma_residue_granularity - Granularity of the reported transfer residue
* @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
* DMA channel is only able to tell whether a descriptor has been completed or
* not, which means residue reporting is not supported by this channel. The
* residue field of the dma_tx_state field will always be 0.
* @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
* completed segment of the transfer (For cyclic transfers this is after each
* period). This is typically implemented by having the hardware generate an
* interrupt after each transferred segment and then the drivers updates the
* outstanding residue by the size of the segment. Another possibility is if
* the hardware supports scatter-gather and the segment descriptor has a field
* which gets set after the segment has been completed. The driver then counts
* the number of segments without the flag set to compute the residue.
* @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
* burst. This is typically only supported if the hardware has a progress
* register of some sort (E.g. a register with the current read/write address
* or a register with the amount of bursts/beats/bytes that have been
* transferred or still need to be transferred).
*/
enum dma_residue_granularity {
DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
DMA_RESIDUE_GRANULARITY_BURST = 2,
};
/* struct dma_slave_caps - expose capabilities of a slave channel only
*
* @src_addr_widths: bit mask of src addr widths the channel supports
* @dst_addr_widths: bit mask of dstn addr widths the channel supports
* @directions: bit mask of slave direction the channel supported
* since the enum dma_transfer_direction is not defined as bits for each
* type of direction, the dma controller should fill (1 << <TYPE>) and same
* should be checked by controller as well
* @cmd_pause: true, if pause and thereby resume is supported
* @cmd_terminate: true, if terminate cmd is supported
* @residue_granularity: granularity of the reported transfer residue
*/
struct dma_slave_caps {
u32 src_addr_widths;
u32 dst_addr_widths;
u32 directions;
bool cmd_pause;
bool cmd_terminate;
enum dma_residue_granularity residue_granularity;
};
static inline const char *dma_chan_name(struct dma_chan *chan)
{
return dev_name(&chan->dev->device);
}
void dma_chan_cleanup(struct kref *kref);
/**
* typedef dma_filter_fn - callback filter for dma_request_channel
* @chan: channel to be reviewed
* @filter_param: opaque parameter passed through dma_request_channel
*
* When this optional parameter is specified in a call to dma_request_channel a
* suitable channel is passed to this routine for further dispositioning before
* being returned. Where 'suitable' indicates a non-busy channel that
* satisfies the given capability mask. It returns 'true' to indicate that the
* channel is suitable.
*/
typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
typedef void (*dma_async_tx_callback)(void *dma_async_param);
struct dmaengine_unmap_data {
u8 map_cnt;
u8 to_cnt;
u8 from_cnt;
u8 bidi_cnt;
struct device *dev;
struct kref kref;
size_t len;
dma_addr_t addr[0];
};
/**
* struct dma_async_tx_descriptor - async transaction descriptor
* ---dma generic offload fields---
* @cookie: tracking cookie for this transaction, set to -EBUSY if
* this tx is sitting on a dependency list
* @flags: flags to augment operation preparation, control completion, and
* communicate status
* @phys: physical address of the descriptor
* @chan: target channel for this operation
* @tx_submit: accept the descriptor, assign ordered cookie and mark the
* descriptor pending. To be pushed on .issue_pending() call
* @callback: routine to call after this operation is complete
* @callback_param: general parameter to pass to the callback routine
* ---async_tx api specific fields---
* @next: at completion submit this descriptor
* @parent: pointer to the next level up in the dependency chain
* @lock: protect the parent and next pointers
*/
struct dma_async_tx_descriptor {
dma_cookie_t cookie;
enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
dma_addr_t phys;
struct dma_chan *chan;
dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
dma_async_tx_callback callback;
void *callback_param;
struct dmaengine_unmap_data *unmap;
#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
struct dma_async_tx_descriptor *next;
struct dma_async_tx_descriptor *parent;
spinlock_t lock;
#endif
};
#ifdef CONFIG_DMA_ENGINE
static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
struct dmaengine_unmap_data *unmap)
{
kref_get(&unmap->kref);
tx->unmap = unmap;
}
struct dmaengine_unmap_data *
dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
#else
static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
struct dmaengine_unmap_data *unmap)
{
}
static inline struct dmaengine_unmap_data *
dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
{
return NULL;
}
static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
{
}
#endif
static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
{
if (tx->unmap) {
dmaengine_unmap_put(tx->unmap);
tx->unmap = NULL;
}
}
#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
static inline void txd_lock(struct dma_async_tx_descriptor *txd)
{
}
static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
{
}
static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
{
BUG();
}
static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
{
}
static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
{
}
static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
{
return NULL;
}
static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
{
return NULL;
}
#else
static inline void txd_lock(struct dma_async_tx_descriptor *txd)
{
spin_lock_bh(&txd->lock);
}
static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
{
spin_unlock_bh(&txd->lock);
}
static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
{
txd->next = next;
next->parent = txd;
}
static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
{
txd->parent = NULL;
}
static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
{
txd->next = NULL;
}
static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
{
return txd->parent;
}
static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
{
return txd->next;
}
#endif
/**
* struct dma_tx_state - filled in to report the status of
* a transfer.
* @last: last completed DMA cookie
* @used: last issued DMA cookie (i.e. the one in progress)
* @residue: the remaining number of bytes left to transmit
* on the selected transfer for states DMA_IN_PROGRESS and
* DMA_PAUSED if this is implemented in the driver, else 0
*/
struct dma_tx_state {
dma_cookie_t last;
dma_cookie_t used;
u32 residue;
};
/**
* struct dma_device - info on the entity supplying DMA services
* @chancnt: how many DMA channels are supported
* @privatecnt: how many DMA channels are requested by dma_request_channel
* @channels: the list of struct dma_chan
* @global_node: list_head for global dma_device_list
* @cap_mask: one or more dma_capability flags
* @max_xor: maximum number of xor sources, 0 if no capability
* @max_pq: maximum number of PQ sources and PQ-continue capability
* @copy_align: alignment shift for memcpy operations
* @xor_align: alignment shift for xor operations
* @pq_align: alignment shift for pq operations
* @dev_id: unique device ID
* @dev: struct device reference for dma mapping api
* @src_addr_widths: bit mask of src addr widths the device supports
* @dst_addr_widths: bit mask of dst addr widths the device supports
* @directions: bit mask of slave direction the device supports since
* the enum dma_transfer_direction is not defined as bits for
* each type of direction, the dma controller should fill (1 <<
* <TYPE>) and same should be checked by controller as well
* @residue_granularity: granularity of the transfer residue reported
* by tx_status
* @device_alloc_chan_resources: allocate resources and return the
* number of allocated descriptors
* @device_free_chan_resources: release DMA channel's resources
* @device_prep_dma_memcpy: prepares a memcpy operation
* @device_prep_dma_xor: prepares a xor operation
* @device_prep_dma_xor_val: prepares a xor validation operation
* @device_prep_dma_pq: prepares a pq operation
* @device_prep_dma_pq_val: prepares a pqzero_sum operation
* @device_prep_dma_interrupt: prepares an end of chain interrupt operation
* @device_prep_slave_sg: prepares a slave dma operation
* @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
* The function takes a buffer of size buf_len. The callback function will
* be called after period_len bytes have been transferred.
* @device_prep_interleaved_dma: Transfer expression in a generic way.
* @device_config: Pushes a new configuration to a channel, return 0 or an error
* code
* @device_pause: Pauses any transfer happening on a channel. Returns
* 0 or an error code
* @device_resume: Resumes any transfer on a channel previously
* paused. Returns 0 or an error code
* @device_terminate_all: Aborts all transfers on a channel. Returns 0
* or an error code
* @device_tx_status: poll for transaction completion, the optional
* txstate parameter can be supplied with a pointer to get a
* struct with auxiliary transfer status information, otherwise the call
* will just return a simple status code
* @device_issue_pending: push pending transactions to hardware
*/
struct dma_device {
unsigned int chancnt;
unsigned int privatecnt;
struct list_head channels;
struct list_head global_node;
dma_cap_mask_t cap_mask;
unsigned short max_xor;
unsigned short max_pq;
u8 copy_align;
u8 xor_align;
u8 pq_align;
#define DMA_HAS_PQ_CONTINUE (1 << 15)
int dev_id;
struct device *dev;
u32 src_addr_widths;
u32 dst_addr_widths;
u32 directions;
enum dma_residue_granularity residue_granularity;
int (*device_alloc_chan_resources)(struct dma_chan *chan);
void (*device_free_chan_resources)(struct dma_chan *chan);
struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
size_t len, unsigned long flags);
struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
unsigned int src_cnt, size_t len, unsigned long flags);
struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
size_t len, enum sum_check_flags *result, unsigned long flags);
struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
unsigned int src_cnt, const unsigned char *scf,
size_t len, unsigned long flags);
struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
unsigned int src_cnt, const unsigned char *scf, size_t len,
enum sum_check_flags *pqres, unsigned long flags);
struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
struct dma_chan *chan, unsigned long flags);
struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
struct dma_chan *chan,
struct scatterlist *dst_sg, unsigned int dst_nents,
struct scatterlist *src_sg, unsigned int src_nents,
unsigned long flags);
struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction direction,
unsigned long flags, void *context);
struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction direction,
unsigned long flags);
struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
struct dma_chan *chan, struct dma_interleaved_template *xt,
unsigned long flags);
int (*device_config)(struct dma_chan *chan,
struct dma_slave_config *config);
int (*device_pause)(struct dma_chan *chan);
int (*device_resume)(struct dma_chan *chan);
int (*device_terminate_all)(struct dma_chan *chan);
enum dma_status (*device_tx_status)(struct dma_chan *chan,
dma_cookie_t cookie,
struct dma_tx_state *txstate);
void (*device_issue_pending)(struct dma_chan *chan);
};
static inline int dmaengine_slave_config(struct dma_chan *chan,
struct dma_slave_config *config)
{
if (chan->device->device_config)
return chan->device->device_config(chan, config);
return -ENOSYS;
}
static inline bool is_slave_direction(enum dma_transfer_direction direction)
{
return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
}
static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
struct dma_chan *chan, dma_addr_t buf, size_t len,
enum dma_transfer_direction dir, unsigned long flags)
{
struct scatterlist sg;
sg_init_table(&sg, 1);
sg_dma_address(&sg) = buf;
sg_dma_len(&sg) = len;
return chan->device->device_prep_slave_sg(chan, &sg, 1,
dir, flags, NULL);
}
static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
enum dma_transfer_direction dir, unsigned long flags)
{
return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
dir, flags, NULL);
}
#ifdef CONFIG_RAPIDIO_DMA_ENGINE
struct rio_dma_ext;
static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
enum dma_transfer_direction dir, unsigned long flags,
struct rio_dma_ext *rio_ext)
{
return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
dir, flags, rio_ext);
}
#endif
static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction dir,
unsigned long flags)
{
return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
period_len, dir, flags);
}
static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
struct dma_chan *chan, struct dma_interleaved_template *xt,
unsigned long flags)
{
return chan->device->device_prep_interleaved_dma(chan, xt, flags);
}
static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
struct dma_chan *chan,
struct scatterlist *dst_sg, unsigned int dst_nents,
struct scatterlist *src_sg, unsigned int src_nents,
unsigned long flags)
{
return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
src_sg, src_nents, flags);
}
static inline int dmaengine_terminate_all(struct dma_chan *chan)
{
if (chan->device->device_terminate_all)
return chan->device->device_terminate_all(chan);
return -ENOSYS;
}
static inline int dmaengine_pause(struct dma_chan *chan)
{
if (chan->device->device_pause)
return chan->device->device_pause(chan);
return -ENOSYS;
}
static inline int dmaengine_resume(struct dma_chan *chan)
{
if (chan->device->device_resume)
return chan->device->device_resume(chan);
return -ENOSYS;
}
static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
dma_cookie_t cookie, struct dma_tx_state *state)
{
return chan->device->device_tx_status(chan, cookie, state);
}
static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
{
return desc->tx_submit(desc);
}
static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
{
size_t mask;
if (!align)
return true;
mask = (1 << align) - 1;
if (mask & (off1 | off2 | len))
return false;
return true;
}
static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
size_t off2, size_t len)
{
return dmaengine_check_align(dev->copy_align, off1, off2, len);
}
static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
size_t off2, size_t len)
{
return dmaengine_check_align(dev->xor_align, off1, off2, len);
}
static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
size_t off2, size_t len)
{
return dmaengine_check_align(dev->pq_align, off1, off2, len);
}
static inline void
dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
{
dma->max_pq = maxpq;
if (has_pq_continue)
dma->max_pq |= DMA_HAS_PQ_CONTINUE;
}
static inline bool dmaf_continue(enum dma_ctrl_flags flags)
{
return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
}
static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
{
enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
return (flags & mask) == mask;
}
static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
{
return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
}
static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
{
return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
}
/* dma_maxpq - reduce maxpq in the face of continued operations
* @dma - dma device with PQ capability
* @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
*
* When an engine does not support native continuation we need 3 extra
* source slots to reuse P and Q with the following coefficients:
* 1/ {00} * P : remove P from Q', but use it as a source for P'
* 2/ {01} * Q : use Q to continue Q' calculation
* 3/ {00} * Q : subtract Q from P' to cancel (2)
*
* In the case where P is disabled we only need 1 extra source:
* 1/ {01} * Q : use Q to continue Q' calculation
*/
static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
{
if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
return dma_dev_to_maxpq(dma);
else if (dmaf_p_disabled_continue(flags))
return dma_dev_to_maxpq(dma) - 1;
else if (dmaf_continue(flags))
return dma_dev_to_maxpq(dma) - 3;
BUG();
}
static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
size_t dir_icg)
{
if (inc) {
if (dir_icg)
return dir_icg;
else if (sgl)
return icg;
}
return 0;
}
static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
struct data_chunk *chunk)
{
return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
chunk->icg, chunk->dst_icg);
}
static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
struct data_chunk *chunk)
{
return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
chunk->icg, chunk->src_icg);
}
/* --- public DMA engine API --- */
#ifdef CONFIG_DMA_ENGINE
void dmaengine_get(void);
void dmaengine_put(void);
#else
static inline void dmaengine_get(void)
{
}
static inline void dmaengine_put(void)
{
}
#endif
#ifdef CONFIG_ASYNC_TX_DMA
#define async_dmaengine_get() dmaengine_get()
#define async_dmaengine_put() dmaengine_put()
#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
#else
#define async_dma_find_channel(type) dma_find_channel(type)
#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
#else
static inline void async_dmaengine_get(void)
{
}
static inline void async_dmaengine_put(void)
{
}
static inline struct dma_chan *
async_dma_find_channel(enum dma_transaction_type type)
{
return NULL;
}
#endif /* CONFIG_ASYNC_TX_DMA */
void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
struct dma_chan *chan);
static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
{
tx->flags |= DMA_CTRL_ACK;
}
static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
{
tx->flags &= ~DMA_CTRL_ACK;
}
static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
{
return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
}
#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
static inline void
__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
{
set_bit(tx_type, dstp->bits);
}
#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
static inline void
__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
{
clear_bit(tx_type, dstp->bits);
}
#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
{
bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
}
#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
static inline int
__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
{
return test_bit(tx_type, srcp->bits);
}
#define for_each_dma_cap_mask(cap, mask) \
for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
/**
* dma_async_issue_pending - flush pending transactions to HW
* @chan: target DMA channel
*
* This allows drivers to push copies to HW in batches,
* reducing MMIO writes where possible.
*/
static inline void dma_async_issue_pending(struct dma_chan *chan)
{
chan->device->device_issue_pending(chan);
}
/**
* dma_async_is_tx_complete - poll for transaction completion
* @chan: DMA channel
* @cookie: transaction identifier to check status of
* @last: returns last completed cookie, can be NULL
* @used: returns last issued cookie, can be NULL
*
* If @last and @used are passed in, upon return they reflect the driver
* internal state and can be used with dma_async_is_complete() to check
* the status of multiple cookies without re-checking hardware state.
*/
static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
{
struct dma_tx_state state;
enum dma_status status;
status = chan->device->device_tx_status(chan, cookie, &state);
if (last)
*last = state.last;
if (used)
*used = state.used;
return status;
}
/**
* dma_async_is_complete - test a cookie against chan state
* @cookie: transaction identifier to test status of
* @last_complete: last know completed transaction
* @last_used: last cookie value handed out
*
* dma_async_is_complete() is used in dma_async_is_tx_complete()
* the test logic is separated for lightweight testing of multiple cookies
*/
static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
dma_cookie_t last_complete, dma_cookie_t last_used)
{
if (last_complete <= last_used) {
if ((cookie <= last_complete) || (cookie > last_used))
return DMA_COMPLETE;
} else {
if ((cookie <= last_complete) && (cookie > last_used))
return DMA_COMPLETE;
}
return DMA_IN_PROGRESS;
}
static inline void
dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
{
if (st) {
st->last = last;
st->used = used;
st->residue = residue;
}
}
#ifdef CONFIG_DMA_ENGINE
struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
void dma_issue_pending_all(void);
struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
dma_filter_fn fn, void *fn_param);
struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
const char *name);
struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
void dma_release_channel(struct dma_chan *chan);
int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
#else
static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
{
return NULL;
}
static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
{
return DMA_COMPLETE;
}
static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
{
return DMA_COMPLETE;
}
static inline void dma_issue_pending_all(void)
{
}
static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
dma_filter_fn fn, void *fn_param)
{
return NULL;
}
static inline struct dma_chan *dma_request_slave_channel_reason(
struct device *dev, const char *name)
{
return ERR_PTR(-ENODEV);
}
static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
const char *name)
{
return NULL;
}
static inline void dma_release_channel(struct dma_chan *chan)
{
}
static inline int dma_get_slave_caps(struct dma_chan *chan,
struct dma_slave_caps *caps)
{
return -ENXIO;
}
#endif
/* --- DMA device --- */
int dma_async_device_register(struct dma_device *device);
void dma_async_device_unregister(struct dma_device *device);
void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
#define dma_request_slave_channel_compat(mask, x, y, dev, name) \
__dma_request_slave_channel_compat(&(mask), x, y, dev, name)
static inline struct dma_chan
*__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
dma_filter_fn fn, void *fn_param,
struct device *dev, char *name)
{
struct dma_chan *chan;
chan = dma_request_slave_channel(dev, name);
if (chan)
return chan;
return __dma_request_channel(mask, fn, fn_param);
}
#endif /* DMAENGINE_H */
|