1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_FUTEX_H
#define _LINUX_FUTEX_H
#include <linux/sched.h>
#include <linux/ktime.h>
#include <uapi/linux/futex.h>
struct inode;
struct mm_struct;
struct task_struct;
/*
* Futexes are matched on equal values of this key.
* The key type depends on whether it's a shared or private mapping.
* Don't rearrange members without looking at hash_futex().
*
* offset is aligned to a multiple of sizeof(u32) (== 4) by definition.
* We use the two low order bits of offset to tell what is the kind of key :
* 00 : Private process futex (PTHREAD_PROCESS_PRIVATE)
* (no reference on an inode or mm)
* 01 : Shared futex (PTHREAD_PROCESS_SHARED)
* mapped on a file (reference on the underlying inode)
* 10 : Shared futex (PTHREAD_PROCESS_SHARED)
* (but private mapping on an mm, and reference taken on it)
*/
#define FUT_OFF_INODE 1 /* We set bit 0 if key has a reference on inode */
#define FUT_OFF_MMSHARED 2 /* We set bit 1 if key has a reference on mm */
union futex_key {
struct {
unsigned long pgoff;
struct inode *inode;
int offset;
} shared;
struct {
unsigned long address;
struct mm_struct *mm;
int offset;
} private;
struct {
unsigned long word;
void *ptr;
int offset;
} both;
};
#define FUTEX_KEY_INIT (union futex_key) { .both = { .ptr = NULL } }
#ifdef CONFIG_FUTEX
enum {
FUTEX_STATE_OK,
FUTEX_STATE_DEAD,
};
static inline void futex_init_task(struct task_struct *tsk)
{
tsk->robust_list = NULL;
#ifdef CONFIG_COMPAT
tsk->compat_robust_list = NULL;
#endif
INIT_LIST_HEAD(&tsk->pi_state_list);
tsk->pi_state_cache = NULL;
tsk->futex_state = FUTEX_STATE_OK;
}
/**
* futex_exit_done - Sets the tasks futex state to FUTEX_STATE_DEAD
* @tsk: task to set the state on
*
* Set the futex exit state of the task lockless. The futex waiter code
* observes that state when a task is exiting and loops until the task has
* actually finished the futex cleanup. The worst case for this is that the
* waiter runs through the wait loop until the state becomes visible.
*
* This has two callers:
*
* - futex_mm_release() after the futex exit cleanup has been done
*
* - do_exit() from the recursive fault handling path.
*
* In case of a recursive fault this is best effort. Either the futex exit
* code has run already or not. If the OWNER_DIED bit has been set on the
* futex then the waiter can take it over. If not, the problem is pushed
* back to user space. If the futex exit code did not run yet, then an
* already queued waiter might block forever, but there is nothing which
* can be done about that.
*/
static inline void futex_exit_done(struct task_struct *tsk)
{
tsk->futex_state = FUTEX_STATE_DEAD;
}
void futex_exit_release(struct task_struct *tsk);
void futex_exec_release(struct task_struct *tsk);
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
u32 __user *uaddr2, u32 val2, u32 val3);
#else
static inline void futex_init_task(struct task_struct *tsk) { }
static inline void futex_exit_done(struct task_struct *tsk) { }
static inline void futex_exit_release(struct task_struct *tsk) { }
static inline void futex_exec_release(struct task_struct *tsk) { }
static inline long do_futex(u32 __user *uaddr, int op, u32 val,
ktime_t *timeout, u32 __user *uaddr2,
u32 val2, u32 val3)
{
return -EINVAL;
}
#endif
#endif
|