summaryrefslogtreecommitdiff
path: root/include/uapi/linux/btrfs_tree.h
blob: 52b2964b0311c084a5a01222c169607575b7da32 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
#ifndef _BTRFS_CTREE_H_
#define _BTRFS_CTREE_H_

#include <linux/btrfs.h>
#include <linux/types.h>

/*
 * This header contains the structure definitions and constants used
 * by file system objects that can be retrieved using
 * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
 * is needed to describe a leaf node's key or item contents.
 */

/* holds pointers to all of the tree roots */
#define BTRFS_ROOT_TREE_OBJECTID 1ULL

/* stores information about which extents are in use, and reference counts */
#define BTRFS_EXTENT_TREE_OBJECTID 2ULL

/*
 * chunk tree stores translations from logical -> physical block numbering
 * the super block points to the chunk tree
 */
#define BTRFS_CHUNK_TREE_OBJECTID 3ULL

/*
 * stores information about which areas of a given device are in use.
 * one per device.  The tree of tree roots points to the device tree
 */
#define BTRFS_DEV_TREE_OBJECTID 4ULL

/* one per subvolume, storing files and directories */
#define BTRFS_FS_TREE_OBJECTID 5ULL

/* directory objectid inside the root tree */
#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL

/* holds checksums of all the data extents */
#define BTRFS_CSUM_TREE_OBJECTID 7ULL

/* holds quota configuration and tracking */
#define BTRFS_QUOTA_TREE_OBJECTID 8ULL

/* for storing items that use the BTRFS_UUID_KEY* types */
#define BTRFS_UUID_TREE_OBJECTID 9ULL

/* tracks free space in block groups. */
#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL

/* device stats in the device tree */
#define BTRFS_DEV_STATS_OBJECTID 0ULL

/* for storing balance parameters in the root tree */
#define BTRFS_BALANCE_OBJECTID -4ULL

/* orhpan objectid for tracking unlinked/truncated files */
#define BTRFS_ORPHAN_OBJECTID -5ULL

/* does write ahead logging to speed up fsyncs */
#define BTRFS_TREE_LOG_OBJECTID -6ULL
#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL

/* for space balancing */
#define BTRFS_TREE_RELOC_OBJECTID -8ULL
#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL

/*
 * extent checksums all have this objectid
 * this allows them to share the logging tree
 * for fsyncs
 */
#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL

/* For storing free space cache */
#define BTRFS_FREE_SPACE_OBJECTID -11ULL

/*
 * The inode number assigned to the special inode for storing
 * free ino cache
 */
#define BTRFS_FREE_INO_OBJECTID -12ULL

/* dummy objectid represents multiple objectids */
#define BTRFS_MULTIPLE_OBJECTIDS -255ULL

/*
 * All files have objectids in this range.
 */
#define BTRFS_FIRST_FREE_OBJECTID 256ULL
#define BTRFS_LAST_FREE_OBJECTID -256ULL
#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL


/*
 * the device items go into the chunk tree.  The key is in the form
 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
 */
#define BTRFS_DEV_ITEMS_OBJECTID 1ULL

#define BTRFS_BTREE_INODE_OBJECTID 1

#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2

#define BTRFS_DEV_REPLACE_DEVID 0ULL

/*
 * inode items have the data typically returned from stat and store other
 * info about object characteristics.  There is one for every file and dir in
 * the FS
 */
#define BTRFS_INODE_ITEM_KEY		1
#define BTRFS_INODE_REF_KEY		12
#define BTRFS_INODE_EXTREF_KEY		13
#define BTRFS_XATTR_ITEM_KEY		24
#define BTRFS_ORPHAN_ITEM_KEY		48
/* reserve 2-15 close to the inode for later flexibility */

/*
 * dir items are the name -> inode pointers in a directory.  There is one
 * for every name in a directory.
 */
#define BTRFS_DIR_LOG_ITEM_KEY  60
#define BTRFS_DIR_LOG_INDEX_KEY 72
#define BTRFS_DIR_ITEM_KEY	84
#define BTRFS_DIR_INDEX_KEY	96
/*
 * extent data is for file data
 */
#define BTRFS_EXTENT_DATA_KEY	108

/*
 * extent csums are stored in a separate tree and hold csums for
 * an entire extent on disk.
 */
#define BTRFS_EXTENT_CSUM_KEY	128

/*
 * root items point to tree roots.  They are typically in the root
 * tree used by the super block to find all the other trees
 */
#define BTRFS_ROOT_ITEM_KEY	132

/*
 * root backrefs tie subvols and snapshots to the directory entries that
 * reference them
 */
#define BTRFS_ROOT_BACKREF_KEY	144

/*
 * root refs make a fast index for listing all of the snapshots and
 * subvolumes referenced by a given root.  They point directly to the
 * directory item in the root that references the subvol
 */
#define BTRFS_ROOT_REF_KEY	156

/*
 * extent items are in the extent map tree.  These record which blocks
 * are used, and how many references there are to each block
 */
#define BTRFS_EXTENT_ITEM_KEY	168

/*
 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
 * the length, so we save the level in key->offset instead of the length.
 */
#define BTRFS_METADATA_ITEM_KEY	169

#define BTRFS_TREE_BLOCK_REF_KEY	176

#define BTRFS_EXTENT_DATA_REF_KEY	178

#define BTRFS_EXTENT_REF_V0_KEY		180

#define BTRFS_SHARED_BLOCK_REF_KEY	182

#define BTRFS_SHARED_DATA_REF_KEY	184

/*
 * block groups give us hints into the extent allocation trees.  Which
 * blocks are free etc etc
 */
#define BTRFS_BLOCK_GROUP_ITEM_KEY 192

/*
 * Every block group is represented in the free space tree by a free space info
 * item, which stores some accounting information. It is keyed on
 * (block_group_start, FREE_SPACE_INFO, block_group_length).
 */
#define BTRFS_FREE_SPACE_INFO_KEY 198

/*
 * A free space extent tracks an extent of space that is free in a block group.
 * It is keyed on (start, FREE_SPACE_EXTENT, length).
 */
#define BTRFS_FREE_SPACE_EXTENT_KEY 199

/*
 * When a block group becomes very fragmented, we convert it to use bitmaps
 * instead of extents. A free space bitmap is keyed on
 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
 * (length / sectorsize) bits.
 */
#define BTRFS_FREE_SPACE_BITMAP_KEY 200

#define BTRFS_DEV_EXTENT_KEY	204
#define BTRFS_DEV_ITEM_KEY	216
#define BTRFS_CHUNK_ITEM_KEY	228

/*
 * Records the overall state of the qgroups.
 * There's only one instance of this key present,
 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
 */
#define BTRFS_QGROUP_STATUS_KEY         240
/*
 * Records the currently used space of the qgroup.
 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
 */
#define BTRFS_QGROUP_INFO_KEY           242
/*
 * Contains the user configured limits for the qgroup.
 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
 */
#define BTRFS_QGROUP_LIMIT_KEY          244
/*
 * Records the child-parent relationship of qgroups. For
 * each relation, 2 keys are present:
 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
 */
#define BTRFS_QGROUP_RELATION_KEY       246

/*
 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
 */
#define BTRFS_BALANCE_ITEM_KEY	248

/*
 * The key type for tree items that are stored persistently, but do not need to
 * exist for extended period of time. The items can exist in any tree.
 *
 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
 *
 * Existing items:
 *
 * - balance status item
 *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
 */
#define BTRFS_TEMPORARY_ITEM_KEY	248

/*
 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
 */
#define BTRFS_DEV_STATS_KEY		249

/*
 * The key type for tree items that are stored persistently and usually exist
 * for a long period, eg. filesystem lifetime. The item kinds can be status
 * information, stats or preference values. The item can exist in any tree.
 *
 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
 *
 * Existing items:
 *
 * - device statistics, store IO stats in the device tree, one key for all
 *   stats
 *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
 */
#define BTRFS_PERSISTENT_ITEM_KEY	249

/*
 * Persistantly stores the device replace state in the device tree.
 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
 */
#define BTRFS_DEV_REPLACE_KEY	250

/*
 * Stores items that allow to quickly map UUIDs to something else.
 * These items are part of the filesystem UUID tree.
 * The key is built like this:
 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
 */
#if BTRFS_UUID_SIZE != 16
#error "UUID items require BTRFS_UUID_SIZE == 16!"
#endif
#define BTRFS_UUID_KEY_SUBVOL	251	/* for UUIDs assigned to subvols */
#define BTRFS_UUID_KEY_RECEIVED_SUBVOL	252	/* for UUIDs assigned to
						 * received subvols */

/*
 * string items are for debugging.  They just store a short string of
 * data in the FS
 */
#define BTRFS_STRING_ITEM_KEY	253



/* 32 bytes in various csum fields */
#define BTRFS_CSUM_SIZE 32

/* csum types */
enum btrfs_csum_type {
	BTRFS_CSUM_TYPE_CRC32	= 0,
	BTRFS_CSUM_TYPE_XXHASH	= 1,
	BTRFS_CSUM_TYPE_SHA256	= 2,
	BTRFS_CSUM_TYPE_BLAKE2	= 3,
};

/*
 * flags definitions for directory entry item type
 *
 * Used by:
 * struct btrfs_dir_item.type
 *
 * Values 0..7 must match common file type values in fs_types.h.
 */
#define BTRFS_FT_UNKNOWN	0
#define BTRFS_FT_REG_FILE	1
#define BTRFS_FT_DIR		2
#define BTRFS_FT_CHRDEV		3
#define BTRFS_FT_BLKDEV		4
#define BTRFS_FT_FIFO		5
#define BTRFS_FT_SOCK		6
#define BTRFS_FT_SYMLINK	7
#define BTRFS_FT_XATTR		8
#define BTRFS_FT_MAX		9

/*
 * The key defines the order in the tree, and so it also defines (optimal)
 * block layout.
 *
 * objectid corresponds to the inode number.
 *
 * type tells us things about the object, and is a kind of stream selector.
 * so for a given inode, keys with type of 1 might refer to the inode data,
 * type of 2 may point to file data in the btree and type == 3 may point to
 * extents.
 *
 * offset is the starting byte offset for this key in the stream.
 *
 * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
 * in cpu native order.  Otherwise they are identical and their sizes
 * should be the same (ie both packed)
 */
struct btrfs_disk_key {
	__le64 objectid;
	__u8 type;
	__le64 offset;
} __attribute__ ((__packed__));

struct btrfs_key {
	__u64 objectid;
	__u8 type;
	__u64 offset;
} __attribute__ ((__packed__));

struct btrfs_dev_item {
	/* the internal btrfs device id */
	__le64 devid;

	/* size of the device */
	__le64 total_bytes;

	/* bytes used */
	__le64 bytes_used;

	/* optimal io alignment for this device */
	__le32 io_align;

	/* optimal io width for this device */
	__le32 io_width;

	/* minimal io size for this device */
	__le32 sector_size;

	/* type and info about this device */
	__le64 type;

	/* expected generation for this device */
	__le64 generation;

	/*
	 * starting byte of this partition on the device,
	 * to allow for stripe alignment in the future
	 */
	__le64 start_offset;

	/* grouping information for allocation decisions */
	__le32 dev_group;

	/* seek speed 0-100 where 100 is fastest */
	__u8 seek_speed;

	/* bandwidth 0-100 where 100 is fastest */
	__u8 bandwidth;

	/* btrfs generated uuid for this device */
	__u8 uuid[BTRFS_UUID_SIZE];

	/* uuid of FS who owns this device */
	__u8 fsid[BTRFS_UUID_SIZE];
} __attribute__ ((__packed__));

struct btrfs_stripe {
	__le64 devid;
	__le64 offset;
	__u8 dev_uuid[BTRFS_UUID_SIZE];
} __attribute__ ((__packed__));

struct btrfs_chunk {
	/* size of this chunk in bytes */
	__le64 length;

	/* objectid of the root referencing this chunk */
	__le64 owner;

	__le64 stripe_len;
	__le64 type;

	/* optimal io alignment for this chunk */
	__le32 io_align;

	/* optimal io width for this chunk */
	__le32 io_width;

	/* minimal io size for this chunk */
	__le32 sector_size;

	/* 2^16 stripes is quite a lot, a second limit is the size of a single
	 * item in the btree
	 */
	__le16 num_stripes;

	/* sub stripes only matter for raid10 */
	__le16 sub_stripes;
	struct btrfs_stripe stripe;
	/* additional stripes go here */
} __attribute__ ((__packed__));

#define BTRFS_FREE_SPACE_EXTENT	1
#define BTRFS_FREE_SPACE_BITMAP	2

struct btrfs_free_space_entry {
	__le64 offset;
	__le64 bytes;
	__u8 type;
} __attribute__ ((__packed__));

struct btrfs_free_space_header {
	struct btrfs_disk_key location;
	__le64 generation;
	__le64 num_entries;
	__le64 num_bitmaps;
} __attribute__ ((__packed__));

#define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0)
#define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1)

/* Super block flags */
/* Errors detected */
#define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2)

#define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32)
#define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33)
#define BTRFS_SUPER_FLAG_METADUMP_V2	(1ULL << 34)
#define BTRFS_SUPER_FLAG_CHANGING_FSID	(1ULL << 35)
#define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)


/*
 * items in the extent btree are used to record the objectid of the
 * owner of the block and the number of references
 */

struct btrfs_extent_item {
	__le64 refs;
	__le64 generation;
	__le64 flags;
} __attribute__ ((__packed__));

struct btrfs_extent_item_v0 {
	__le32 refs;
} __attribute__ ((__packed__));


#define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0)
#define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1)

/* following flags only apply to tree blocks */

/* use full backrefs for extent pointers in the block */
#define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8)

/*
 * this flag is only used internally by scrub and may be changed at any time
 * it is only declared here to avoid collisions
 */
#define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48)

struct btrfs_tree_block_info {
	struct btrfs_disk_key key;
	__u8 level;
} __attribute__ ((__packed__));

struct btrfs_extent_data_ref {
	__le64 root;
	__le64 objectid;
	__le64 offset;
	__le32 count;
} __attribute__ ((__packed__));

struct btrfs_shared_data_ref {
	__le32 count;
} __attribute__ ((__packed__));

struct btrfs_extent_inline_ref {
	__u8 type;
	__le64 offset;
} __attribute__ ((__packed__));

/* old style backrefs item */
struct btrfs_extent_ref_v0 {
	__le64 root;
	__le64 generation;
	__le64 objectid;
	__le32 count;
} __attribute__ ((__packed__));


/* dev extents record free space on individual devices.  The owner
 * field points back to the chunk allocation mapping tree that allocated
 * the extent.  The chunk tree uuid field is a way to double check the owner
 */
struct btrfs_dev_extent {
	__le64 chunk_tree;
	__le64 chunk_objectid;
	__le64 chunk_offset;
	__le64 length;
	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
} __attribute__ ((__packed__));

struct btrfs_inode_ref {
	__le64 index;
	__le16 name_len;
	/* name goes here */
} __attribute__ ((__packed__));

struct btrfs_inode_extref {
	__le64 parent_objectid;
	__le64 index;
	__le16 name_len;
	__u8   name[0];
	/* name goes here */
} __attribute__ ((__packed__));

struct btrfs_timespec {
	__le64 sec;
	__le32 nsec;
} __attribute__ ((__packed__));

struct btrfs_inode_item {
	/* nfs style generation number */
	__le64 generation;
	/* transid that last touched this inode */
	__le64 transid;
	__le64 size;
	__le64 nbytes;
	__le64 block_group;
	__le32 nlink;
	__le32 uid;
	__le32 gid;
	__le32 mode;
	__le64 rdev;
	__le64 flags;

	/* modification sequence number for NFS */
	__le64 sequence;

	/*
	 * a little future expansion, for more than this we can
	 * just grow the inode item and version it
	 */
	__le64 reserved[4];
	struct btrfs_timespec atime;
	struct btrfs_timespec ctime;
	struct btrfs_timespec mtime;
	struct btrfs_timespec otime;
} __attribute__ ((__packed__));

struct btrfs_dir_log_item {
	__le64 end;
} __attribute__ ((__packed__));

struct btrfs_dir_item {
	struct btrfs_disk_key location;
	__le64 transid;
	__le16 data_len;
	__le16 name_len;
	__u8 type;
} __attribute__ ((__packed__));

#define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0)

/*
 * Internal in-memory flag that a subvolume has been marked for deletion but
 * still visible as a directory
 */
#define BTRFS_ROOT_SUBVOL_DEAD		(1ULL << 48)

struct btrfs_root_item {
	struct btrfs_inode_item inode;
	__le64 generation;
	__le64 root_dirid;
	__le64 bytenr;
	__le64 byte_limit;
	__le64 bytes_used;
	__le64 last_snapshot;
	__le64 flags;
	__le32 refs;
	struct btrfs_disk_key drop_progress;
	__u8 drop_level;
	__u8 level;

	/*
	 * The following fields appear after subvol_uuids+subvol_times
	 * were introduced.
	 */

	/*
	 * This generation number is used to test if the new fields are valid
	 * and up to date while reading the root item. Every time the root item
	 * is written out, the "generation" field is copied into this field. If
	 * anyone ever mounted the fs with an older kernel, we will have
	 * mismatching generation values here and thus must invalidate the
	 * new fields. See btrfs_update_root and btrfs_find_last_root for
	 * details.
	 * the offset of generation_v2 is also used as the start for the memset
	 * when invalidating the fields.
	 */
	__le64 generation_v2;
	__u8 uuid[BTRFS_UUID_SIZE];
	__u8 parent_uuid[BTRFS_UUID_SIZE];
	__u8 received_uuid[BTRFS_UUID_SIZE];
	__le64 ctransid; /* updated when an inode changes */
	__le64 otransid; /* trans when created */
	__le64 stransid; /* trans when sent. non-zero for received subvol */
	__le64 rtransid; /* trans when received. non-zero for received subvol */
	struct btrfs_timespec ctime;
	struct btrfs_timespec otime;
	struct btrfs_timespec stime;
	struct btrfs_timespec rtime;
	__le64 reserved[8]; /* for future */
} __attribute__ ((__packed__));

/*
 * this is used for both forward and backward root refs
 */
struct btrfs_root_ref {
	__le64 dirid;
	__le64 sequence;
	__le16 name_len;
} __attribute__ ((__packed__));

struct btrfs_disk_balance_args {
	/*
	 * profiles to operate on, single is denoted by
	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
	 */
	__le64 profiles;

	/*
	 * usage filter
	 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
	 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
	 */
	union {
		__le64 usage;
		struct {
			__le32 usage_min;
			__le32 usage_max;
		};
	};

	/* devid filter */
	__le64 devid;

	/* devid subset filter [pstart..pend) */
	__le64 pstart;
	__le64 pend;

	/* btrfs virtual address space subset filter [vstart..vend) */
	__le64 vstart;
	__le64 vend;

	/*
	 * profile to convert to, single is denoted by
	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
	 */
	__le64 target;

	/* BTRFS_BALANCE_ARGS_* */
	__le64 flags;

	/*
	 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
	 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
	 * and maximum
	 */
	union {
		__le64 limit;
		struct {
			__le32 limit_min;
			__le32 limit_max;
		};
	};

	/*
	 * Process chunks that cross stripes_min..stripes_max devices,
	 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
	 */
	__le32 stripes_min;
	__le32 stripes_max;

	__le64 unused[6];
} __attribute__ ((__packed__));

/*
 * store balance parameters to disk so that balance can be properly
 * resumed after crash or unmount
 */
struct btrfs_balance_item {
	/* BTRFS_BALANCE_* */
	__le64 flags;

	struct btrfs_disk_balance_args data;
	struct btrfs_disk_balance_args meta;
	struct btrfs_disk_balance_args sys;

	__le64 unused[4];
} __attribute__ ((__packed__));

enum {
	BTRFS_FILE_EXTENT_INLINE   = 0,
	BTRFS_FILE_EXTENT_REG      = 1,
	BTRFS_FILE_EXTENT_PREALLOC = 2,
	BTRFS_NR_FILE_EXTENT_TYPES = 3,
};

struct btrfs_file_extent_item {
	/*
	 * transaction id that created this extent
	 */
	__le64 generation;
	/*
	 * max number of bytes to hold this extent in ram
	 * when we split a compressed extent we can't know how big
	 * each of the resulting pieces will be.  So, this is
	 * an upper limit on the size of the extent in ram instead of
	 * an exact limit.
	 */
	__le64 ram_bytes;

	/*
	 * 32 bits for the various ways we might encode the data,
	 * including compression and encryption.  If any of these
	 * are set to something a given disk format doesn't understand
	 * it is treated like an incompat flag for reading and writing,
	 * but not for stat.
	 */
	__u8 compression;
	__u8 encryption;
	__le16 other_encoding; /* spare for later use */

	/* are we inline data or a real extent? */
	__u8 type;

	/*
	 * disk space consumed by the extent, checksum blocks are included
	 * in these numbers
	 *
	 * At this offset in the structure, the inline extent data start.
	 */
	__le64 disk_bytenr;
	__le64 disk_num_bytes;
	/*
	 * the logical offset in file blocks (no csums)
	 * this extent record is for.  This allows a file extent to point
	 * into the middle of an existing extent on disk, sharing it
	 * between two snapshots (useful if some bytes in the middle of the
	 * extent have changed
	 */
	__le64 offset;
	/*
	 * the logical number of file blocks (no csums included).  This
	 * always reflects the size uncompressed and without encoding.
	 */
	__le64 num_bytes;

} __attribute__ ((__packed__));

struct btrfs_csum_item {
	__u8 csum;
} __attribute__ ((__packed__));

struct btrfs_dev_stats_item {
	/*
	 * grow this item struct at the end for future enhancements and keep
	 * the existing values unchanged
	 */
	__le64 values[BTRFS_DEV_STAT_VALUES_MAX];
} __attribute__ ((__packed__));

#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS	0
#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID	1

struct btrfs_dev_replace_item {
	/*
	 * grow this item struct at the end for future enhancements and keep
	 * the existing values unchanged
	 */
	__le64 src_devid;
	__le64 cursor_left;
	__le64 cursor_right;
	__le64 cont_reading_from_srcdev_mode;

	__le64 replace_state;
	__le64 time_started;
	__le64 time_stopped;
	__le64 num_write_errors;
	__le64 num_uncorrectable_read_errors;
} __attribute__ ((__packed__));

/* different types of block groups (and chunks) */
#define BTRFS_BLOCK_GROUP_DATA		(1ULL << 0)
#define BTRFS_BLOCK_GROUP_SYSTEM	(1ULL << 1)
#define BTRFS_BLOCK_GROUP_METADATA	(1ULL << 2)
#define BTRFS_BLOCK_GROUP_RAID0		(1ULL << 3)
#define BTRFS_BLOCK_GROUP_RAID1		(1ULL << 4)
#define BTRFS_BLOCK_GROUP_DUP		(1ULL << 5)
#define BTRFS_BLOCK_GROUP_RAID10	(1ULL << 6)
#define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
#define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
#define BTRFS_BLOCK_GROUP_RAID1C3       (1ULL << 9)
#define BTRFS_BLOCK_GROUP_RESERVED	(BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
					 BTRFS_SPACE_INFO_GLOBAL_RSV)

enum btrfs_raid_types {
	BTRFS_RAID_RAID10,
	BTRFS_RAID_RAID1,
	BTRFS_RAID_DUP,
	BTRFS_RAID_RAID0,
	BTRFS_RAID_SINGLE,
	BTRFS_RAID_RAID5,
	BTRFS_RAID_RAID6,
	BTRFS_RAID_RAID1C3,
	BTRFS_NR_RAID_TYPES
};

#define BTRFS_BLOCK_GROUP_TYPE_MASK	(BTRFS_BLOCK_GROUP_DATA |    \
					 BTRFS_BLOCK_GROUP_SYSTEM |  \
					 BTRFS_BLOCK_GROUP_METADATA)

#define BTRFS_BLOCK_GROUP_PROFILE_MASK	(BTRFS_BLOCK_GROUP_RAID0 |   \
					 BTRFS_BLOCK_GROUP_RAID1 |   \
					 BTRFS_BLOCK_GROUP_RAID1C3 | \
					 BTRFS_BLOCK_GROUP_RAID5 |   \
					 BTRFS_BLOCK_GROUP_RAID6 |   \
					 BTRFS_BLOCK_GROUP_DUP |     \
					 BTRFS_BLOCK_GROUP_RAID10)
#define BTRFS_BLOCK_GROUP_RAID56_MASK	(BTRFS_BLOCK_GROUP_RAID5 |   \
					 BTRFS_BLOCK_GROUP_RAID6)

#define BTRFS_BLOCK_GROUP_RAID1_MASK	(BTRFS_BLOCK_GROUP_RAID1 |   \
					 BTRFS_BLOCK_GROUP_RAID1C3)

/*
 * We need a bit for restriper to be able to tell when chunks of type
 * SINGLE are available.  This "extended" profile format is used in
 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
 * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
 * to avoid remappings between two formats in future.
 */
#define BTRFS_AVAIL_ALLOC_BIT_SINGLE	(1ULL << 48)

/*
 * A fake block group type that is used to communicate global block reserve
 * size to userspace via the SPACE_INFO ioctl.
 */
#define BTRFS_SPACE_INFO_GLOBAL_RSV	(1ULL << 49)

#define BTRFS_EXTENDED_PROFILE_MASK	(BTRFS_BLOCK_GROUP_PROFILE_MASK | \
					 BTRFS_AVAIL_ALLOC_BIT_SINGLE)

static inline __u64 chunk_to_extended(__u64 flags)
{
	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
		flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;

	return flags;
}
static inline __u64 extended_to_chunk(__u64 flags)
{
	return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
}

struct btrfs_block_group_item {
	__le64 used;
	__le64 chunk_objectid;
	__le64 flags;
} __attribute__ ((__packed__));

struct btrfs_free_space_info {
	__le32 extent_count;
	__le32 flags;
} __attribute__ ((__packed__));

#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)

#define BTRFS_QGROUP_LEVEL_SHIFT		48
static inline __u64 btrfs_qgroup_level(__u64 qgroupid)
{
	return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
}

/*
 * is subvolume quota turned on?
 */
#define BTRFS_QGROUP_STATUS_FLAG_ON		(1ULL << 0)
/*
 * RESCAN is set during the initialization phase
 */
#define BTRFS_QGROUP_STATUS_FLAG_RESCAN		(1ULL << 1)
/*
 * Some qgroup entries are known to be out of date,
 * either because the configuration has changed in a way that
 * makes a rescan necessary, or because the fs has been mounted
 * with a non-qgroup-aware version.
 * Turning qouta off and on again makes it inconsistent, too.
 */
#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT	(1ULL << 2)

#define BTRFS_QGROUP_STATUS_VERSION        1

struct btrfs_qgroup_status_item {
	__le64 version;
	/*
	 * the generation is updated during every commit. As older
	 * versions of btrfs are not aware of qgroups, it will be
	 * possible to detect inconsistencies by checking the
	 * generation on mount time
	 */
	__le64 generation;

	/* flag definitions see above */
	__le64 flags;

	/*
	 * only used during scanning to record the progress
	 * of the scan. It contains a logical address
	 */
	__le64 rescan;
} __attribute__ ((__packed__));

struct btrfs_qgroup_info_item {
	__le64 generation;
	__le64 rfer;
	__le64 rfer_cmpr;
	__le64 excl;
	__le64 excl_cmpr;
} __attribute__ ((__packed__));

struct btrfs_qgroup_limit_item {
	/*
	 * only updated when any of the other values change
	 */
	__le64 flags;
	__le64 max_rfer;
	__le64 max_excl;
	__le64 rsv_rfer;
	__le64 rsv_excl;
} __attribute__ ((__packed__));

#endif /* _BTRFS_CTREE_H_ */