summaryrefslogtreecommitdiff
path: root/lib/xarray.c
blob: c991ff4523ef19ed88937aa905de49b06e1a8c54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
// SPDX-License-Identifier: GPL-2.0+
/*
 * XArray implementation
 * Copyright (c) 2017 Microsoft Corporation
 * Author: Matthew Wilcox <willy@infradead.org>
 */

#include <linux/bitmap.h>
#include <linux/export.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/xarray.h>

/*
 * Coding conventions in this file:
 *
 * @xa is used to refer to the entire xarray.
 * @xas is the 'xarray operation state'.  It may be either a pointer to
 * an xa_state, or an xa_state stored on the stack.  This is an unfortunate
 * ambiguity.
 * @index is the index of the entry being operated on
 * @mark is an xa_mark_t; a small number indicating one of the mark bits.
 * @node refers to an xa_node; usually the primary one being operated on by
 * this function.
 * @offset is the index into the slots array inside an xa_node.
 * @parent refers to the @xa_node closer to the head than @node.
 * @entry refers to something stored in a slot in the xarray
 */

static inline unsigned int xa_lock_type(const struct xarray *xa)
{
	return (__force unsigned int)xa->xa_flags & 3;
}

static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
{
	if (lock_type == XA_LOCK_IRQ)
		xas_lock_irq(xas);
	else if (lock_type == XA_LOCK_BH)
		xas_lock_bh(xas);
	else
		xas_lock(xas);
}

static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
{
	if (lock_type == XA_LOCK_IRQ)
		xas_unlock_irq(xas);
	else if (lock_type == XA_LOCK_BH)
		xas_unlock_bh(xas);
	else
		xas_unlock(xas);
}

static inline bool xa_track_free(const struct xarray *xa)
{
	return xa->xa_flags & XA_FLAGS_TRACK_FREE;
}

static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
{
	if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
		xa->xa_flags |= XA_FLAGS_MARK(mark);
}

static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
{
	if (xa->xa_flags & XA_FLAGS_MARK(mark))
		xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
}

static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
{
	return node->marks[(__force unsigned)mark];
}

static inline bool node_get_mark(struct xa_node *node,
		unsigned int offset, xa_mark_t mark)
{
	return test_bit(offset, node_marks(node, mark));
}

/* returns true if the bit was set */
static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
				xa_mark_t mark)
{
	return __test_and_set_bit(offset, node_marks(node, mark));
}

/* returns true if the bit was set */
static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
				xa_mark_t mark)
{
	return __test_and_clear_bit(offset, node_marks(node, mark));
}

static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
{
	return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
}

static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
{
	bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
}

#define mark_inc(mark) do { \
	mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
} while (0)

/*
 * xas_squash_marks() - Merge all marks to the first entry
 * @xas: Array operation state.
 *
 * Set a mark on the first entry if any entry has it set.  Clear marks on
 * all sibling entries.
 */
static void xas_squash_marks(const struct xa_state *xas)
{
	unsigned int mark = 0;
	unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;

	if (!xas->xa_sibs)
		return;

	do {
		unsigned long *marks = xas->xa_node->marks[mark];
		if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
			continue;
		__set_bit(xas->xa_offset, marks);
		bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
	} while (mark++ != (__force unsigned)XA_MARK_MAX);
}

/* extracts the offset within this node from the index */
static unsigned int get_offset(unsigned long index, struct xa_node *node)
{
	return (index >> node->shift) & XA_CHUNK_MASK;
}

static void xas_set_offset(struct xa_state *xas)
{
	xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
}

/* move the index either forwards (find) or backwards (sibling slot) */
static void xas_move_index(struct xa_state *xas, unsigned long offset)
{
	unsigned int shift = xas->xa_node->shift;
	xas->xa_index &= ~XA_CHUNK_MASK << shift;
	xas->xa_index += offset << shift;
}

static void xas_advance(struct xa_state *xas)
{
	xas->xa_offset++;
	xas_move_index(xas, xas->xa_offset);
}

static void *set_bounds(struct xa_state *xas)
{
	xas->xa_node = XAS_BOUNDS;
	return NULL;
}

/*
 * Starts a walk.  If the @xas is already valid, we assume that it's on
 * the right path and just return where we've got to.  If we're in an
 * error state, return NULL.  If the index is outside the current scope
 * of the xarray, return NULL without changing @xas->xa_node.  Otherwise
 * set @xas->xa_node to NULL and return the current head of the array.
 */
static void *xas_start(struct xa_state *xas)
{
	void *entry;

	if (xas_valid(xas))
		return xas_reload(xas);
	if (xas_error(xas))
		return NULL;

	entry = xa_head(xas->xa);
	if (!xa_is_node(entry)) {
		if (xas->xa_index)
			return set_bounds(xas);
	} else {
		if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
			return set_bounds(xas);
	}

	xas->xa_node = NULL;
	return entry;
}

static void *xas_descend(struct xa_state *xas, struct xa_node *node)
{
	unsigned int offset = get_offset(xas->xa_index, node);
	void *entry = xa_entry(xas->xa, node, offset);

	xas->xa_node = node;
	if (xa_is_sibling(entry)) {
		offset = xa_to_sibling(entry);
		entry = xa_entry(xas->xa, node, offset);
	}

	xas->xa_offset = offset;
	return entry;
}

/**
 * xas_load() - Load an entry from the XArray (advanced).
 * @xas: XArray operation state.
 *
 * Usually walks the @xas to the appropriate state to load the entry
 * stored at xa_index.  However, it will do nothing and return %NULL if
 * @xas is in an error state.  xas_load() will never expand the tree.
 *
 * If the xa_state is set up to operate on a multi-index entry, xas_load()
 * may return %NULL or an internal entry, even if there are entries
 * present within the range specified by @xas.
 *
 * Context: Any context.  The caller should hold the xa_lock or the RCU lock.
 * Return: Usually an entry in the XArray, but see description for exceptions.
 */
void *xas_load(struct xa_state *xas)
{
	void *entry = xas_start(xas);

	while (xa_is_node(entry)) {
		struct xa_node *node = xa_to_node(entry);

		if (xas->xa_shift > node->shift)
			break;
		entry = xas_descend(xas, node);
	}
	return entry;
}
EXPORT_SYMBOL_GPL(xas_load);

/* Move the radix tree node cache here */
extern struct kmem_cache *radix_tree_node_cachep;
extern void radix_tree_node_rcu_free(struct rcu_head *head);

#define XA_RCU_FREE	((struct xarray *)1)

static void xa_node_free(struct xa_node *node)
{
	XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
	node->array = XA_RCU_FREE;
	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
}

/*
 * xas_destroy() - Free any resources allocated during the XArray operation.
 * @xas: XArray operation state.
 *
 * This function is now internal-only.
 */
static void xas_destroy(struct xa_state *xas)
{
	struct xa_node *node = xas->xa_alloc;

	if (!node)
		return;
	XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
	kmem_cache_free(radix_tree_node_cachep, node);
	xas->xa_alloc = NULL;
}

/**
 * xas_nomem() - Allocate memory if needed.
 * @xas: XArray operation state.
 * @gfp: Memory allocation flags.
 *
 * If we need to add new nodes to the XArray, we try to allocate memory
 * with GFP_NOWAIT while holding the lock, which will usually succeed.
 * If it fails, @xas is flagged as needing memory to continue.  The caller
 * should drop the lock and call xas_nomem().  If xas_nomem() succeeds,
 * the caller should retry the operation.
 *
 * Forward progress is guaranteed as one node is allocated here and
 * stored in the xa_state where it will be found by xas_alloc().  More
 * nodes will likely be found in the slab allocator, but we do not tie
 * them up here.
 *
 * Return: true if memory was needed, and was successfully allocated.
 */
bool xas_nomem(struct xa_state *xas, gfp_t gfp)
{
	if (xas->xa_node != XA_ERROR(-ENOMEM)) {
		xas_destroy(xas);
		return false;
	}
	xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
	if (!xas->xa_alloc)
		return false;
	XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
	xas->xa_node = XAS_RESTART;
	return true;
}
EXPORT_SYMBOL_GPL(xas_nomem);

/*
 * __xas_nomem() - Drop locks and allocate memory if needed.
 * @xas: XArray operation state.
 * @gfp: Memory allocation flags.
 *
 * Internal variant of xas_nomem().
 *
 * Return: true if memory was needed, and was successfully allocated.
 */
static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
	__must_hold(xas->xa->xa_lock)
{
	unsigned int lock_type = xa_lock_type(xas->xa);

	if (xas->xa_node != XA_ERROR(-ENOMEM)) {
		xas_destroy(xas);
		return false;
	}
	if (gfpflags_allow_blocking(gfp)) {
		xas_unlock_type(xas, lock_type);
		xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
		xas_lock_type(xas, lock_type);
	} else {
		xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
	}
	if (!xas->xa_alloc)
		return false;
	XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
	xas->xa_node = XAS_RESTART;
	return true;
}

static void xas_update(struct xa_state *xas, struct xa_node *node)
{
	if (xas->xa_update)
		xas->xa_update(node);
	else
		XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
}

static void *xas_alloc(struct xa_state *xas, unsigned int shift)
{
	struct xa_node *parent = xas->xa_node;
	struct xa_node *node = xas->xa_alloc;

	if (xas_invalid(xas))
		return NULL;

	if (node) {
		xas->xa_alloc = NULL;
	} else {
		node = kmem_cache_alloc(radix_tree_node_cachep,
					GFP_NOWAIT | __GFP_NOWARN);
		if (!node) {
			xas_set_err(xas, -ENOMEM);
			return NULL;
		}
	}

	if (parent) {
		node->offset = xas->xa_offset;
		parent->count++;
		XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
		xas_update(xas, parent);
	}
	XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
	XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
	node->shift = shift;
	node->count = 0;
	node->nr_values = 0;
	RCU_INIT_POINTER(node->parent, xas->xa_node);
	node->array = xas->xa;

	return node;
}

#ifdef CONFIG_XARRAY_MULTI
/* Returns the number of indices covered by a given xa_state */
static unsigned long xas_size(const struct xa_state *xas)
{
	return (xas->xa_sibs + 1UL) << xas->xa_shift;
}
#endif

/*
 * Use this to calculate the maximum index that will need to be created
 * in order to add the entry described by @xas.  Because we cannot store a
 * multiple-index entry at index 0, the calculation is a little more complex
 * than you might expect.
 */
static unsigned long xas_max(struct xa_state *xas)
{
	unsigned long max = xas->xa_index;

#ifdef CONFIG_XARRAY_MULTI
	if (xas->xa_shift || xas->xa_sibs) {
		unsigned long mask = xas_size(xas) - 1;
		max |= mask;
		if (mask == max)
			max++;
	}
#endif

	return max;
}

/* The maximum index that can be contained in the array without expanding it */
static unsigned long max_index(void *entry)
{
	if (!xa_is_node(entry))
		return 0;
	return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
}

static void xas_shrink(struct xa_state *xas)
{
	struct xarray *xa = xas->xa;
	struct xa_node *node = xas->xa_node;

	for (;;) {
		void *entry;

		XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
		if (node->count != 1)
			break;
		entry = xa_entry_locked(xa, node, 0);
		if (!entry)
			break;
		if (!xa_is_node(entry) && node->shift)
			break;
		xas->xa_node = XAS_BOUNDS;

		RCU_INIT_POINTER(xa->xa_head, entry);
		if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
			xa_mark_clear(xa, XA_FREE_MARK);

		node->count = 0;
		node->nr_values = 0;
		if (!xa_is_node(entry))
			RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
		xas_update(xas, node);
		xa_node_free(node);
		if (!xa_is_node(entry))
			break;
		node = xa_to_node(entry);
		node->parent = NULL;
	}
}

/*
 * xas_delete_node() - Attempt to delete an xa_node
 * @xas: Array operation state.
 *
 * Attempts to delete the @xas->xa_node.  This will fail if xa->node has
 * a non-zero reference count.
 */
static void xas_delete_node(struct xa_state *xas)
{
	struct xa_node *node = xas->xa_node;

	for (;;) {
		struct xa_node *parent;

		XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
		if (node->count)
			break;

		parent = xa_parent_locked(xas->xa, node);
		xas->xa_node = parent;
		xas->xa_offset = node->offset;
		xa_node_free(node);

		if (!parent) {
			xas->xa->xa_head = NULL;
			xas->xa_node = XAS_BOUNDS;
			return;
		}

		parent->slots[xas->xa_offset] = NULL;
		parent->count--;
		XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
		node = parent;
		xas_update(xas, node);
	}

	if (!node->parent)
		xas_shrink(xas);
}

/**
 * xas_free_nodes() - Free this node and all nodes that it references
 * @xas: Array operation state.
 * @top: Node to free
 *
 * This node has been removed from the tree.  We must now free it and all
 * of its subnodes.  There may be RCU walkers with references into the tree,
 * so we must replace all entries with retry markers.
 */
static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
{
	unsigned int offset = 0;
	struct xa_node *node = top;

	for (;;) {
		void *entry = xa_entry_locked(xas->xa, node, offset);

		if (xa_is_node(entry)) {
			node = xa_to_node(entry);
			offset = 0;
			continue;
		}
		if (entry)
			RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
		offset++;
		while (offset == XA_CHUNK_SIZE) {
			struct xa_node *parent;

			parent = xa_parent_locked(xas->xa, node);
			offset = node->offset + 1;
			node->count = 0;
			node->nr_values = 0;
			xas_update(xas, node);
			xa_node_free(node);
			if (node == top)
				return;
			node = parent;
		}
	}
}

/*
 * xas_expand adds nodes to the head of the tree until it has reached
 * sufficient height to be able to contain @xas->xa_index
 */
static int xas_expand(struct xa_state *xas, void *head)
{
	struct xarray *xa = xas->xa;
	struct xa_node *node = NULL;
	unsigned int shift = 0;
	unsigned long max = xas_max(xas);

	if (!head) {
		if (max == 0)
			return 0;
		while ((max >> shift) >= XA_CHUNK_SIZE)
			shift += XA_CHUNK_SHIFT;
		return shift + XA_CHUNK_SHIFT;
	} else if (xa_is_node(head)) {
		node = xa_to_node(head);
		shift = node->shift + XA_CHUNK_SHIFT;
	}
	xas->xa_node = NULL;

	while (max > max_index(head)) {
		xa_mark_t mark = 0;

		XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
		node = xas_alloc(xas, shift);
		if (!node)
			return -ENOMEM;

		node->count = 1;
		if (xa_is_value(head))
			node->nr_values = 1;
		RCU_INIT_POINTER(node->slots[0], head);

		/* Propagate the aggregated mark info to the new child */
		for (;;) {
			if (xa_track_free(xa) && mark == XA_FREE_MARK) {
				node_mark_all(node, XA_FREE_MARK);
				if (!xa_marked(xa, XA_FREE_MARK)) {
					node_clear_mark(node, 0, XA_FREE_MARK);
					xa_mark_set(xa, XA_FREE_MARK);
				}
			} else if (xa_marked(xa, mark)) {
				node_set_mark(node, 0, mark);
			}
			if (mark == XA_MARK_MAX)
				break;
			mark_inc(mark);
		}

		/*
		 * Now that the new node is fully initialised, we can add
		 * it to the tree
		 */
		if (xa_is_node(head)) {
			xa_to_node(head)->offset = 0;
			rcu_assign_pointer(xa_to_node(head)->parent, node);
		}
		head = xa_mk_node(node);
		rcu_assign_pointer(xa->xa_head, head);
		xas_update(xas, node);

		shift += XA_CHUNK_SHIFT;
	}

	xas->xa_node = node;
	return shift;
}

/*
 * xas_create() - Create a slot to store an entry in.
 * @xas: XArray operation state.
 *
 * Most users will not need to call this function directly, as it is called
 * by xas_store().  It is useful for doing conditional store operations
 * (see the xa_cmpxchg() implementation for an example).
 *
 * Return: If the slot already existed, returns the contents of this slot.
 * If the slot was newly created, returns NULL.  If it failed to create the
 * slot, returns NULL and indicates the error in @xas.
 */
static void *xas_create(struct xa_state *xas)
{
	struct xarray *xa = xas->xa;
	void *entry;
	void __rcu **slot;
	struct xa_node *node = xas->xa_node;
	int shift;
	unsigned int order = xas->xa_shift;

	if (xas_top(node)) {
		entry = xa_head_locked(xa);
		xas->xa_node = NULL;
		shift = xas_expand(xas, entry);
		if (shift < 0)
			return NULL;
		entry = xa_head_locked(xa);
		slot = &xa->xa_head;
	} else if (xas_error(xas)) {
		return NULL;
	} else if (node) {
		unsigned int offset = xas->xa_offset;

		shift = node->shift;
		entry = xa_entry_locked(xa, node, offset);
		slot = &node->slots[offset];
	} else {
		shift = 0;
		entry = xa_head_locked(xa);
		slot = &xa->xa_head;
	}

	while (shift > order) {
		shift -= XA_CHUNK_SHIFT;
		if (!entry) {
			node = xas_alloc(xas, shift);
			if (!node)
				break;
			if (xa_track_free(xa))
				node_mark_all(node, XA_FREE_MARK);
			rcu_assign_pointer(*slot, xa_mk_node(node));
		} else if (xa_is_node(entry)) {
			node = xa_to_node(entry);
		} else {
			break;
		}
		entry = xas_descend(xas, node);
		slot = &node->slots[xas->xa_offset];
	}

	return entry;
}

/**
 * xas_create_range() - Ensure that stores to this range will succeed
 * @xas: XArray operation state.
 *
 * Creates all of the slots in the range covered by @xas.  Sets @xas to
 * create single-index entries and positions it at the beginning of the
 * range.  This is for the benefit of users which have not yet been
 * converted to use multi-index entries.
 */
void xas_create_range(struct xa_state *xas)
{
	unsigned long index = xas->xa_index;
	unsigned char shift = xas->xa_shift;
	unsigned char sibs = xas->xa_sibs;

	xas->xa_index |= ((sibs + 1) << shift) - 1;
	if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
		xas->xa_offset |= sibs;
	xas->xa_shift = 0;
	xas->xa_sibs = 0;

	for (;;) {
		xas_create(xas);
		if (xas_error(xas))
			goto restore;
		if (xas->xa_index <= (index | XA_CHUNK_MASK))
			goto success;
		xas->xa_index -= XA_CHUNK_SIZE;

		for (;;) {
			struct xa_node *node = xas->xa_node;
			xas->xa_node = xa_parent_locked(xas->xa, node);
			xas->xa_offset = node->offset - 1;
			if (node->offset != 0)
				break;
		}
	}

restore:
	xas->xa_shift = shift;
	xas->xa_sibs = sibs;
	xas->xa_index = index;
	return;
success:
	xas->xa_index = index;
	if (xas->xa_node)
		xas_set_offset(xas);
}
EXPORT_SYMBOL_GPL(xas_create_range);

static void update_node(struct xa_state *xas, struct xa_node *node,
		int count, int values)
{
	if (!node || (!count && !values))
		return;

	node->count += count;
	node->nr_values += values;
	XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
	XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
	xas_update(xas, node);
	if (count < 0)
		xas_delete_node(xas);
}

/**
 * xas_store() - Store this entry in the XArray.
 * @xas: XArray operation state.
 * @entry: New entry.
 *
 * If @xas is operating on a multi-index entry, the entry returned by this
 * function is essentially meaningless (it may be an internal entry or it
 * may be %NULL, even if there are non-NULL entries at some of the indices
 * covered by the range).  This is not a problem for any current users,
 * and can be changed if needed.
 *
 * Return: The old entry at this index.
 */
void *xas_store(struct xa_state *xas, void *entry)
{
	struct xa_node *node;
	void __rcu **slot = &xas->xa->xa_head;
	unsigned int offset, max;
	int count = 0;
	int values = 0;
	void *first, *next;
	bool value = xa_is_value(entry);

	if (entry)
		first = xas_create(xas);
	else
		first = xas_load(xas);

	if (xas_invalid(xas))
		return first;
	node = xas->xa_node;
	if (node && (xas->xa_shift < node->shift))
		xas->xa_sibs = 0;
	if ((first == entry) && !xas->xa_sibs)
		return first;

	next = first;
	offset = xas->xa_offset;
	max = xas->xa_offset + xas->xa_sibs;
	if (node) {
		slot = &node->slots[offset];
		if (xas->xa_sibs)
			xas_squash_marks(xas);
	}
	if (!entry)
		xas_init_marks(xas);

	for (;;) {
		/*
		 * Must clear the marks before setting the entry to NULL,
		 * otherwise xas_for_each_marked may find a NULL entry and
		 * stop early.  rcu_assign_pointer contains a release barrier
		 * so the mark clearing will appear to happen before the
		 * entry is set to NULL.
		 */
		rcu_assign_pointer(*slot, entry);
		if (xa_is_node(next))
			xas_free_nodes(xas, xa_to_node(next));
		if (!node)
			break;
		count += !next - !entry;
		values += !xa_is_value(first) - !value;
		if (entry) {
			if (offset == max)
				break;
			if (!xa_is_sibling(entry))
				entry = xa_mk_sibling(xas->xa_offset);
		} else {
			if (offset == XA_CHUNK_MASK)
				break;
		}
		next = xa_entry_locked(xas->xa, node, ++offset);
		if (!xa_is_sibling(next)) {
			if (!entry && (offset > max))
				break;
			first = next;
		}
		slot++;
	}

	update_node(xas, node, count, values);
	return first;
}
EXPORT_SYMBOL_GPL(xas_store);

/**
 * xas_get_mark() - Returns the state of this mark.
 * @xas: XArray operation state.
 * @mark: Mark number.
 *
 * Return: true if the mark is set, false if the mark is clear or @xas
 * is in an error state.
 */
bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
{
	if (xas_invalid(xas))
		return false;
	if (!xas->xa_node)
		return xa_marked(xas->xa, mark);
	return node_get_mark(xas->xa_node, xas->xa_offset, mark);
}
EXPORT_SYMBOL_GPL(xas_get_mark);

/**
 * xas_set_mark() - Sets the mark on this entry and its parents.
 * @xas: XArray operation state.
 * @mark: Mark number.
 *
 * Sets the specified mark on this entry, and walks up the tree setting it
 * on all the ancestor entries.  Does nothing if @xas has not been walked to
 * an entry, or is in an error state.
 */
void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
{
	struct xa_node *node = xas->xa_node;
	unsigned int offset = xas->xa_offset;

	if (xas_invalid(xas))
		return;

	while (node) {
		if (node_set_mark(node, offset, mark))
			return;
		offset = node->offset;
		node = xa_parent_locked(xas->xa, node);
	}

	if (!xa_marked(xas->xa, mark))
		xa_mark_set(xas->xa, mark);
}
EXPORT_SYMBOL_GPL(xas_set_mark);

/**
 * xas_clear_mark() - Clears the mark on this entry and its parents.
 * @xas: XArray operation state.
 * @mark: Mark number.
 *
 * Clears the specified mark on this entry, and walks back to the head
 * attempting to clear it on all the ancestor entries.  Does nothing if
 * @xas has not been walked to an entry, or is in an error state.
 */
void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
{
	struct xa_node *node = xas->xa_node;
	unsigned int offset = xas->xa_offset;

	if (xas_invalid(xas))
		return;

	while (node) {
		if (!node_clear_mark(node, offset, mark))
			return;
		if (node_any_mark(node, mark))
			return;

		offset = node->offset;
		node = xa_parent_locked(xas->xa, node);
	}

	if (xa_marked(xas->xa, mark))
		xa_mark_clear(xas->xa, mark);
}
EXPORT_SYMBOL_GPL(xas_clear_mark);

/**
 * xas_init_marks() - Initialise all marks for the entry
 * @xas: Array operations state.
 *
 * Initialise all marks for the entry specified by @xas.  If we're tracking
 * free entries with a mark, we need to set it on all entries.  All other
 * marks are cleared.
 *
 * This implementation is not as efficient as it could be; we may walk
 * up the tree multiple times.
 */
void xas_init_marks(const struct xa_state *xas)
{
	xa_mark_t mark = 0;

	for (;;) {
		if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
			xas_set_mark(xas, mark);
		else
			xas_clear_mark(xas, mark);
		if (mark == XA_MARK_MAX)
			break;
		mark_inc(mark);
	}
}
EXPORT_SYMBOL_GPL(xas_init_marks);

/**
 * xas_pause() - Pause a walk to drop a lock.
 * @xas: XArray operation state.
 *
 * Some users need to pause a walk and drop the lock they're holding in
 * order to yield to a higher priority thread or carry out an operation
 * on an entry.  Those users should call this function before they drop
 * the lock.  It resets the @xas to be suitable for the next iteration
 * of the loop after the user has reacquired the lock.  If most entries
 * found during a walk require you to call xas_pause(), the xa_for_each()
 * iterator may be more appropriate.
 *
 * Note that xas_pause() only works for forward iteration.  If a user needs
 * to pause a reverse iteration, we will need a xas_pause_rev().
 */
void xas_pause(struct xa_state *xas)
{
	struct xa_node *node = xas->xa_node;

	if (xas_invalid(xas))
		return;

	if (node) {
		unsigned int offset = xas->xa_offset;
		while (++offset < XA_CHUNK_SIZE) {
			if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
				break;
		}
		xas->xa_index += (offset - xas->xa_offset) << node->shift;
	} else {
		xas->xa_index++;
	}
	xas->xa_node = XAS_RESTART;
}
EXPORT_SYMBOL_GPL(xas_pause);

/*
 * __xas_prev() - Find the previous entry in the XArray.
 * @xas: XArray operation state.
 *
 * Helper function for xas_prev() which handles all the complex cases
 * out of line.
 */
void *__xas_prev(struct xa_state *xas)
{
	void *entry;

	if (!xas_frozen(xas->xa_node))
		xas->xa_index--;
	if (xas_not_node(xas->xa_node))
		return xas_load(xas);

	if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
		xas->xa_offset--;

	while (xas->xa_offset == 255) {
		xas->xa_offset = xas->xa_node->offset - 1;
		xas->xa_node = xa_parent(xas->xa, xas->xa_node);
		if (!xas->xa_node)
			return set_bounds(xas);
	}

	for (;;) {
		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
		if (!xa_is_node(entry))
			return entry;

		xas->xa_node = xa_to_node(entry);
		xas_set_offset(xas);
	}
}
EXPORT_SYMBOL_GPL(__xas_prev);

/*
 * __xas_next() - Find the next entry in the XArray.
 * @xas: XArray operation state.
 *
 * Helper function for xas_next() which handles all the complex cases
 * out of line.
 */
void *__xas_next(struct xa_state *xas)
{
	void *entry;

	if (!xas_frozen(xas->xa_node))
		xas->xa_index++;
	if (xas_not_node(xas->xa_node))
		return xas_load(xas);

	if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
		xas->xa_offset++;

	while (xas->xa_offset == XA_CHUNK_SIZE) {
		xas->xa_offset = xas->xa_node->offset + 1;
		xas->xa_node = xa_parent(xas->xa, xas->xa_node);
		if (!xas->xa_node)
			return set_bounds(xas);
	}

	for (;;) {
		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
		if (!xa_is_node(entry))
			return entry;

		xas->xa_node = xa_to_node(entry);
		xas_set_offset(xas);
	}
}
EXPORT_SYMBOL_GPL(__xas_next);

/**
 * xas_find() - Find the next present entry in the XArray.
 * @xas: XArray operation state.
 * @max: Highest index to return.
 *
 * If the @xas has not yet been walked to an entry, return the entry
 * which has an index >= xas.xa_index.  If it has been walked, the entry
 * currently being pointed at has been processed, and so we move to the
 * next entry.
 *
 * If no entry is found and the array is smaller than @max, the iterator
 * is set to the smallest index not yet in the array.  This allows @xas
 * to be immediately passed to xas_store().
 *
 * Return: The entry, if found, otherwise %NULL.
 */
void *xas_find(struct xa_state *xas, unsigned long max)
{
	void *entry;

	if (xas_error(xas))
		return NULL;

	if (!xas->xa_node) {
		xas->xa_index = 1;
		return set_bounds(xas);
	} else if (xas_top(xas->xa_node)) {
		entry = xas_load(xas);
		if (entry || xas_not_node(xas->xa_node))
			return entry;
	} else if (!xas->xa_node->shift &&
		    xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
		xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
	}

	xas_advance(xas);

	while (xas->xa_node && (xas->xa_index <= max)) {
		if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
			xas->xa_offset = xas->xa_node->offset + 1;
			xas->xa_node = xa_parent(xas->xa, xas->xa_node);
			continue;
		}

		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
		if (xa_is_node(entry)) {
			xas->xa_node = xa_to_node(entry);
			xas->xa_offset = 0;
			continue;
		}
		if (entry && !xa_is_sibling(entry))
			return entry;

		xas_advance(xas);
	}

	if (!xas->xa_node)
		xas->xa_node = XAS_BOUNDS;
	return NULL;
}
EXPORT_SYMBOL_GPL(xas_find);

/**
 * xas_find_marked() - Find the next marked entry in the XArray.
 * @xas: XArray operation state.
 * @max: Highest index to return.
 * @mark: Mark number to search for.
 *
 * If the @xas has not yet been walked to an entry, return the marked entry
 * which has an index >= xas.xa_index.  If it has been walked, the entry
 * currently being pointed at has been processed, and so we return the
 * first marked entry with an index > xas.xa_index.
 *
 * If no marked entry is found and the array is smaller than @max, @xas is
 * set to the bounds state and xas->xa_index is set to the smallest index
 * not yet in the array.  This allows @xas to be immediately passed to
 * xas_store().
 *
 * If no entry is found before @max is reached, @xas is set to the restart
 * state.
 *
 * Return: The entry, if found, otherwise %NULL.
 */
void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
{
	bool advance = true;
	unsigned int offset;
	void *entry;

	if (xas_error(xas))
		return NULL;

	if (!xas->xa_node) {
		xas->xa_index = 1;
		goto out;
	} else if (xas_top(xas->xa_node)) {
		advance = false;
		entry = xa_head(xas->xa);
		xas->xa_node = NULL;
		if (xas->xa_index > max_index(entry))
			goto bounds;
		if (!xa_is_node(entry)) {
			if (xa_marked(xas->xa, mark))
				return entry;
			xas->xa_index = 1;
			goto out;
		}
		xas->xa_node = xa_to_node(entry);
		xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
	}

	while (xas->xa_index <= max) {
		if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
			xas->xa_offset = xas->xa_node->offset + 1;
			xas->xa_node = xa_parent(xas->xa, xas->xa_node);
			if (!xas->xa_node)
				break;
			advance = false;
			continue;
		}

		if (!advance) {
			entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
			if (xa_is_sibling(entry)) {
				xas->xa_offset = xa_to_sibling(entry);
				xas_move_index(xas, xas->xa_offset);
			}
		}

		offset = xas_find_chunk(xas, advance, mark);
		if (offset > xas->xa_offset) {
			advance = false;
			xas_move_index(xas, offset);
			/* Mind the wrap */
			if ((xas->xa_index - 1) >= max)
				goto max;
			xas->xa_offset = offset;
			if (offset == XA_CHUNK_SIZE)
				continue;
		}

		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
		if (!xa_is_node(entry))
			return entry;
		xas->xa_node = xa_to_node(entry);
		xas_set_offset(xas);
	}

out:
	if (!max)
		goto max;
bounds:
	xas->xa_node = XAS_BOUNDS;
	return NULL;
max:
	xas->xa_node = XAS_RESTART;
	return NULL;
}
EXPORT_SYMBOL_GPL(xas_find_marked);

/**
 * xas_find_conflict() - Find the next present entry in a range.
 * @xas: XArray operation state.
 *
 * The @xas describes both a range and a position within that range.
 *
 * Context: Any context.  Expects xa_lock to be held.
 * Return: The next entry in the range covered by @xas or %NULL.
 */
void *xas_find_conflict(struct xa_state *xas)
{
	void *curr;

	if (xas_error(xas))
		return NULL;

	if (!xas->xa_node)
		return NULL;

	if (xas_top(xas->xa_node)) {
		curr = xas_start(xas);
		if (!curr)
			return NULL;
		while (xa_is_node(curr)) {
			struct xa_node *node = xa_to_node(curr);
			curr = xas_descend(xas, node);
		}
		if (curr)
			return curr;
	}

	if (xas->xa_node->shift > xas->xa_shift)
		return NULL;

	for (;;) {
		if (xas->xa_node->shift == xas->xa_shift) {
			if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
				break;
		} else if (xas->xa_offset == XA_CHUNK_MASK) {
			xas->xa_offset = xas->xa_node->offset;
			xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
			if (!xas->xa_node)
				break;
			continue;
		}
		curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
		if (xa_is_sibling(curr))
			continue;
		while (xa_is_node(curr)) {
			xas->xa_node = xa_to_node(curr);
			xas->xa_offset = 0;
			curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
		}
		if (curr)
			return curr;
	}
	xas->xa_offset -= xas->xa_sibs;
	return NULL;
}
EXPORT_SYMBOL_GPL(xas_find_conflict);

/**
 * xa_init_flags() - Initialise an empty XArray with flags.
 * @xa: XArray.
 * @flags: XA_FLAG values.
 *
 * If you need to initialise an XArray with special flags (eg you need
 * to take the lock from interrupt context), use this function instead
 * of xa_init().
 *
 * Context: Any context.
 */
void xa_init_flags(struct xarray *xa, gfp_t flags)
{
	unsigned int lock_type;
	static struct lock_class_key xa_lock_irq;
	static struct lock_class_key xa_lock_bh;

	spin_lock_init(&xa->xa_lock);
	xa->xa_flags = flags;
	xa->xa_head = NULL;

	lock_type = xa_lock_type(xa);
	if (lock_type == XA_LOCK_IRQ)
		lockdep_set_class(&xa->xa_lock, &xa_lock_irq);
	else if (lock_type == XA_LOCK_BH)
		lockdep_set_class(&xa->xa_lock, &xa_lock_bh);
}
EXPORT_SYMBOL(xa_init_flags);

/**
 * xa_load() - Load an entry from an XArray.
 * @xa: XArray.
 * @index: index into array.
 *
 * Context: Any context.  Takes and releases the RCU lock.
 * Return: The entry at @index in @xa.
 */
void *xa_load(struct xarray *xa, unsigned long index)
{
	XA_STATE(xas, xa, index);
	void *entry;

	rcu_read_lock();
	do {
		entry = xas_load(&xas);
		if (xa_is_zero(entry))
			entry = NULL;
	} while (xas_retry(&xas, entry));
	rcu_read_unlock();

	return entry;
}
EXPORT_SYMBOL(xa_load);

static void *xas_result(struct xa_state *xas, void *curr)
{
	if (xa_is_zero(curr))
		return NULL;
	XA_NODE_BUG_ON(xas->xa_node, xa_is_internal(curr));
	if (xas_error(xas))
		curr = xas->xa_node;
	return curr;
}

/**
 * __xa_erase() - Erase this entry from the XArray while locked.
 * @xa: XArray.
 * @index: Index into array.
 *
 * If the entry at this index is a multi-index entry then all indices will
 * be erased, and the entry will no longer be a multi-index entry.
 * This function expects the xa_lock to be held on entry.
 *
 * Context: Any context.  Expects xa_lock to be held on entry.  May
 * release and reacquire xa_lock if @gfp flags permit.
 * Return: The old entry at this index.
 */
void *__xa_erase(struct xarray *xa, unsigned long index)
{
	XA_STATE(xas, xa, index);
	return xas_result(&xas, xas_store(&xas, NULL));
}
EXPORT_SYMBOL_GPL(__xa_erase);

/**
 * xa_store() - Store this entry in the XArray.
 * @xa: XArray.
 * @index: Index into array.
 * @entry: New entry.
 * @gfp: Memory allocation flags.
 *
 * After this function returns, loads from this index will return @entry.
 * Storing into an existing multislot entry updates the entry of every index.
 * The marks associated with @index are unaffected unless @entry is %NULL.
 *
 * Context: Process context.  Takes and releases the xa_lock.  May sleep
 * if the @gfp flags permit.
 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
 * failed.
 */
void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
{
	XA_STATE(xas, xa, index);
	void *curr;

	if (WARN_ON_ONCE(xa_is_internal(entry)))
		return XA_ERROR(-EINVAL);

	do {
		xas_lock(&xas);
		curr = xas_store(&xas, entry);
		if (xa_track_free(xa) && entry)
			xas_clear_mark(&xas, XA_FREE_MARK);
		xas_unlock(&xas);
	} while (xas_nomem(&xas, gfp));

	return xas_result(&xas, curr);
}
EXPORT_SYMBOL(xa_store);

/**
 * __xa_store() - Store this entry in the XArray.
 * @xa: XArray.
 * @index: Index into array.
 * @entry: New entry.
 * @gfp: Memory allocation flags.
 *
 * You must already be holding the xa_lock when calling this function.
 * It will drop the lock if needed to allocate memory, and then reacquire
 * it afterwards.
 *
 * Context: Any context.  Expects xa_lock to be held on entry.  May
 * release and reacquire xa_lock if @gfp flags permit.
 * Return: The old entry at this index or xa_err() if an error happened.
 */
void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
{
	XA_STATE(xas, xa, index);
	void *curr;

	if (WARN_ON_ONCE(xa_is_internal(entry)))
		return XA_ERROR(-EINVAL);

	do {
		curr = xas_store(&xas, entry);
		if (xa_track_free(xa) && entry)
			xas_clear_mark(&xas, XA_FREE_MARK);
	} while (__xas_nomem(&xas, gfp));

	return xas_result(&xas, curr);
}
EXPORT_SYMBOL(__xa_store);

/**
 * xa_cmpxchg() - Conditionally replace an entry in the XArray.
 * @xa: XArray.
 * @index: Index into array.
 * @old: Old value to test against.
 * @entry: New value to place in array.
 * @gfp: Memory allocation flags.
 *
 * If the entry at @index is the same as @old, replace it with @entry.
 * If the return value is equal to @old, then the exchange was successful.
 *
 * Context: Process context.  Takes and releases the xa_lock.  May sleep
 * if the @gfp flags permit.
 * Return: The old value at this index or xa_err() if an error happened.
 */
void *xa_cmpxchg(struct xarray *xa, unsigned long index,
			void *old, void *entry, gfp_t gfp)
{
	XA_STATE(xas, xa, index);
	void *curr;

	if (WARN_ON_ONCE(xa_is_internal(entry)))
		return XA_ERROR(-EINVAL);

	do {
		xas_lock(&xas);
		curr = xas_load(&xas);
		if (curr == XA_ZERO_ENTRY)
			curr = NULL;
		if (curr == old) {
			xas_store(&xas, entry);
			if (xa_track_free(xa) && entry)
				xas_clear_mark(&xas, XA_FREE_MARK);
		}
		xas_unlock(&xas);
	} while (xas_nomem(&xas, gfp));

	return xas_result(&xas, curr);
}
EXPORT_SYMBOL(xa_cmpxchg);

/**
 * __xa_cmpxchg() - Store this entry in the XArray.
 * @xa: XArray.
 * @index: Index into array.
 * @old: Old value to test against.
 * @entry: New entry.
 * @gfp: Memory allocation flags.
 *
 * You must already be holding the xa_lock when calling this function.
 * It will drop the lock if needed to allocate memory, and then reacquire
 * it afterwards.
 *
 * Context: Any context.  Expects xa_lock to be held on entry.  May
 * release and reacquire xa_lock if @gfp flags permit.
 * Return: The old entry at this index or xa_err() if an error happened.
 */
void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
			void *old, void *entry, gfp_t gfp)
{
	XA_STATE(xas, xa, index);
	void *curr;

	if (WARN_ON_ONCE(xa_is_internal(entry)))
		return XA_ERROR(-EINVAL);

	do {
		curr = xas_load(&xas);
		if (curr == XA_ZERO_ENTRY)
			curr = NULL;
		if (curr == old) {
			xas_store(&xas, entry);
			if (xa_track_free(xa) && entry)
				xas_clear_mark(&xas, XA_FREE_MARK);
		}
	} while (__xas_nomem(&xas, gfp));

	return xas_result(&xas, curr);
}
EXPORT_SYMBOL(__xa_cmpxchg);

/**
 * xa_reserve() - Reserve this index in the XArray.
 * @xa: XArray.
 * @index: Index into array.
 * @gfp: Memory allocation flags.
 *
 * Ensures there is somewhere to store an entry at @index in the array.
 * If there is already something stored at @index, this function does
 * nothing.  If there was nothing there, the entry is marked as reserved.
 * Loads from @index will continue to see a %NULL pointer until a
 * subsequent store to @index.
 *
 * If you do not use the entry that you have reserved, call xa_release()
 * or xa_erase() to free any unnecessary memory.
 *
 * Context: Process context.  Takes and releases the xa_lock, IRQ or BH safe
 * if specified in XArray flags.  May sleep if the @gfp flags permit.
 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
 */
int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp)
{
	XA_STATE(xas, xa, index);
	unsigned int lock_type = xa_lock_type(xa);
	void *curr;

	do {
		xas_lock_type(&xas, lock_type);
		curr = xas_load(&xas);
		if (!curr)
			xas_store(&xas, XA_ZERO_ENTRY);
		xas_unlock_type(&xas, lock_type);
	} while (xas_nomem(&xas, gfp));

	return xas_error(&xas);
}
EXPORT_SYMBOL(xa_reserve);

#ifdef CONFIG_XARRAY_MULTI
static void xas_set_range(struct xa_state *xas, unsigned long first,
		unsigned long last)
{
	unsigned int shift = 0;
	unsigned long sibs = last - first;
	unsigned int offset = XA_CHUNK_MASK;

	xas_set(xas, first);

	while ((first & XA_CHUNK_MASK) == 0) {
		if (sibs < XA_CHUNK_MASK)
			break;
		if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
			break;
		shift += XA_CHUNK_SHIFT;
		if (offset == XA_CHUNK_MASK)
			offset = sibs & XA_CHUNK_MASK;
		sibs >>= XA_CHUNK_SHIFT;
		first >>= XA_CHUNK_SHIFT;
	}

	offset = first & XA_CHUNK_MASK;
	if (offset + sibs > XA_CHUNK_MASK)
		sibs = XA_CHUNK_MASK - offset;
	if ((((first + sibs + 1) << shift) - 1) > last)
		sibs -= 1;

	xas->xa_shift = shift;
	xas->xa_sibs = sibs;
}

/**
 * xa_store_range() - Store this entry at a range of indices in the XArray.
 * @xa: XArray.
 * @first: First index to affect.
 * @last: Last index to affect.
 * @entry: New entry.
 * @gfp: Memory allocation flags.
 *
 * After this function returns, loads from any index between @first and @last,
 * inclusive will return @entry.
 * Storing into an existing multislot entry updates the entry of every index.
 * The marks associated with @index are unaffected unless @entry is %NULL.
 *
 * Context: Process context.  Takes and releases the xa_lock.  May sleep
 * if the @gfp flags permit.
 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
 * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
 */
void *xa_store_range(struct xarray *xa, unsigned long first,
		unsigned long last, void *entry, gfp_t gfp)
{
	XA_STATE(xas, xa, 0);

	if (WARN_ON_ONCE(xa_is_internal(entry)))
		return XA_ERROR(-EINVAL);
	if (last < first)
		return XA_ERROR(-EINVAL);

	do {
		xas_lock(&xas);
		if (entry) {
			unsigned int order = (last == ~0UL) ? 64 :
						ilog2(last + 1);
			xas_set_order(&xas, last, order);
			xas_create(&xas);
			if (xas_error(&xas))
				goto unlock;
		}
		do {
			xas_set_range(&xas, first, last);
			xas_store(&xas, entry);
			if (xas_error(&xas))
				goto unlock;
			first += xas_size(&xas);
		} while (first <= last);
unlock:
		xas_unlock(&xas);
	} while (xas_nomem(&xas, gfp));

	return xas_result(&xas, NULL);
}
EXPORT_SYMBOL(xa_store_range);
#endif /* CONFIG_XARRAY_MULTI */

/**
 * __xa_alloc() - Find somewhere to store this entry in the XArray.
 * @xa: XArray.
 * @id: Pointer to ID.
 * @max: Maximum ID to allocate (inclusive).
 * @entry: New entry.
 * @gfp: Memory allocation flags.
 *
 * Allocates an unused ID in the range specified by @id and @max.
 * Updates the @id pointer with the index, then stores the entry at that
 * index.  A concurrent lookup will not see an uninitialised @id.
 *
 * Context: Any context.  Expects xa_lock to be held on entry.  May
 * release and reacquire xa_lock if @gfp flags permit.
 * Return: 0 on success, -ENOMEM if memory allocation fails or -ENOSPC if
 * there is no more space in the XArray.
 */
int __xa_alloc(struct xarray *xa, u32 *id, u32 max, void *entry, gfp_t gfp)
{
	XA_STATE(xas, xa, 0);
	int err;

	if (WARN_ON_ONCE(xa_is_internal(entry)))
		return -EINVAL;
	if (WARN_ON_ONCE(!xa_track_free(xa)))
		return -EINVAL;

	if (!entry)
		entry = XA_ZERO_ENTRY;

	do {
		xas.xa_index = *id;
		xas_find_marked(&xas, max, XA_FREE_MARK);
		if (xas.xa_node == XAS_RESTART)
			xas_set_err(&xas, -ENOSPC);
		xas_store(&xas, entry);
		xas_clear_mark(&xas, XA_FREE_MARK);
	} while (__xas_nomem(&xas, gfp));

	err = xas_error(&xas);
	if (!err)
		*id = xas.xa_index;
	return err;
}
EXPORT_SYMBOL(__xa_alloc);

/**
 * __xa_set_mark() - Set this mark on this entry while locked.
 * @xa: XArray.
 * @index: Index of entry.
 * @mark: Mark number.
 *
 * Attempting to set a mark on a NULL entry does not succeed.
 *
 * Context: Any context.  Expects xa_lock to be held on entry.
 */
void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
{
	XA_STATE(xas, xa, index);
	void *entry = xas_load(&xas);

	if (entry)
		xas_set_mark(&xas, mark);
}
EXPORT_SYMBOL_GPL(__xa_set_mark);

/**
 * __xa_clear_mark() - Clear this mark on this entry while locked.
 * @xa: XArray.
 * @index: Index of entry.
 * @mark: Mark number.
 *
 * Context: Any context.  Expects xa_lock to be held on entry.
 */
void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
{
	XA_STATE(xas, xa, index);
	void *entry = xas_load(&xas);

	if (entry)
		xas_clear_mark(&xas, mark);
}
EXPORT_SYMBOL_GPL(__xa_clear_mark);

/**
 * xa_get_mark() - Inquire whether this mark is set on this entry.
 * @xa: XArray.
 * @index: Index of entry.
 * @mark: Mark number.
 *
 * This function uses the RCU read lock, so the result may be out of date
 * by the time it returns.  If you need the result to be stable, use a lock.
 *
 * Context: Any context.  Takes and releases the RCU lock.
 * Return: True if the entry at @index has this mark set, false if it doesn't.
 */
bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
{
	XA_STATE(xas, xa, index);
	void *entry;

	rcu_read_lock();
	entry = xas_start(&xas);
	while (xas_get_mark(&xas, mark)) {
		if (!xa_is_node(entry))
			goto found;
		entry = xas_descend(&xas, xa_to_node(entry));
	}
	rcu_read_unlock();
	return false;
 found:
	rcu_read_unlock();
	return true;
}
EXPORT_SYMBOL(xa_get_mark);

/**
 * xa_set_mark() - Set this mark on this entry.
 * @xa: XArray.
 * @index: Index of entry.
 * @mark: Mark number.
 *
 * Attempting to set a mark on a NULL entry does not succeed.
 *
 * Context: Process context.  Takes and releases the xa_lock.
 */
void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
{
	xa_lock(xa);
	__xa_set_mark(xa, index, mark);
	xa_unlock(xa);
}
EXPORT_SYMBOL(xa_set_mark);

/**
 * xa_clear_mark() - Clear this mark on this entry.
 * @xa: XArray.
 * @index: Index of entry.
 * @mark: Mark number.
 *
 * Clearing a mark always succeeds.
 *
 * Context: Process context.  Takes and releases the xa_lock.
 */
void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
{
	xa_lock(xa);
	__xa_clear_mark(xa, index, mark);
	xa_unlock(xa);
}
EXPORT_SYMBOL(xa_clear_mark);

/**
 * xa_find() - Search the XArray for an entry.
 * @xa: XArray.
 * @indexp: Pointer to an index.
 * @max: Maximum index to search to.
 * @filter: Selection criterion.
 *
 * Finds the entry in @xa which matches the @filter, and has the lowest
 * index that is at least @indexp and no more than @max.
 * If an entry is found, @indexp is updated to be the index of the entry.
 * This function is protected by the RCU read lock, so it may not find
 * entries which are being simultaneously added.  It will not return an
 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
 *
 * Context: Any context.  Takes and releases the RCU lock.
 * Return: The entry, if found, otherwise %NULL.
 */
void *xa_find(struct xarray *xa, unsigned long *indexp,
			unsigned long max, xa_mark_t filter)
{
	XA_STATE(xas, xa, *indexp);
	void *entry;

	rcu_read_lock();
	do {
		if ((__force unsigned int)filter < XA_MAX_MARKS)
			entry = xas_find_marked(&xas, max, filter);
		else
			entry = xas_find(&xas, max);
	} while (xas_retry(&xas, entry));
	rcu_read_unlock();

	if (entry)
		*indexp = xas.xa_index;
	return entry;
}
EXPORT_SYMBOL(xa_find);

/**
 * xa_find_after() - Search the XArray for a present entry.
 * @xa: XArray.
 * @indexp: Pointer to an index.
 * @max: Maximum index to search to.
 * @filter: Selection criterion.
 *
 * Finds the entry in @xa which matches the @filter and has the lowest
 * index that is above @indexp and no more than @max.
 * If an entry is found, @indexp is updated to be the index of the entry.
 * This function is protected by the RCU read lock, so it may miss entries
 * which are being simultaneously added.  It will not return an
 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
 *
 * Context: Any context.  Takes and releases the RCU lock.
 * Return: The pointer, if found, otherwise %NULL.
 */
void *xa_find_after(struct xarray *xa, unsigned long *indexp,
			unsigned long max, xa_mark_t filter)
{
	XA_STATE(xas, xa, *indexp + 1);
	void *entry;

	rcu_read_lock();
	for (;;) {
		if ((__force unsigned int)filter < XA_MAX_MARKS)
			entry = xas_find_marked(&xas, max, filter);
		else
			entry = xas_find(&xas, max);
		if (xas.xa_node == XAS_BOUNDS)
			break;
		if (xas.xa_shift) {
			if (xas.xa_index & ((1UL << xas.xa_shift) - 1))
				continue;
		} else {
			if (xas.xa_offset < (xas.xa_index & XA_CHUNK_MASK))
				continue;
		}
		if (!xas_retry(&xas, entry))
			break;
	}
	rcu_read_unlock();

	if (entry)
		*indexp = xas.xa_index;
	return entry;
}
EXPORT_SYMBOL(xa_find_after);

static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
			unsigned long max, unsigned int n)
{
	void *entry;
	unsigned int i = 0;

	rcu_read_lock();
	xas_for_each(xas, entry, max) {
		if (xas_retry(xas, entry))
			continue;
		dst[i++] = entry;
		if (i == n)
			break;
	}
	rcu_read_unlock();

	return i;
}

static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
			unsigned long max, unsigned int n, xa_mark_t mark)
{
	void *entry;
	unsigned int i = 0;

	rcu_read_lock();
	xas_for_each_marked(xas, entry, max, mark) {
		if (xas_retry(xas, entry))
			continue;
		dst[i++] = entry;
		if (i == n)
			break;
	}
	rcu_read_unlock();

	return i;
}

/**
 * xa_extract() - Copy selected entries from the XArray into a normal array.
 * @xa: The source XArray to copy from.
 * @dst: The buffer to copy entries into.
 * @start: The first index in the XArray eligible to be selected.
 * @max: The last index in the XArray eligible to be selected.
 * @n: The maximum number of entries to copy.
 * @filter: Selection criterion.
 *
 * Copies up to @n entries that match @filter from the XArray.  The
 * copied entries will have indices between @start and @max, inclusive.
 *
 * The @filter may be an XArray mark value, in which case entries which are
 * marked with that mark will be copied.  It may also be %XA_PRESENT, in
 * which case all entries which are not NULL will be copied.
 *
 * The entries returned may not represent a snapshot of the XArray at a
 * moment in time.  For example, if another thread stores to index 5, then
 * index 10, calling xa_extract() may return the old contents of index 5
 * and the new contents of index 10.  Indices not modified while this
 * function is running will not be skipped.
 *
 * If you need stronger guarantees, holding the xa_lock across calls to this
 * function will prevent concurrent modification.
 *
 * Context: Any context.  Takes and releases the RCU lock.
 * Return: The number of entries copied.
 */
unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
			unsigned long max, unsigned int n, xa_mark_t filter)
{
	XA_STATE(xas, xa, start);

	if (!n)
		return 0;

	if ((__force unsigned int)filter < XA_MAX_MARKS)
		return xas_extract_marked(&xas, dst, max, n, filter);
	return xas_extract_present(&xas, dst, max, n);
}
EXPORT_SYMBOL(xa_extract);

/**
 * xa_destroy() - Free all internal data structures.
 * @xa: XArray.
 *
 * After calling this function, the XArray is empty and has freed all memory
 * allocated for its internal data structures.  You are responsible for
 * freeing the objects referenced by the XArray.
 *
 * Context: Any context.  Takes and releases the xa_lock, interrupt-safe.
 */
void xa_destroy(struct xarray *xa)
{
	XA_STATE(xas, xa, 0);
	unsigned long flags;
	void *entry;

	xas.xa_node = NULL;
	xas_lock_irqsave(&xas, flags);
	entry = xa_head_locked(xa);
	RCU_INIT_POINTER(xa->xa_head, NULL);
	xas_init_marks(&xas);
	/* lockdep checks we're still holding the lock in xas_free_nodes() */
	if (xa_is_node(entry))
		xas_free_nodes(&xas, xa_to_node(entry));
	xas_unlock_irqrestore(&xas, flags);
}
EXPORT_SYMBOL(xa_destroy);

#ifdef XA_DEBUG
void xa_dump_node(const struct xa_node *node)
{
	unsigned i, j;

	if (!node)
		return;
	if ((unsigned long)node & 3) {
		pr_cont("node %px\n", node);
		return;
	}

	pr_cont("node %px %s %d parent %px shift %d count %d values %d "
		"array %px list %px %px marks",
		node, node->parent ? "offset" : "max", node->offset,
		node->parent, node->shift, node->count, node->nr_values,
		node->array, node->private_list.prev, node->private_list.next);
	for (i = 0; i < XA_MAX_MARKS; i++)
		for (j = 0; j < XA_MARK_LONGS; j++)
			pr_cont(" %lx", node->marks[i][j]);
	pr_cont("\n");
}

void xa_dump_index(unsigned long index, unsigned int shift)
{
	if (!shift)
		pr_info("%lu: ", index);
	else if (shift >= BITS_PER_LONG)
		pr_info("0-%lu: ", ~0UL);
	else
		pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
}

void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
{
	if (!entry)
		return;

	xa_dump_index(index, shift);

	if (xa_is_node(entry)) {
		if (shift == 0) {
			pr_cont("%px\n", entry);
		} else {
			unsigned long i;
			struct xa_node *node = xa_to_node(entry);
			xa_dump_node(node);
			for (i = 0; i < XA_CHUNK_SIZE; i++)
				xa_dump_entry(node->slots[i],
				      index + (i << node->shift), node->shift);
		}
	} else if (xa_is_value(entry))
		pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
						xa_to_value(entry), entry);
	else if (!xa_is_internal(entry))
		pr_cont("%px\n", entry);
	else if (xa_is_retry(entry))
		pr_cont("retry (%ld)\n", xa_to_internal(entry));
	else if (xa_is_sibling(entry))
		pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
	else if (xa_is_zero(entry))
		pr_cont("zero (%ld)\n", xa_to_internal(entry));
	else
		pr_cont("UNKNOWN ENTRY (%px)\n", entry);
}

void xa_dump(const struct xarray *xa)
{
	void *entry = xa->xa_head;
	unsigned int shift = 0;

	pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
			xa->xa_flags, xa_marked(xa, XA_MARK_0),
			xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
	if (xa_is_node(entry))
		shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
	xa_dump_entry(entry, 0, shift);
}
#endif