1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
|
// SPDX-License-Identifier: GPL-2.0
//! Crate for all kernel procedural macros.
#[macro_use]
mod quote;
mod concat_idents;
mod helpers;
mod module;
mod paste;
mod pin_data;
mod pinned_drop;
mod vtable;
mod zeroable;
use proc_macro::TokenStream;
/// Declares a kernel module.
///
/// The `type` argument should be a type which implements the [`Module`]
/// trait. Also accepts various forms of kernel metadata.
///
/// C header: [`include/linux/moduleparam.h`](srctree/include/linux/moduleparam.h)
///
/// [`Module`]: ../kernel/trait.Module.html
///
/// # Examples
///
/// ```ignore
/// use kernel::prelude::*;
///
/// module!{
/// type: MyModule,
/// name: "my_kernel_module",
/// author: "Rust for Linux Contributors",
/// description: "My very own kernel module!",
/// license: "GPL",
/// params: {
/// my_i32: i32 {
/// default: 42,
/// permissions: 0o000,
/// description: "Example of i32",
/// },
/// writeable_i32: i32 {
/// default: 42,
/// permissions: 0o644,
/// description: "Example of i32",
/// },
/// },
/// }
///
/// struct MyModule;
///
/// impl kernel::Module for MyModule {
/// fn init() -> Result<Self> {
/// // If the parameter is writeable, then the kparam lock must be
/// // taken to read the parameter:
/// {
/// let lock = THIS_MODULE.kernel_param_lock();
/// pr_info!("i32 param is: {}\n", writeable_i32.read(&lock));
/// }
/// // If the parameter is read only, it can be read without locking
/// // the kernel parameters:
/// pr_info!("i32 param is: {}\n", my_i32.read());
/// Ok(Self)
/// }
/// }
/// ```
///
/// # Supported argument types
/// - `type`: type which implements the [`Module`] trait (required).
/// - `name`: byte array of the name of the kernel module (required).
/// - `author`: byte array of the author of the kernel module.
/// - `description`: byte array of the description of the kernel module.
/// - `license`: byte array of the license of the kernel module (required).
/// - `alias`: byte array of alias name of the kernel module.
#[proc_macro]
pub fn module(ts: TokenStream) -> TokenStream {
module::module(ts)
}
/// Declares or implements a vtable trait.
///
/// Linux's use of pure vtables is very close to Rust traits, but they differ
/// in how unimplemented functions are represented. In Rust, traits can provide
/// default implementation for all non-required methods (and the default
/// implementation could just return `Error::EINVAL`); Linux typically use C
/// `NULL` pointers to represent these functions.
///
/// This attribute closes that gap. A trait can be annotated with the
/// `#[vtable]` attribute. Implementers of the trait will then also have to
/// annotate the trait with `#[vtable]`. This attribute generates a `HAS_*`
/// associated constant bool for each method in the trait that is set to true if
/// the implementer has overridden the associated method.
///
/// For a trait method to be optional, it must have a default implementation.
/// This is also the case for traits annotated with `#[vtable]`, but in this
/// case the default implementation will never be executed. The reason for this
/// is that the functions will be called through function pointers installed in
/// C side vtables. When an optional method is not implemented on a `#[vtable]`
/// trait, a NULL entry is installed in the vtable. Thus the default
/// implementation is never called. Since these traits are not designed to be
/// used on the Rust side, it should not be possible to call the default
/// implementation. This is done to ensure that we call the vtable methods
/// through the C vtable, and not through the Rust vtable. Therefore, the
/// default implementation should call `kernel::build_error`, which prevents
/// calls to this function at compile time:
///
/// ```compile_fail
/// # use kernel::error::VTABLE_DEFAULT_ERROR;
/// kernel::build_error(VTABLE_DEFAULT_ERROR)
/// ```
///
/// Note that you might need to import [`kernel::error::VTABLE_DEFAULT_ERROR`].
///
/// This macro should not be used when all functions are required.
///
/// # Examples
///
/// ```ignore
/// use kernel::error::VTABLE_DEFAULT_ERROR;
/// use kernel::prelude::*;
///
/// // Declares a `#[vtable]` trait
/// #[vtable]
/// pub trait Operations: Send + Sync + Sized {
/// fn foo(&self) -> Result<()> {
/// kernel::build_error(VTABLE_DEFAULT_ERROR)
/// }
///
/// fn bar(&self) -> Result<()> {
/// kernel::build_error(VTABLE_DEFAULT_ERROR)
/// }
/// }
///
/// struct Foo;
///
/// // Implements the `#[vtable]` trait
/// #[vtable]
/// impl Operations for Foo {
/// fn foo(&self) -> Result<()> {
/// # Err(EINVAL)
/// // ...
/// }
/// }
///
/// assert_eq!(<Foo as Operations>::HAS_FOO, true);
/// assert_eq!(<Foo as Operations>::HAS_BAR, false);
/// ```
///
/// [`kernel::error::VTABLE_DEFAULT_ERROR`]: ../kernel/error/constant.VTABLE_DEFAULT_ERROR.html
#[proc_macro_attribute]
pub fn vtable(attr: TokenStream, ts: TokenStream) -> TokenStream {
vtable::vtable(attr, ts)
}
/// Concatenate two identifiers.
///
/// This is useful in macros that need to declare or reference items with names
/// starting with a fixed prefix and ending in a user specified name. The resulting
/// identifier has the span of the second argument.
///
/// # Examples
///
/// ```ignore
/// use kernel::macro::concat_idents;
///
/// macro_rules! pub_no_prefix {
/// ($prefix:ident, $($newname:ident),+) => {
/// $(pub(crate) const $newname: u32 = kernel::macros::concat_idents!($prefix, $newname);)+
/// };
/// }
///
/// pub_no_prefix!(
/// binder_driver_return_protocol_,
/// BR_OK,
/// BR_ERROR,
/// BR_TRANSACTION,
/// BR_REPLY,
/// BR_DEAD_REPLY,
/// BR_TRANSACTION_COMPLETE,
/// BR_INCREFS,
/// BR_ACQUIRE,
/// BR_RELEASE,
/// BR_DECREFS,
/// BR_NOOP,
/// BR_SPAWN_LOOPER,
/// BR_DEAD_BINDER,
/// BR_CLEAR_DEATH_NOTIFICATION_DONE,
/// BR_FAILED_REPLY
/// );
///
/// assert_eq!(BR_OK, binder_driver_return_protocol_BR_OK);
/// ```
#[proc_macro]
pub fn concat_idents(ts: TokenStream) -> TokenStream {
concat_idents::concat_idents(ts)
}
/// Used to specify the pinning information of the fields of a struct.
///
/// This is somewhat similar in purpose as
/// [pin-project-lite](https://crates.io/crates/pin-project-lite).
/// Place this macro on a struct definition and then `#[pin]` in front of the attributes of each
/// field you want to structurally pin.
///
/// This macro enables the use of the [`pin_init!`] macro. When pin-initializing a `struct`,
/// then `#[pin]` directs the type of initializer that is required.
///
/// If your `struct` implements `Drop`, then you need to add `PinnedDrop` as arguments to this
/// macro, and change your `Drop` implementation to `PinnedDrop` annotated with
/// `#[`[`macro@pinned_drop`]`]`, since dropping pinned values requires extra care.
///
/// # Examples
///
/// ```rust,ignore
/// #[pin_data]
/// struct DriverData {
/// #[pin]
/// queue: Mutex<Vec<Command>>,
/// buf: Box<[u8; 1024 * 1024]>,
/// }
/// ```
///
/// ```rust,ignore
/// #[pin_data(PinnedDrop)]
/// struct DriverData {
/// #[pin]
/// queue: Mutex<Vec<Command>>,
/// buf: Box<[u8; 1024 * 1024]>,
/// raw_info: *mut Info,
/// }
///
/// #[pinned_drop]
/// impl PinnedDrop for DriverData {
/// fn drop(self: Pin<&mut Self>) {
/// unsafe { bindings::destroy_info(self.raw_info) };
/// }
/// }
/// ```
///
/// [`pin_init!`]: ../kernel/macro.pin_init.html
// ^ cannot use direct link, since `kernel` is not a dependency of `macros`.
#[proc_macro_attribute]
pub fn pin_data(inner: TokenStream, item: TokenStream) -> TokenStream {
pin_data::pin_data(inner, item)
}
/// Used to implement `PinnedDrop` safely.
///
/// Only works on structs that are annotated via `#[`[`macro@pin_data`]`]`.
///
/// # Examples
///
/// ```rust,ignore
/// #[pin_data(PinnedDrop)]
/// struct DriverData {
/// #[pin]
/// queue: Mutex<Vec<Command>>,
/// buf: Box<[u8; 1024 * 1024]>,
/// raw_info: *mut Info,
/// }
///
/// #[pinned_drop]
/// impl PinnedDrop for DriverData {
/// fn drop(self: Pin<&mut Self>) {
/// unsafe { bindings::destroy_info(self.raw_info) };
/// }
/// }
/// ```
#[proc_macro_attribute]
pub fn pinned_drop(args: TokenStream, input: TokenStream) -> TokenStream {
pinned_drop::pinned_drop(args, input)
}
/// Paste identifiers together.
///
/// Within the `paste!` macro, identifiers inside `[<` and `>]` are concatenated together to form a
/// single identifier.
///
/// This is similar to the [`paste`] crate, but with pasting feature limited to identifiers and
/// literals (lifetimes and documentation strings are not supported). There is a difference in
/// supported modifiers as well.
///
/// # Example
///
/// ```ignore
/// use kernel::macro::paste;
///
/// macro_rules! pub_no_prefix {
/// ($prefix:ident, $($newname:ident),+) => {
/// paste! {
/// $(pub(crate) const $newname: u32 = [<$prefix $newname>];)+
/// }
/// };
/// }
///
/// pub_no_prefix!(
/// binder_driver_return_protocol_,
/// BR_OK,
/// BR_ERROR,
/// BR_TRANSACTION,
/// BR_REPLY,
/// BR_DEAD_REPLY,
/// BR_TRANSACTION_COMPLETE,
/// BR_INCREFS,
/// BR_ACQUIRE,
/// BR_RELEASE,
/// BR_DECREFS,
/// BR_NOOP,
/// BR_SPAWN_LOOPER,
/// BR_DEAD_BINDER,
/// BR_CLEAR_DEATH_NOTIFICATION_DONE,
/// BR_FAILED_REPLY
/// );
///
/// assert_eq!(BR_OK, binder_driver_return_protocol_BR_OK);
/// ```
///
/// # Modifiers
///
/// For each identifier, it is possible to attach one or multiple modifiers to
/// it.
///
/// Currently supported modifiers are:
/// * `span`: change the span of concatenated identifier to the span of the specified token. By
/// default the span of the `[< >]` group is used.
/// * `lower`: change the identifier to lower case.
/// * `upper`: change the identifier to upper case.
///
/// ```ignore
/// use kernel::macro::paste;
///
/// macro_rules! pub_no_prefix {
/// ($prefix:ident, $($newname:ident),+) => {
/// kernel::macros::paste! {
/// $(pub(crate) const fn [<$newname:lower:span>]: u32 = [<$prefix $newname:span>];)+
/// }
/// };
/// }
///
/// pub_no_prefix!(
/// binder_driver_return_protocol_,
/// BR_OK,
/// BR_ERROR,
/// BR_TRANSACTION,
/// BR_REPLY,
/// BR_DEAD_REPLY,
/// BR_TRANSACTION_COMPLETE,
/// BR_INCREFS,
/// BR_ACQUIRE,
/// BR_RELEASE,
/// BR_DECREFS,
/// BR_NOOP,
/// BR_SPAWN_LOOPER,
/// BR_DEAD_BINDER,
/// BR_CLEAR_DEATH_NOTIFICATION_DONE,
/// BR_FAILED_REPLY
/// );
///
/// assert_eq!(br_ok(), binder_driver_return_protocol_BR_OK);
/// ```
///
/// # Literals
///
/// Literals can also be concatenated with other identifiers:
///
/// ```ignore
/// macro_rules! create_numbered_fn {
/// ($name:literal, $val:literal) => {
/// kernel::macros::paste! {
/// fn [<some_ $name _fn $val>]() -> u32 { $val }
/// }
/// };
/// }
///
/// create_numbered_fn!("foo", 100);
///
/// assert_eq!(some_foo_fn100(), 100)
/// ```
///
/// [`paste`]: https://docs.rs/paste/
#[proc_macro]
pub fn paste(input: TokenStream) -> TokenStream {
let mut tokens = input.into_iter().collect();
paste::expand(&mut tokens);
tokens.into_iter().collect()
}
/// Derives the [`Zeroable`] trait for the given struct.
///
/// This can only be used for structs where every field implements the [`Zeroable`] trait.
///
/// # Examples
///
/// ```rust,ignore
/// #[derive(Zeroable)]
/// pub struct DriverData {
/// id: i64,
/// buf_ptr: *mut u8,
/// len: usize,
/// }
/// ```
#[proc_macro_derive(Zeroable)]
pub fn derive_zeroable(input: TokenStream) -> TokenStream {
zeroable::derive(input)
}
|