summaryrefslogtreecommitdiff
path: root/virt/kvm/kvm_main.c
blob: 5fc95504affeaaa1ab77cb3a484f09f799f4e0ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Kernel-based Virtual Machine (KVM) Hypervisor
 *
 * Copyright (C) 2006 Qumranet, Inc.
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 *
 * Authors:
 *   Avi Kivity   <avi@qumranet.com>
 *   Yaniv Kamay  <yaniv@qumranet.com>
 */

#include <kvm/iodev.h>

#include <linux/kvm_host.h>
#include <linux/kvm.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/percpu.h>
#include <linux/mm.h>
#include <linux/miscdevice.h>
#include <linux/vmalloc.h>
#include <linux/reboot.h>
#include <linux/debugfs.h>
#include <linux/highmem.h>
#include <linux/file.h>
#include <linux/syscore_ops.h>
#include <linux/cpu.h>
#include <linux/sched/signal.h>
#include <linux/sched/mm.h>
#include <linux/sched/stat.h>
#include <linux/cpumask.h>
#include <linux/smp.h>
#include <linux/anon_inodes.h>
#include <linux/profile.h>
#include <linux/kvm_para.h>
#include <linux/pagemap.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/compat.h>
#include <linux/srcu.h>
#include <linux/hugetlb.h>
#include <linux/slab.h>
#include <linux/sort.h>
#include <linux/bsearch.h>
#include <linux/io.h>
#include <linux/lockdep.h>
#include <linux/kthread.h>
#include <linux/suspend.h>

#include <asm/processor.h>
#include <asm/ioctl.h>
#include <linux/uaccess.h>

#include "coalesced_mmio.h"
#include "async_pf.h"
#include "kvm_mm.h"
#include "vfio.h"

#include <trace/events/ipi.h>

#define CREATE_TRACE_POINTS
#include <trace/events/kvm.h>

#include <linux/kvm_dirty_ring.h>


/* Worst case buffer size needed for holding an integer. */
#define ITOA_MAX_LEN 12

MODULE_AUTHOR("Qumranet");
MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor");
MODULE_LICENSE("GPL");

/* Architectures should define their poll value according to the halt latency */
unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
module_param(halt_poll_ns, uint, 0644);
EXPORT_SYMBOL_GPL(halt_poll_ns);

/* Default doubles per-vcpu halt_poll_ns. */
unsigned int halt_poll_ns_grow = 2;
module_param(halt_poll_ns_grow, uint, 0644);
EXPORT_SYMBOL_GPL(halt_poll_ns_grow);

/* The start value to grow halt_poll_ns from */
unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
module_param(halt_poll_ns_grow_start, uint, 0644);
EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);

/* Default halves per-vcpu halt_poll_ns. */
unsigned int halt_poll_ns_shrink = 2;
module_param(halt_poll_ns_shrink, uint, 0644);
EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);

/*
 * Ordering of locks:
 *
 *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
 */

DEFINE_MUTEX(kvm_lock);
LIST_HEAD(vm_list);

static struct kmem_cache *kvm_vcpu_cache;

static __read_mostly struct preempt_ops kvm_preempt_ops;
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);

static struct dentry *kvm_debugfs_dir;

static const struct file_operations stat_fops_per_vm;

static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
			   unsigned long arg);
#ifdef CONFIG_KVM_COMPAT
static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
				  unsigned long arg);
#define KVM_COMPAT(c)	.compat_ioctl	= (c)
#else
/*
 * For architectures that don't implement a compat infrastructure,
 * adopt a double line of defense:
 * - Prevent a compat task from opening /dev/kvm
 * - If the open has been done by a 64bit task, and the KVM fd
 *   passed to a compat task, let the ioctls fail.
 */
static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
				unsigned long arg) { return -EINVAL; }

static int kvm_no_compat_open(struct inode *inode, struct file *file)
{
	return is_compat_task() ? -ENODEV : 0;
}
#define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
			.open		= kvm_no_compat_open
#endif
static int kvm_enable_virtualization(void);
static void kvm_disable_virtualization(void);

static void kvm_io_bus_destroy(struct kvm_io_bus *bus);

#define KVM_EVENT_CREATE_VM 0
#define KVM_EVENT_DESTROY_VM 1
static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
static unsigned long long kvm_createvm_count;
static unsigned long long kvm_active_vms;

static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);

__weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
{
}

bool kvm_is_zone_device_page(struct page *page)
{
	/*
	 * The metadata used by is_zone_device_page() to determine whether or
	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
	 * page_count() is zero to help detect bad usage of this helper.
	 */
	if (WARN_ON_ONCE(!page_count(page)))
		return false;

	return is_zone_device_page(page);
}

/*
 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
 * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
 * is likely incomplete, it has been compiled purely through people wanting to
 * back guest with a certain type of memory and encountering issues.
 */
struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
{
	struct page *page;

	if (!pfn_valid(pfn))
		return NULL;

	page = pfn_to_page(pfn);
	if (!PageReserved(page))
		return page;

	/* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
	if (is_zero_pfn(pfn))
		return page;

	/*
	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
	 * perspective they are "normal" pages, albeit with slightly different
	 * usage rules.
	 */
	if (kvm_is_zone_device_page(page))
		return page;

	return NULL;
}

/*
 * Switches to specified vcpu, until a matching vcpu_put()
 */
void vcpu_load(struct kvm_vcpu *vcpu)
{
	int cpu = get_cpu();

	__this_cpu_write(kvm_running_vcpu, vcpu);
	preempt_notifier_register(&vcpu->preempt_notifier);
	kvm_arch_vcpu_load(vcpu, cpu);
	put_cpu();
}
EXPORT_SYMBOL_GPL(vcpu_load);

void vcpu_put(struct kvm_vcpu *vcpu)
{
	preempt_disable();
	kvm_arch_vcpu_put(vcpu);
	preempt_notifier_unregister(&vcpu->preempt_notifier);
	__this_cpu_write(kvm_running_vcpu, NULL);
	preempt_enable();
}
EXPORT_SYMBOL_GPL(vcpu_put);

/* TODO: merge with kvm_arch_vcpu_should_kick */
static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
{
	int mode = kvm_vcpu_exiting_guest_mode(vcpu);

	/*
	 * We need to wait for the VCPU to reenable interrupts and get out of
	 * READING_SHADOW_PAGE_TABLES mode.
	 */
	if (req & KVM_REQUEST_WAIT)
		return mode != OUTSIDE_GUEST_MODE;

	/*
	 * Need to kick a running VCPU, but otherwise there is nothing to do.
	 */
	return mode == IN_GUEST_MODE;
}

static void ack_kick(void *_completed)
{
}

static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
{
	if (cpumask_empty(cpus))
		return false;

	smp_call_function_many(cpus, ack_kick, NULL, wait);
	return true;
}

static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
				  struct cpumask *tmp, int current_cpu)
{
	int cpu;

	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
		__kvm_make_request(req, vcpu);

	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
		return;

	/*
	 * Note, the vCPU could get migrated to a different pCPU at any point
	 * after kvm_request_needs_ipi(), which could result in sending an IPI
	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
	 * after this point is also OK, as the requirement is only that KVM wait
	 * for vCPUs that were reading SPTEs _before_ any changes were
	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
	 */
	if (kvm_request_needs_ipi(vcpu, req)) {
		cpu = READ_ONCE(vcpu->cpu);
		if (cpu != -1 && cpu != current_cpu)
			__cpumask_set_cpu(cpu, tmp);
	}
}

bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
				 unsigned long *vcpu_bitmap)
{
	struct kvm_vcpu *vcpu;
	struct cpumask *cpus;
	int i, me;
	bool called;

	me = get_cpu();

	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
	cpumask_clear(cpus);

	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
		vcpu = kvm_get_vcpu(kvm, i);
		if (!vcpu)
			continue;
		kvm_make_vcpu_request(vcpu, req, cpus, me);
	}

	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
	put_cpu();

	return called;
}

bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
{
	struct kvm_vcpu *vcpu;
	struct cpumask *cpus;
	unsigned long i;
	bool called;
	int me;

	me = get_cpu();

	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
	cpumask_clear(cpus);

	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_make_vcpu_request(vcpu, req, cpus, me);

	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
	put_cpu();

	return called;
}
EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);

void kvm_flush_remote_tlbs(struct kvm *kvm)
{
	++kvm->stat.generic.remote_tlb_flush_requests;

	/*
	 * We want to publish modifications to the page tables before reading
	 * mode. Pairs with a memory barrier in arch-specific code.
	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
	 * and smp_mb in walk_shadow_page_lockless_begin/end.
	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
	 *
	 * There is already an smp_mb__after_atomic() before
	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
	 * barrier here.
	 */
	if (!kvm_arch_flush_remote_tlbs(kvm)
	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
		++kvm->stat.generic.remote_tlb_flush;
}
EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);

void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
{
	if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
		return;

	/*
	 * Fall back to a flushing entire TLBs if the architecture range-based
	 * TLB invalidation is unsupported or can't be performed for whatever
	 * reason.
	 */
	kvm_flush_remote_tlbs(kvm);
}

void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
				   const struct kvm_memory_slot *memslot)
{
	/*
	 * All current use cases for flushing the TLBs for a specific memslot
	 * are related to dirty logging, and many do the TLB flush out of
	 * mmu_lock. The interaction between the various operations on memslot
	 * must be serialized by slots_locks to ensure the TLB flush from one
	 * operation is observed by any other operation on the same memslot.
	 */
	lockdep_assert_held(&kvm->slots_lock);
	kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
}

static void kvm_flush_shadow_all(struct kvm *kvm)
{
	kvm_arch_flush_shadow_all(kvm);
	kvm_arch_guest_memory_reclaimed(kvm);
}

#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
					       gfp_t gfp_flags)
{
	void *page;

	gfp_flags |= mc->gfp_zero;

	if (mc->kmem_cache)
		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);

	page = (void *)__get_free_page(gfp_flags);
	if (page && mc->init_value)
		memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64));
	return page;
}

int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
{
	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
	void *obj;

	if (mc->nobjs >= min)
		return 0;

	if (unlikely(!mc->objects)) {
		if (WARN_ON_ONCE(!capacity))
			return -EIO;

		/*
		 * Custom init values can be used only for page allocations,
		 * and obviously conflict with __GFP_ZERO.
		 */
		if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero)))
			return -EIO;

		mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
		if (!mc->objects)
			return -ENOMEM;

		mc->capacity = capacity;
	}

	/* It is illegal to request a different capacity across topups. */
	if (WARN_ON_ONCE(mc->capacity != capacity))
		return -EIO;

	while (mc->nobjs < mc->capacity) {
		obj = mmu_memory_cache_alloc_obj(mc, gfp);
		if (!obj)
			return mc->nobjs >= min ? 0 : -ENOMEM;
		mc->objects[mc->nobjs++] = obj;
	}
	return 0;
}

int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
{
	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
}

int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
{
	return mc->nobjs;
}

void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs) {
		if (mc->kmem_cache)
			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
		else
			free_page((unsigned long)mc->objects[--mc->nobjs]);
	}

	kvfree(mc->objects);

	mc->objects = NULL;
	mc->capacity = 0;
}

void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
	void *p;

	if (WARN_ON(!mc->nobjs))
		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
	else
		p = mc->objects[--mc->nobjs];
	BUG_ON(!p);
	return p;
}
#endif

static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
{
	mutex_init(&vcpu->mutex);
	vcpu->cpu = -1;
	vcpu->kvm = kvm;
	vcpu->vcpu_id = id;
	vcpu->pid = NULL;
#ifndef __KVM_HAVE_ARCH_WQP
	rcuwait_init(&vcpu->wait);
#endif
	kvm_async_pf_vcpu_init(vcpu);

	kvm_vcpu_set_in_spin_loop(vcpu, false);
	kvm_vcpu_set_dy_eligible(vcpu, false);
	vcpu->preempted = false;
	vcpu->ready = false;
	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
	vcpu->last_used_slot = NULL;

	/* Fill the stats id string for the vcpu */
	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
		 task_pid_nr(current), id);
}

static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_destroy(vcpu);
	kvm_dirty_ring_free(&vcpu->dirty_ring);

	/*
	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
	 * the vcpu->pid pointer, and at destruction time all file descriptors
	 * are already gone.
	 */
	put_pid(rcu_dereference_protected(vcpu->pid, 1));

	free_page((unsigned long)vcpu->run);
	kmem_cache_free(kvm_vcpu_cache, vcpu);
}

void kvm_destroy_vcpus(struct kvm *kvm)
{
	unsigned long i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_vcpu_destroy(vcpu);
		xa_erase(&kvm->vcpu_array, i);
	}

	atomic_set(&kvm->online_vcpus, 0);
}
EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);

#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
{
	return container_of(mn, struct kvm, mmu_notifier);
}

typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);

typedef void (*on_lock_fn_t)(struct kvm *kvm);

struct kvm_mmu_notifier_range {
	/*
	 * 64-bit addresses, as KVM notifiers can operate on host virtual
	 * addresses (unsigned long) and guest physical addresses (64-bit).
	 */
	u64 start;
	u64 end;
	union kvm_mmu_notifier_arg arg;
	gfn_handler_t handler;
	on_lock_fn_t on_lock;
	bool flush_on_ret;
	bool may_block;
};

/*
 * The inner-most helper returns a tuple containing the return value from the
 * arch- and action-specific handler, plus a flag indicating whether or not at
 * least one memslot was found, i.e. if the handler found guest memory.
 *
 * Note, most notifiers are averse to booleans, so even though KVM tracks the
 * return from arch code as a bool, outer helpers will cast it to an int. :-(
 */
typedef struct kvm_mmu_notifier_return {
	bool ret;
	bool found_memslot;
} kvm_mn_ret_t;

/*
 * Use a dedicated stub instead of NULL to indicate that there is no callback
 * function/handler.  The compiler technically can't guarantee that a real
 * function will have a non-zero address, and so it will generate code to
 * check for !NULL, whereas comparing against a stub will be elided at compile
 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
 */
static void kvm_null_fn(void)
{

}
#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)

/* Iterate over each memslot intersecting [start, last] (inclusive) range */
#define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
	     node;							     \
	     node = interval_tree_iter_next(node, start, last))	     \

static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
							   const struct kvm_mmu_notifier_range *range)
{
	struct kvm_mmu_notifier_return r = {
		.ret = false,
		.found_memslot = false,
	};
	struct kvm_gfn_range gfn_range;
	struct kvm_memory_slot *slot;
	struct kvm_memslots *slots;
	int i, idx;

	if (WARN_ON_ONCE(range->end <= range->start))
		return r;

	/* A null handler is allowed if and only if on_lock() is provided. */
	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
			 IS_KVM_NULL_FN(range->handler)))
		return r;

	idx = srcu_read_lock(&kvm->srcu);

	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
		struct interval_tree_node *node;

		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot_in_hva_range(node, slots,
						  range->start, range->end - 1) {
			unsigned long hva_start, hva_end;

			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
			hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
			hva_end = min_t(unsigned long, range->end,
					slot->userspace_addr + (slot->npages << PAGE_SHIFT));

			/*
			 * To optimize for the likely case where the address
			 * range is covered by zero or one memslots, don't
			 * bother making these conditional (to avoid writes on
			 * the second or later invocation of the handler).
			 */
			gfn_range.arg = range->arg;
			gfn_range.may_block = range->may_block;

			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
			gfn_range.slot = slot;

			if (!r.found_memslot) {
				r.found_memslot = true;
				KVM_MMU_LOCK(kvm);
				if (!IS_KVM_NULL_FN(range->on_lock))
					range->on_lock(kvm);

				if (IS_KVM_NULL_FN(range->handler))
					goto mmu_unlock;
			}
			r.ret |= range->handler(kvm, &gfn_range);
		}
	}

	if (range->flush_on_ret && r.ret)
		kvm_flush_remote_tlbs(kvm);

mmu_unlock:
	if (r.found_memslot)
		KVM_MMU_UNLOCK(kvm);

	srcu_read_unlock(&kvm->srcu, idx);

	return r;
}

static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
						unsigned long start,
						unsigned long end,
						gfn_handler_t handler)
{
	struct kvm *kvm = mmu_notifier_to_kvm(mn);
	const struct kvm_mmu_notifier_range range = {
		.start		= start,
		.end		= end,
		.handler	= handler,
		.on_lock	= (void *)kvm_null_fn,
		.flush_on_ret	= true,
		.may_block	= false,
	};

	return __kvm_handle_hva_range(kvm, &range).ret;
}

static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
							 unsigned long start,
							 unsigned long end,
							 gfn_handler_t handler)
{
	struct kvm *kvm = mmu_notifier_to_kvm(mn);
	const struct kvm_mmu_notifier_range range = {
		.start		= start,
		.end		= end,
		.handler	= handler,
		.on_lock	= (void *)kvm_null_fn,
		.flush_on_ret	= false,
		.may_block	= false,
	};

	return __kvm_handle_hva_range(kvm, &range).ret;
}

void kvm_mmu_invalidate_begin(struct kvm *kvm)
{
	lockdep_assert_held_write(&kvm->mmu_lock);
	/*
	 * The count increase must become visible at unlock time as no
	 * spte can be established without taking the mmu_lock and
	 * count is also read inside the mmu_lock critical section.
	 */
	kvm->mmu_invalidate_in_progress++;

	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
		kvm->mmu_invalidate_range_start = INVALID_GPA;
		kvm->mmu_invalidate_range_end = INVALID_GPA;
	}
}

void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
{
	lockdep_assert_held_write(&kvm->mmu_lock);

	WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);

	if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
		kvm->mmu_invalidate_range_start = start;
		kvm->mmu_invalidate_range_end = end;
	} else {
		/*
		 * Fully tracking multiple concurrent ranges has diminishing
		 * returns. Keep things simple and just find the minimal range
		 * which includes the current and new ranges. As there won't be
		 * enough information to subtract a range after its invalidate
		 * completes, any ranges invalidated concurrently will
		 * accumulate and persist until all outstanding invalidates
		 * complete.
		 */
		kvm->mmu_invalidate_range_start =
			min(kvm->mmu_invalidate_range_start, start);
		kvm->mmu_invalidate_range_end =
			max(kvm->mmu_invalidate_range_end, end);
	}
}

bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
{
	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
	return kvm_unmap_gfn_range(kvm, range);
}

static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
					const struct mmu_notifier_range *range)
{
	struct kvm *kvm = mmu_notifier_to_kvm(mn);
	const struct kvm_mmu_notifier_range hva_range = {
		.start		= range->start,
		.end		= range->end,
		.handler	= kvm_mmu_unmap_gfn_range,
		.on_lock	= kvm_mmu_invalidate_begin,
		.flush_on_ret	= true,
		.may_block	= mmu_notifier_range_blockable(range),
	};

	trace_kvm_unmap_hva_range(range->start, range->end);

	/*
	 * Prevent memslot modification between range_start() and range_end()
	 * so that conditionally locking provides the same result in both
	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
	 * adjustments will be imbalanced.
	 *
	 * Pairs with the decrement in range_end().
	 */
	spin_lock(&kvm->mn_invalidate_lock);
	kvm->mn_active_invalidate_count++;
	spin_unlock(&kvm->mn_invalidate_lock);

	/*
	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
	 * each cache's lock.  There are relatively few caches in existence at
	 * any given time, and the caches themselves can check for hva overlap,
	 * i.e. don't need to rely on memslot overlap checks for performance.
	 * Because this runs without holding mmu_lock, the pfn caches must use
	 * mn_active_invalidate_count (see above) instead of
	 * mmu_invalidate_in_progress.
	 */
	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);

	/*
	 * If one or more memslots were found and thus zapped, notify arch code
	 * that guest memory has been reclaimed.  This needs to be done *after*
	 * dropping mmu_lock, as x86's reclaim path is slooooow.
	 */
	if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
		kvm_arch_guest_memory_reclaimed(kvm);

	return 0;
}

void kvm_mmu_invalidate_end(struct kvm *kvm)
{
	lockdep_assert_held_write(&kvm->mmu_lock);

	/*
	 * This sequence increase will notify the kvm page fault that
	 * the page that is going to be mapped in the spte could have
	 * been freed.
	 */
	kvm->mmu_invalidate_seq++;
	smp_wmb();
	/*
	 * The above sequence increase must be visible before the
	 * below count decrease, which is ensured by the smp_wmb above
	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
	 */
	kvm->mmu_invalidate_in_progress--;
	KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);

	/*
	 * Assert that at least one range was added between start() and end().
	 * Not adding a range isn't fatal, but it is a KVM bug.
	 */
	WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
}

static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
					const struct mmu_notifier_range *range)
{
	struct kvm *kvm = mmu_notifier_to_kvm(mn);
	const struct kvm_mmu_notifier_range hva_range = {
		.start		= range->start,
		.end		= range->end,
		.handler	= (void *)kvm_null_fn,
		.on_lock	= kvm_mmu_invalidate_end,
		.flush_on_ret	= false,
		.may_block	= mmu_notifier_range_blockable(range),
	};
	bool wake;

	__kvm_handle_hva_range(kvm, &hva_range);

	/* Pairs with the increment in range_start(). */
	spin_lock(&kvm->mn_invalidate_lock);
	if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
		--kvm->mn_active_invalidate_count;
	wake = !kvm->mn_active_invalidate_count;
	spin_unlock(&kvm->mn_invalidate_lock);

	/*
	 * There can only be one waiter, since the wait happens under
	 * slots_lock.
	 */
	if (wake)
		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
}

static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
					      struct mm_struct *mm,
					      unsigned long start,
					      unsigned long end)
{
	trace_kvm_age_hva(start, end);

	return kvm_handle_hva_range(mn, start, end, kvm_age_gfn);
}

static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
					struct mm_struct *mm,
					unsigned long start,
					unsigned long end)
{
	trace_kvm_age_hva(start, end);

	/*
	 * Even though we do not flush TLB, this will still adversely
	 * affect performance on pre-Haswell Intel EPT, where there is
	 * no EPT Access Bit to clear so that we have to tear down EPT
	 * tables instead. If we find this unacceptable, we can always
	 * add a parameter to kvm_age_hva so that it effectively doesn't
	 * do anything on clear_young.
	 *
	 * Also note that currently we never issue secondary TLB flushes
	 * from clear_young, leaving this job up to the regular system
	 * cadence. If we find this inaccurate, we might come up with a
	 * more sophisticated heuristic later.
	 */
	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
}

static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
				       struct mm_struct *mm,
				       unsigned long address)
{
	trace_kvm_test_age_hva(address);

	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
					     kvm_test_age_gfn);
}

static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
				     struct mm_struct *mm)
{
	struct kvm *kvm = mmu_notifier_to_kvm(mn);
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	kvm_flush_shadow_all(kvm);
	srcu_read_unlock(&kvm->srcu, idx);
}

static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
	.clear_young		= kvm_mmu_notifier_clear_young,
	.test_young		= kvm_mmu_notifier_test_young,
	.release		= kvm_mmu_notifier_release,
};

static int kvm_init_mmu_notifier(struct kvm *kvm)
{
	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
}

#else  /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */

static int kvm_init_mmu_notifier(struct kvm *kvm)
{
	return 0;
}

#endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */

#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
static int kvm_pm_notifier_call(struct notifier_block *bl,
				unsigned long state,
				void *unused)
{
	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);

	return kvm_arch_pm_notifier(kvm, state);
}

static void kvm_init_pm_notifier(struct kvm *kvm)
{
	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
	/* Suspend KVM before we suspend ftrace, RCU, etc. */
	kvm->pm_notifier.priority = INT_MAX;
	register_pm_notifier(&kvm->pm_notifier);
}

static void kvm_destroy_pm_notifier(struct kvm *kvm)
{
	unregister_pm_notifier(&kvm->pm_notifier);
}
#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
static void kvm_init_pm_notifier(struct kvm *kvm)
{
}

static void kvm_destroy_pm_notifier(struct kvm *kvm)
{
}
#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */

static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
{
	if (!memslot->dirty_bitmap)
		return;

	vfree(memslot->dirty_bitmap);
	memslot->dirty_bitmap = NULL;
}

/* This does not remove the slot from struct kvm_memslots data structures */
static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
{
	if (slot->flags & KVM_MEM_GUEST_MEMFD)
		kvm_gmem_unbind(slot);

	kvm_destroy_dirty_bitmap(slot);

	kvm_arch_free_memslot(kvm, slot);

	kfree(slot);
}

static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
{
	struct hlist_node *idnode;
	struct kvm_memory_slot *memslot;
	int bkt;

	/*
	 * The same memslot objects live in both active and inactive sets,
	 * arbitrarily free using index '1' so the second invocation of this
	 * function isn't operating over a structure with dangling pointers
	 * (even though this function isn't actually touching them).
	 */
	if (!slots->node_idx)
		return;

	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
		kvm_free_memslot(kvm, memslot);
}

static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
{
	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
	case KVM_STATS_TYPE_INSTANT:
		return 0444;
	case KVM_STATS_TYPE_CUMULATIVE:
	case KVM_STATS_TYPE_PEAK:
	default:
		return 0644;
	}
}


static void kvm_destroy_vm_debugfs(struct kvm *kvm)
{
	int i;
	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
				      kvm_vcpu_stats_header.num_desc;

	if (IS_ERR(kvm->debugfs_dentry))
		return;

	debugfs_remove_recursive(kvm->debugfs_dentry);

	if (kvm->debugfs_stat_data) {
		for (i = 0; i < kvm_debugfs_num_entries; i++)
			kfree(kvm->debugfs_stat_data[i]);
		kfree(kvm->debugfs_stat_data);
	}
}

static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
{
	static DEFINE_MUTEX(kvm_debugfs_lock);
	struct dentry *dent;
	char dir_name[ITOA_MAX_LEN * 2];
	struct kvm_stat_data *stat_data;
	const struct _kvm_stats_desc *pdesc;
	int i, ret = -ENOMEM;
	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
				      kvm_vcpu_stats_header.num_desc;

	if (!debugfs_initialized())
		return 0;

	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
	mutex_lock(&kvm_debugfs_lock);
	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
	if (dent) {
		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
		dput(dent);
		mutex_unlock(&kvm_debugfs_lock);
		return 0;
	}
	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
	mutex_unlock(&kvm_debugfs_lock);
	if (IS_ERR(dent))
		return 0;

	kvm->debugfs_dentry = dent;
	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
					 sizeof(*kvm->debugfs_stat_data),
					 GFP_KERNEL_ACCOUNT);
	if (!kvm->debugfs_stat_data)
		goto out_err;

	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
		pdesc = &kvm_vm_stats_desc[i];
		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
		if (!stat_data)
			goto out_err;

		stat_data->kvm = kvm;
		stat_data->desc = pdesc;
		stat_data->kind = KVM_STAT_VM;
		kvm->debugfs_stat_data[i] = stat_data;
		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
				    kvm->debugfs_dentry, stat_data,
				    &stat_fops_per_vm);
	}

	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
		pdesc = &kvm_vcpu_stats_desc[i];
		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
		if (!stat_data)
			goto out_err;

		stat_data->kvm = kvm;
		stat_data->desc = pdesc;
		stat_data->kind = KVM_STAT_VCPU;
		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
				    kvm->debugfs_dentry, stat_data,
				    &stat_fops_per_vm);
	}

	kvm_arch_create_vm_debugfs(kvm);
	return 0;
out_err:
	kvm_destroy_vm_debugfs(kvm);
	return ret;
}

/*
 * Called after the VM is otherwise initialized, but just before adding it to
 * the vm_list.
 */
int __weak kvm_arch_post_init_vm(struct kvm *kvm)
{
	return 0;
}

/*
 * Called just after removing the VM from the vm_list, but before doing any
 * other destruction.
 */
void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
{
}

/*
 * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
 * be setup already, so we can create arch-specific debugfs entries under it.
 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
 * a per-arch destroy interface is not needed.
 */
void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
{
}

static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
{
	struct kvm *kvm = kvm_arch_alloc_vm();
	struct kvm_memslots *slots;
	int r, i, j;

	if (!kvm)
		return ERR_PTR(-ENOMEM);

	KVM_MMU_LOCK_INIT(kvm);
	mmgrab(current->mm);
	kvm->mm = current->mm;
	kvm_eventfd_init(kvm);
	mutex_init(&kvm->lock);
	mutex_init(&kvm->irq_lock);
	mutex_init(&kvm->slots_lock);
	mutex_init(&kvm->slots_arch_lock);
	spin_lock_init(&kvm->mn_invalidate_lock);
	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
	xa_init(&kvm->vcpu_array);
#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
	xa_init(&kvm->mem_attr_array);
#endif

	INIT_LIST_HEAD(&kvm->gpc_list);
	spin_lock_init(&kvm->gpc_lock);

	INIT_LIST_HEAD(&kvm->devices);
	kvm->max_vcpus = KVM_MAX_VCPUS;

	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);

	/*
	 * Force subsequent debugfs file creations to fail if the VM directory
	 * is not created (by kvm_create_vm_debugfs()).
	 */
	kvm->debugfs_dentry = ERR_PTR(-ENOENT);

	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
		 task_pid_nr(current));

	r = -ENOMEM;
	if (init_srcu_struct(&kvm->srcu))
		goto out_err_no_srcu;
	if (init_srcu_struct(&kvm->irq_srcu))
		goto out_err_no_irq_srcu;

	r = kvm_init_irq_routing(kvm);
	if (r)
		goto out_err_no_irq_routing;

	refcount_set(&kvm->users_count, 1);

	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
		for (j = 0; j < 2; j++) {
			slots = &kvm->__memslots[i][j];

			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
			slots->hva_tree = RB_ROOT_CACHED;
			slots->gfn_tree = RB_ROOT;
			hash_init(slots->id_hash);
			slots->node_idx = j;

			/* Generations must be different for each address space. */
			slots->generation = i;
		}

		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
	}

	r = -ENOMEM;
	for (i = 0; i < KVM_NR_BUSES; i++) {
		rcu_assign_pointer(kvm->buses[i],
			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
		if (!kvm->buses[i])
			goto out_err_no_arch_destroy_vm;
	}

	r = kvm_arch_init_vm(kvm, type);
	if (r)
		goto out_err_no_arch_destroy_vm;

	r = kvm_enable_virtualization();
	if (r)
		goto out_err_no_disable;

#ifdef CONFIG_HAVE_KVM_IRQCHIP
	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
#endif

	r = kvm_init_mmu_notifier(kvm);
	if (r)
		goto out_err_no_mmu_notifier;

	r = kvm_coalesced_mmio_init(kvm);
	if (r < 0)
		goto out_no_coalesced_mmio;

	r = kvm_create_vm_debugfs(kvm, fdname);
	if (r)
		goto out_err_no_debugfs;

	r = kvm_arch_post_init_vm(kvm);
	if (r)
		goto out_err;

	mutex_lock(&kvm_lock);
	list_add(&kvm->vm_list, &vm_list);
	mutex_unlock(&kvm_lock);

	preempt_notifier_inc();
	kvm_init_pm_notifier(kvm);

	return kvm;

out_err:
	kvm_destroy_vm_debugfs(kvm);
out_err_no_debugfs:
	kvm_coalesced_mmio_free(kvm);
out_no_coalesced_mmio:
#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
	if (kvm->mmu_notifier.ops)
		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
#endif
out_err_no_mmu_notifier:
	kvm_disable_virtualization();
out_err_no_disable:
	kvm_arch_destroy_vm(kvm);
out_err_no_arch_destroy_vm:
	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
	for (i = 0; i < KVM_NR_BUSES; i++)
		kfree(kvm_get_bus(kvm, i));
	kvm_free_irq_routing(kvm);
out_err_no_irq_routing:
	cleanup_srcu_struct(&kvm->irq_srcu);
out_err_no_irq_srcu:
	cleanup_srcu_struct(&kvm->srcu);
out_err_no_srcu:
	kvm_arch_free_vm(kvm);
	mmdrop(current->mm);
	return ERR_PTR(r);
}

static void kvm_destroy_devices(struct kvm *kvm)
{
	struct kvm_device *dev, *tmp;

	/*
	 * We do not need to take the kvm->lock here, because nobody else
	 * has a reference to the struct kvm at this point and therefore
	 * cannot access the devices list anyhow.
	 *
	 * The device list is generally managed as an rculist, but list_del()
	 * is used intentionally here. If a bug in KVM introduced a reader that
	 * was not backed by a reference on the kvm struct, the hope is that
	 * it'd consume the poisoned forward pointer instead of suffering a
	 * use-after-free, even though this cannot be guaranteed.
	 */
	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
		list_del(&dev->vm_node);
		dev->ops->destroy(dev);
	}
}

static void kvm_destroy_vm(struct kvm *kvm)
{
	int i;
	struct mm_struct *mm = kvm->mm;

	kvm_destroy_pm_notifier(kvm);
	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
	kvm_destroy_vm_debugfs(kvm);
	kvm_arch_sync_events(kvm);
	mutex_lock(&kvm_lock);
	list_del(&kvm->vm_list);
	mutex_unlock(&kvm_lock);
	kvm_arch_pre_destroy_vm(kvm);

	kvm_free_irq_routing(kvm);
	for (i = 0; i < KVM_NR_BUSES; i++) {
		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);

		if (bus)
			kvm_io_bus_destroy(bus);
		kvm->buses[i] = NULL;
	}
	kvm_coalesced_mmio_free(kvm);
#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
	/*
	 * At this point, pending calls to invalidate_range_start()
	 * have completed but no more MMU notifiers will run, so
	 * mn_active_invalidate_count may remain unbalanced.
	 * No threads can be waiting in kvm_swap_active_memslots() as the
	 * last reference on KVM has been dropped, but freeing
	 * memslots would deadlock without this manual intervention.
	 *
	 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
	 * notifier between a start() and end(), then there shouldn't be any
	 * in-progress invalidations.
	 */
	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
	if (kvm->mn_active_invalidate_count)
		kvm->mn_active_invalidate_count = 0;
	else
		WARN_ON(kvm->mmu_invalidate_in_progress);
#else
	kvm_flush_shadow_all(kvm);
#endif
	kvm_arch_destroy_vm(kvm);
	kvm_destroy_devices(kvm);
	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
	}
	cleanup_srcu_struct(&kvm->irq_srcu);
	cleanup_srcu_struct(&kvm->srcu);
#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
	xa_destroy(&kvm->mem_attr_array);
#endif
	kvm_arch_free_vm(kvm);
	preempt_notifier_dec();
	kvm_disable_virtualization();
	mmdrop(mm);
}

void kvm_get_kvm(struct kvm *kvm)
{
	refcount_inc(&kvm->users_count);
}
EXPORT_SYMBOL_GPL(kvm_get_kvm);

/*
 * Make sure the vm is not during destruction, which is a safe version of
 * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
 */
bool kvm_get_kvm_safe(struct kvm *kvm)
{
	return refcount_inc_not_zero(&kvm->users_count);
}
EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);

void kvm_put_kvm(struct kvm *kvm)
{
	if (refcount_dec_and_test(&kvm->users_count))
		kvm_destroy_vm(kvm);
}
EXPORT_SYMBOL_GPL(kvm_put_kvm);

/*
 * Used to put a reference that was taken on behalf of an object associated
 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
 * of the new file descriptor fails and the reference cannot be transferred to
 * its final owner.  In such cases, the caller is still actively using @kvm and
 * will fail miserably if the refcount unexpectedly hits zero.
 */
void kvm_put_kvm_no_destroy(struct kvm *kvm)
{
	WARN_ON(refcount_dec_and_test(&kvm->users_count));
}
EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);

static int kvm_vm_release(struct inode *inode, struct file *filp)
{
	struct kvm *kvm = filp->private_data;

	kvm_irqfd_release(kvm);

	kvm_put_kvm(kvm);
	return 0;
}

/*
 * Allocation size is twice as large as the actual dirty bitmap size.
 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
 */
static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
{
	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);

	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
	if (!memslot->dirty_bitmap)
		return -ENOMEM;

	return 0;
}

static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
{
	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
	int node_idx_inactive = active->node_idx ^ 1;

	return &kvm->__memslots[as_id][node_idx_inactive];
}

/*
 * Helper to get the address space ID when one of memslot pointers may be NULL.
 * This also serves as a sanity that at least one of the pointers is non-NULL,
 * and that their address space IDs don't diverge.
 */
static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
				  struct kvm_memory_slot *b)
{
	if (WARN_ON_ONCE(!a && !b))
		return 0;

	if (!a)
		return b->as_id;
	if (!b)
		return a->as_id;

	WARN_ON_ONCE(a->as_id != b->as_id);
	return a->as_id;
}

static void kvm_insert_gfn_node(struct kvm_memslots *slots,
				struct kvm_memory_slot *slot)
{
	struct rb_root *gfn_tree = &slots->gfn_tree;
	struct rb_node **node, *parent;
	int idx = slots->node_idx;

	parent = NULL;
	for (node = &gfn_tree->rb_node; *node; ) {
		struct kvm_memory_slot *tmp;

		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
		parent = *node;
		if (slot->base_gfn < tmp->base_gfn)
			node = &(*node)->rb_left;
		else if (slot->base_gfn > tmp->base_gfn)
			node = &(*node)->rb_right;
		else
			BUG();
	}

	rb_link_node(&slot->gfn_node[idx], parent, node);
	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
}

static void kvm_erase_gfn_node(struct kvm_memslots *slots,
			       struct kvm_memory_slot *slot)
{
	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
}

static void kvm_replace_gfn_node(struct kvm_memslots *slots,
				 struct kvm_memory_slot *old,
				 struct kvm_memory_slot *new)
{
	int idx = slots->node_idx;

	WARN_ON_ONCE(old->base_gfn != new->base_gfn);

	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
			&slots->gfn_tree);
}

/*
 * Replace @old with @new in the inactive memslots.
 *
 * With NULL @old this simply adds @new.
 * With NULL @new this simply removes @old.
 *
 * If @new is non-NULL its hva_node[slots_idx] range has to be set
 * appropriately.
 */
static void kvm_replace_memslot(struct kvm *kvm,
				struct kvm_memory_slot *old,
				struct kvm_memory_slot *new)
{
	int as_id = kvm_memslots_get_as_id(old, new);
	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
	int idx = slots->node_idx;

	if (old) {
		hash_del(&old->id_node[idx]);
		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);

		if ((long)old == atomic_long_read(&slots->last_used_slot))
			atomic_long_set(&slots->last_used_slot, (long)new);

		if (!new) {
			kvm_erase_gfn_node(slots, old);
			return;
		}
	}

	/*
	 * Initialize @new's hva range.  Do this even when replacing an @old
	 * slot, kvm_copy_memslot() deliberately does not touch node data.
	 */
	new->hva_node[idx].start = new->userspace_addr;
	new->hva_node[idx].last = new->userspace_addr +
				  (new->npages << PAGE_SHIFT) - 1;

	/*
	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
	 * hva_node needs to be swapped with remove+insert even though hva can't
	 * change when replacing an existing slot.
	 */
	hash_add(slots->id_hash, &new->id_node[idx], new->id);
	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);

	/*
	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
	 * switch the node in the gfn tree instead of removing the old and
	 * inserting the new as two separate operations. Replacement is a
	 * single O(1) operation versus two O(log(n)) operations for
	 * remove+insert.
	 */
	if (old && old->base_gfn == new->base_gfn) {
		kvm_replace_gfn_node(slots, old, new);
	} else {
		if (old)
			kvm_erase_gfn_node(slots, old);
		kvm_insert_gfn_node(slots, new);
	}
}

/*
 * Flags that do not access any of the extra space of struct
 * kvm_userspace_memory_region2.  KVM_SET_USER_MEMORY_REGION_V1_FLAGS
 * only allows these.
 */
#define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
	(KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)

static int check_memory_region_flags(struct kvm *kvm,
				     const struct kvm_userspace_memory_region2 *mem)
{
	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;

	if (kvm_arch_has_private_mem(kvm))
		valid_flags |= KVM_MEM_GUEST_MEMFD;

	/* Dirty logging private memory is not currently supported. */
	if (mem->flags & KVM_MEM_GUEST_MEMFD)
		valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;

	/*
	 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
	 * read-only memslots have emulated MMIO, not page fault, semantics,
	 * and KVM doesn't allow emulated MMIO for private memory.
	 */
	if (kvm_arch_has_readonly_mem(kvm) &&
	    !(mem->flags & KVM_MEM_GUEST_MEMFD))
		valid_flags |= KVM_MEM_READONLY;

	if (mem->flags & ~valid_flags)
		return -EINVAL;

	return 0;
}

static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
{
	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);

	/* Grab the generation from the activate memslots. */
	u64 gen = __kvm_memslots(kvm, as_id)->generation;

	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;

	/*
	 * Do not store the new memslots while there are invalidations in
	 * progress, otherwise the locking in invalidate_range_start and
	 * invalidate_range_end will be unbalanced.
	 */
	spin_lock(&kvm->mn_invalidate_lock);
	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
	while (kvm->mn_active_invalidate_count) {
		set_current_state(TASK_UNINTERRUPTIBLE);
		spin_unlock(&kvm->mn_invalidate_lock);
		schedule();
		spin_lock(&kvm->mn_invalidate_lock);
	}
	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
	rcu_assign_pointer(kvm->memslots[as_id], slots);
	spin_unlock(&kvm->mn_invalidate_lock);

	/*
	 * Acquired in kvm_set_memslot. Must be released before synchronize
	 * SRCU below in order to avoid deadlock with another thread
	 * acquiring the slots_arch_lock in an srcu critical section.
	 */
	mutex_unlock(&kvm->slots_arch_lock);

	synchronize_srcu_expedited(&kvm->srcu);

	/*
	 * Increment the new memslot generation a second time, dropping the
	 * update in-progress flag and incrementing the generation based on
	 * the number of address spaces.  This provides a unique and easily
	 * identifiable generation number while the memslots are in flux.
	 */
	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;

	/*
	 * Generations must be unique even across address spaces.  We do not need
	 * a global counter for that, instead the generation space is evenly split
	 * across address spaces.  For example, with two address spaces, address
	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
	 * use generations 1, 3, 5, ...
	 */
	gen += kvm_arch_nr_memslot_as_ids(kvm);

	kvm_arch_memslots_updated(kvm, gen);

	slots->generation = gen;
}

static int kvm_prepare_memory_region(struct kvm *kvm,
				     const struct kvm_memory_slot *old,
				     struct kvm_memory_slot *new,
				     enum kvm_mr_change change)
{
	int r;

	/*
	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
	 * will be freed on "commit".  If logging is enabled in both old and
	 * new, reuse the existing bitmap.  If logging is enabled only in the
	 * new and KVM isn't using a ring buffer, allocate and initialize a
	 * new bitmap.
	 */
	if (change != KVM_MR_DELETE) {
		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
			new->dirty_bitmap = NULL;
		else if (old && old->dirty_bitmap)
			new->dirty_bitmap = old->dirty_bitmap;
		else if (kvm_use_dirty_bitmap(kvm)) {
			r = kvm_alloc_dirty_bitmap(new);
			if (r)
				return r;

			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
				bitmap_set(new->dirty_bitmap, 0, new->npages);
		}
	}

	r = kvm_arch_prepare_memory_region(kvm, old, new, change);

	/* Free the bitmap on failure if it was allocated above. */
	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
		kvm_destroy_dirty_bitmap(new);

	return r;
}

static void kvm_commit_memory_region(struct kvm *kvm,
				     struct kvm_memory_slot *old,
				     const struct kvm_memory_slot *new,
				     enum kvm_mr_change change)
{
	int old_flags = old ? old->flags : 0;
	int new_flags = new ? new->flags : 0;
	/*
	 * Update the total number of memslot pages before calling the arch
	 * hook so that architectures can consume the result directly.
	 */
	if (change == KVM_MR_DELETE)
		kvm->nr_memslot_pages -= old->npages;
	else if (change == KVM_MR_CREATE)
		kvm->nr_memslot_pages += new->npages;

	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
		atomic_set(&kvm->nr_memslots_dirty_logging,
			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
	}

	kvm_arch_commit_memory_region(kvm, old, new, change);

	switch (change) {
	case KVM_MR_CREATE:
		/* Nothing more to do. */
		break;
	case KVM_MR_DELETE:
		/* Free the old memslot and all its metadata. */
		kvm_free_memslot(kvm, old);
		break;
	case KVM_MR_MOVE:
	case KVM_MR_FLAGS_ONLY:
		/*
		 * Free the dirty bitmap as needed; the below check encompasses
		 * both the flags and whether a ring buffer is being used)
		 */
		if (old->dirty_bitmap && !new->dirty_bitmap)
			kvm_destroy_dirty_bitmap(old);

		/*
		 * The final quirk.  Free the detached, old slot, but only its
		 * memory, not any metadata.  Metadata, including arch specific
		 * data, may be reused by @new.
		 */
		kfree(old);
		break;
	default:
		BUG();
	}
}

/*
 * Activate @new, which must be installed in the inactive slots by the caller,
 * by swapping the active slots and then propagating @new to @old once @old is
 * unreachable and can be safely modified.
 *
 * With NULL @old this simply adds @new to @active (while swapping the sets).
 * With NULL @new this simply removes @old from @active and frees it
 * (while also swapping the sets).
 */
static void kvm_activate_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *old,
				 struct kvm_memory_slot *new)
{
	int as_id = kvm_memslots_get_as_id(old, new);

	kvm_swap_active_memslots(kvm, as_id);

	/* Propagate the new memslot to the now inactive memslots. */
	kvm_replace_memslot(kvm, old, new);
}

static void kvm_copy_memslot(struct kvm_memory_slot *dest,
			     const struct kvm_memory_slot *src)
{
	dest->base_gfn = src->base_gfn;
	dest->npages = src->npages;
	dest->dirty_bitmap = src->dirty_bitmap;
	dest->arch = src->arch;
	dest->userspace_addr = src->userspace_addr;
	dest->flags = src->flags;
	dest->id = src->id;
	dest->as_id = src->as_id;
}

static void kvm_invalidate_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *old,
				   struct kvm_memory_slot *invalid_slot)
{
	/*
	 * Mark the current slot INVALID.  As with all memslot modifications,
	 * this must be done on an unreachable slot to avoid modifying the
	 * current slot in the active tree.
	 */
	kvm_copy_memslot(invalid_slot, old);
	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
	kvm_replace_memslot(kvm, old, invalid_slot);

	/*
	 * Activate the slot that is now marked INVALID, but don't propagate
	 * the slot to the now inactive slots. The slot is either going to be
	 * deleted or recreated as a new slot.
	 */
	kvm_swap_active_memslots(kvm, old->as_id);

	/*
	 * From this point no new shadow pages pointing to a deleted, or moved,
	 * memslot will be created.  Validation of sp->gfn happens in:
	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
	 *	- kvm_is_visible_gfn (mmu_check_root)
	 */
	kvm_arch_flush_shadow_memslot(kvm, old);
	kvm_arch_guest_memory_reclaimed(kvm);

	/* Was released by kvm_swap_active_memslots(), reacquire. */
	mutex_lock(&kvm->slots_arch_lock);

	/*
	 * Copy the arch-specific field of the newly-installed slot back to the
	 * old slot as the arch data could have changed between releasing
	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
	 * above.  Writers are required to retrieve memslots *after* acquiring
	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
	 */
	old->arch = invalid_slot->arch;
}

static void kvm_create_memslot(struct kvm *kvm,
			       struct kvm_memory_slot *new)
{
	/* Add the new memslot to the inactive set and activate. */
	kvm_replace_memslot(kvm, NULL, new);
	kvm_activate_memslot(kvm, NULL, new);
}

static void kvm_delete_memslot(struct kvm *kvm,
			       struct kvm_memory_slot *old,
			       struct kvm_memory_slot *invalid_slot)
{
	/*
	 * Remove the old memslot (in the inactive memslots) by passing NULL as
	 * the "new" slot, and for the invalid version in the active slots.
	 */
	kvm_replace_memslot(kvm, old, NULL);
	kvm_activate_memslot(kvm, invalid_slot, NULL);
}

static void kvm_move_memslot(struct kvm *kvm,
			     struct kvm_memory_slot *old,
			     struct kvm_memory_slot *new,
			     struct kvm_memory_slot *invalid_slot)
{
	/*
	 * Replace the old memslot in the inactive slots, and then swap slots
	 * and replace the current INVALID with the new as well.
	 */
	kvm_replace_memslot(kvm, old, new);
	kvm_activate_memslot(kvm, invalid_slot, new);
}

static void kvm_update_flags_memslot(struct kvm *kvm,
				     struct kvm_memory_slot *old,
				     struct kvm_memory_slot *new)
{
	/*
	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
	 * an intermediate step. Instead, the old memslot is simply replaced
	 * with a new, updated copy in both memslot sets.
	 */
	kvm_replace_memslot(kvm, old, new);
	kvm_activate_memslot(kvm, old, new);
}

static int kvm_set_memslot(struct kvm *kvm,
			   struct kvm_memory_slot *old,
			   struct kvm_memory_slot *new,
			   enum kvm_mr_change change)
{
	struct kvm_memory_slot *invalid_slot;
	int r;

	/*
	 * Released in kvm_swap_active_memslots().
	 *
	 * Must be held from before the current memslots are copied until after
	 * the new memslots are installed with rcu_assign_pointer, then
	 * released before the synchronize srcu in kvm_swap_active_memslots().
	 *
	 * When modifying memslots outside of the slots_lock, must be held
	 * before reading the pointer to the current memslots until after all
	 * changes to those memslots are complete.
	 *
	 * These rules ensure that installing new memslots does not lose
	 * changes made to the previous memslots.
	 */
	mutex_lock(&kvm->slots_arch_lock);

	/*
	 * Invalidate the old slot if it's being deleted or moved.  This is
	 * done prior to actually deleting/moving the memslot to allow vCPUs to
	 * continue running by ensuring there are no mappings or shadow pages
	 * for the memslot when it is deleted/moved.  Without pre-invalidation
	 * (and without a lock), a window would exist between effecting the
	 * delete/move and committing the changes in arch code where KVM or a
	 * guest could access a non-existent memslot.
	 *
	 * Modifications are done on a temporary, unreachable slot.  The old
	 * slot needs to be preserved in case a later step fails and the
	 * invalidation needs to be reverted.
	 */
	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
		if (!invalid_slot) {
			mutex_unlock(&kvm->slots_arch_lock);
			return -ENOMEM;
		}
		kvm_invalidate_memslot(kvm, old, invalid_slot);
	}

	r = kvm_prepare_memory_region(kvm, old, new, change);
	if (r) {
		/*
		 * For DELETE/MOVE, revert the above INVALID change.  No
		 * modifications required since the original slot was preserved
		 * in the inactive slots.  Changing the active memslots also
		 * release slots_arch_lock.
		 */
		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
			kvm_activate_memslot(kvm, invalid_slot, old);
			kfree(invalid_slot);
		} else {
			mutex_unlock(&kvm->slots_arch_lock);
		}
		return r;
	}

	/*
	 * For DELETE and MOVE, the working slot is now active as the INVALID
	 * version of the old slot.  MOVE is particularly special as it reuses
	 * the old slot and returns a copy of the old slot (in working_slot).
	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
	 * old slot is detached but otherwise preserved.
	 */
	if (change == KVM_MR_CREATE)
		kvm_create_memslot(kvm, new);
	else if (change == KVM_MR_DELETE)
		kvm_delete_memslot(kvm, old, invalid_slot);
	else if (change == KVM_MR_MOVE)
		kvm_move_memslot(kvm, old, new, invalid_slot);
	else if (change == KVM_MR_FLAGS_ONLY)
		kvm_update_flags_memslot(kvm, old, new);
	else
		BUG();

	/* Free the temporary INVALID slot used for DELETE and MOVE. */
	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
		kfree(invalid_slot);

	/*
	 * No need to refresh new->arch, changes after dropping slots_arch_lock
	 * will directly hit the final, active memslot.  Architectures are
	 * responsible for knowing that new->arch may be stale.
	 */
	kvm_commit_memory_region(kvm, old, new, change);

	return 0;
}

static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
				      gfn_t start, gfn_t end)
{
	struct kvm_memslot_iter iter;

	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
		if (iter.slot->id != id)
			return true;
	}

	return false;
}

/*
 * Allocate some memory and give it an address in the guest physical address
 * space.
 *
 * Discontiguous memory is allowed, mostly for framebuffers.
 *
 * Must be called holding kvm->slots_lock for write.
 */
int __kvm_set_memory_region(struct kvm *kvm,
			    const struct kvm_userspace_memory_region2 *mem)
{
	struct kvm_memory_slot *old, *new;
	struct kvm_memslots *slots;
	enum kvm_mr_change change;
	unsigned long npages;
	gfn_t base_gfn;
	int as_id, id;
	int r;

	r = check_memory_region_flags(kvm, mem);
	if (r)
		return r;

	as_id = mem->slot >> 16;
	id = (u16)mem->slot;

	/* General sanity checks */
	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
	    (mem->memory_size != (unsigned long)mem->memory_size))
		return -EINVAL;
	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
		return -EINVAL;
	/* We can read the guest memory with __xxx_user() later on. */
	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
			mem->memory_size))
		return -EINVAL;
	if (mem->flags & KVM_MEM_GUEST_MEMFD &&
	    (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
	     mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
		return -EINVAL;
	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
		return -EINVAL;
	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
		return -EINVAL;
	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
		return -EINVAL;

	slots = __kvm_memslots(kvm, as_id);

	/*
	 * Note, the old memslot (and the pointer itself!) may be invalidated
	 * and/or destroyed by kvm_set_memslot().
	 */
	old = id_to_memslot(slots, id);

	if (!mem->memory_size) {
		if (!old || !old->npages)
			return -EINVAL;

		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
			return -EIO;

		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
	}

	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
	npages = (mem->memory_size >> PAGE_SHIFT);

	if (!old || !old->npages) {
		change = KVM_MR_CREATE;

		/*
		 * To simplify KVM internals, the total number of pages across
		 * all memslots must fit in an unsigned long.
		 */
		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
			return -EINVAL;
	} else { /* Modify an existing slot. */
		/* Private memslots are immutable, they can only be deleted. */
		if (mem->flags & KVM_MEM_GUEST_MEMFD)
			return -EINVAL;
		if ((mem->userspace_addr != old->userspace_addr) ||
		    (npages != old->npages) ||
		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
			return -EINVAL;

		if (base_gfn != old->base_gfn)
			change = KVM_MR_MOVE;
		else if (mem->flags != old->flags)
			change = KVM_MR_FLAGS_ONLY;
		else /* Nothing to change. */
			return 0;
	}

	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
		return -EEXIST;

	/* Allocate a slot that will persist in the memslot. */
	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
	if (!new)
		return -ENOMEM;

	new->as_id = as_id;
	new->id = id;
	new->base_gfn = base_gfn;
	new->npages = npages;
	new->flags = mem->flags;
	new->userspace_addr = mem->userspace_addr;
	if (mem->flags & KVM_MEM_GUEST_MEMFD) {
		r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
		if (r)
			goto out;
	}

	r = kvm_set_memslot(kvm, old, new, change);
	if (r)
		goto out_unbind;

	return 0;

out_unbind:
	if (mem->flags & KVM_MEM_GUEST_MEMFD)
		kvm_gmem_unbind(new);
out:
	kfree(new);
	return r;
}
EXPORT_SYMBOL_GPL(__kvm_set_memory_region);

int kvm_set_memory_region(struct kvm *kvm,
			  const struct kvm_userspace_memory_region2 *mem)
{
	int r;

	mutex_lock(&kvm->slots_lock);
	r = __kvm_set_memory_region(kvm, mem);
	mutex_unlock(&kvm->slots_lock);
	return r;
}
EXPORT_SYMBOL_GPL(kvm_set_memory_region);

static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
					  struct kvm_userspace_memory_region2 *mem)
{
	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
		return -EINVAL;

	return kvm_set_memory_region(kvm, mem);
}

#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
/**
 * kvm_get_dirty_log - get a snapshot of dirty pages
 * @kvm:	pointer to kvm instance
 * @log:	slot id and address to which we copy the log
 * @is_dirty:	set to '1' if any dirty pages were found
 * @memslot:	set to the associated memslot, always valid on success
 */
int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
		      int *is_dirty, struct kvm_memory_slot **memslot)
{
	struct kvm_memslots *slots;
	int i, as_id, id;
	unsigned long n;
	unsigned long any = 0;

	/* Dirty ring tracking may be exclusive to dirty log tracking */
	if (!kvm_use_dirty_bitmap(kvm))
		return -ENXIO;

	*memslot = NULL;
	*is_dirty = 0;

	as_id = log->slot >> 16;
	id = (u16)log->slot;
	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
		return -EINVAL;

	slots = __kvm_memslots(kvm, as_id);
	*memslot = id_to_memslot(slots, id);
	if (!(*memslot) || !(*memslot)->dirty_bitmap)
		return -ENOENT;

	kvm_arch_sync_dirty_log(kvm, *memslot);

	n = kvm_dirty_bitmap_bytes(*memslot);

	for (i = 0; !any && i < n/sizeof(long); ++i)
		any = (*memslot)->dirty_bitmap[i];

	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
		return -EFAULT;

	if (any)
		*is_dirty = 1;
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_get_dirty_log);

#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
/**
 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
 *	and reenable dirty page tracking for the corresponding pages.
 * @kvm:	pointer to kvm instance
 * @log:	slot id and address to which we copy the log
 *
 * We need to keep it in mind that VCPU threads can write to the bitmap
 * concurrently. So, to avoid losing track of dirty pages we keep the
 * following order:
 *
 *    1. Take a snapshot of the bit and clear it if needed.
 *    2. Write protect the corresponding page.
 *    3. Copy the snapshot to the userspace.
 *    4. Upon return caller flushes TLB's if needed.
 *
 * Between 2 and 4, the guest may write to the page using the remaining TLB
 * entry.  This is not a problem because the page is reported dirty using
 * the snapshot taken before and step 4 ensures that writes done after
 * exiting to userspace will be logged for the next call.
 *
 */
static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int i, as_id, id;
	unsigned long n;
	unsigned long *dirty_bitmap;
	unsigned long *dirty_bitmap_buffer;
	bool flush;

	/* Dirty ring tracking may be exclusive to dirty log tracking */
	if (!kvm_use_dirty_bitmap(kvm))
		return -ENXIO;

	as_id = log->slot >> 16;
	id = (u16)log->slot;
	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
		return -EINVAL;

	slots = __kvm_memslots(kvm, as_id);
	memslot = id_to_memslot(slots, id);
	if (!memslot || !memslot->dirty_bitmap)
		return -ENOENT;

	dirty_bitmap = memslot->dirty_bitmap;

	kvm_arch_sync_dirty_log(kvm, memslot);

	n = kvm_dirty_bitmap_bytes(memslot);
	flush = false;
	if (kvm->manual_dirty_log_protect) {
		/*
		 * Unlike kvm_get_dirty_log, we always return false in *flush,
		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
		 * is some code duplication between this function and
		 * kvm_get_dirty_log, but hopefully all architecture
		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
		 * can be eliminated.
		 */
		dirty_bitmap_buffer = dirty_bitmap;
	} else {
		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
		memset(dirty_bitmap_buffer, 0, n);

		KVM_MMU_LOCK(kvm);
		for (i = 0; i < n / sizeof(long); i++) {
			unsigned long mask;
			gfn_t offset;

			if (!dirty_bitmap[i])
				continue;

			flush = true;
			mask = xchg(&dirty_bitmap[i], 0);
			dirty_bitmap_buffer[i] = mask;

			offset = i * BITS_PER_LONG;
			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
								offset, mask);
		}
		KVM_MMU_UNLOCK(kvm);
	}

	if (flush)
		kvm_flush_remote_tlbs_memslot(kvm, memslot);

	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
		return -EFAULT;
	return 0;
}


/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
				      struct kvm_dirty_log *log)
{
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log);

	mutex_unlock(&kvm->slots_lock);
	return r;
}

/**
 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
 *	and reenable dirty page tracking for the corresponding pages.
 * @kvm:	pointer to kvm instance
 * @log:	slot id and address from which to fetch the bitmap of dirty pages
 */
static int kvm_clear_dirty_log_protect(struct kvm *kvm,
				       struct kvm_clear_dirty_log *log)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int as_id, id;
	gfn_t offset;
	unsigned long i, n;
	unsigned long *dirty_bitmap;
	unsigned long *dirty_bitmap_buffer;
	bool flush;

	/* Dirty ring tracking may be exclusive to dirty log tracking */
	if (!kvm_use_dirty_bitmap(kvm))
		return -ENXIO;

	as_id = log->slot >> 16;
	id = (u16)log->slot;
	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
		return -EINVAL;

	if (log->first_page & 63)
		return -EINVAL;

	slots = __kvm_memslots(kvm, as_id);
	memslot = id_to_memslot(slots, id);
	if (!memslot || !memslot->dirty_bitmap)
		return -ENOENT;

	dirty_bitmap = memslot->dirty_bitmap;

	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;

	if (log->first_page > memslot->npages ||
	    log->num_pages > memslot->npages - log->first_page ||
	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
	    return -EINVAL;

	kvm_arch_sync_dirty_log(kvm, memslot);

	flush = false;
	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
		return -EFAULT;

	KVM_MMU_LOCK(kvm);
	for (offset = log->first_page, i = offset / BITS_PER_LONG,
		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
	     i++, offset += BITS_PER_LONG) {
		unsigned long mask = *dirty_bitmap_buffer++;
		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
		if (!mask)
			continue;

		mask &= atomic_long_fetch_andnot(mask, p);

		/*
		 * mask contains the bits that really have been cleared.  This
		 * never includes any bits beyond the length of the memslot (if
		 * the length is not aligned to 64 pages), therefore it is not
		 * a problem if userspace sets them in log->dirty_bitmap.
		*/
		if (mask) {
			flush = true;
			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
								offset, mask);
		}
	}
	KVM_MMU_UNLOCK(kvm);

	if (flush)
		kvm_flush_remote_tlbs_memslot(kvm, memslot);

	return 0;
}

static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
					struct kvm_clear_dirty_log *log)
{
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_clear_dirty_log_protect(kvm, log);

	mutex_unlock(&kvm->slots_lock);
	return r;
}
#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */

#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
static u64 kvm_supported_mem_attributes(struct kvm *kvm)
{
	if (!kvm || kvm_arch_has_private_mem(kvm))
		return KVM_MEMORY_ATTRIBUTE_PRIVATE;

	return 0;
}

/*
 * Returns true if _all_ gfns in the range [@start, @end) have attributes
 * such that the bits in @mask match @attrs.
 */
bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
				     unsigned long mask, unsigned long attrs)
{
	XA_STATE(xas, &kvm->mem_attr_array, start);
	unsigned long index;
	void *entry;

	mask &= kvm_supported_mem_attributes(kvm);
	if (attrs & ~mask)
		return false;

	if (end == start + 1)
		return (kvm_get_memory_attributes(kvm, start) & mask) == attrs;

	guard(rcu)();
	if (!attrs)
		return !xas_find(&xas, end - 1);

	for (index = start; index < end; index++) {
		do {
			entry = xas_next(&xas);
		} while (xas_retry(&xas, entry));

		if (xas.xa_index != index ||
		    (xa_to_value(entry) & mask) != attrs)
			return false;
	}

	return true;
}

static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
						 struct kvm_mmu_notifier_range *range)
{
	struct kvm_gfn_range gfn_range;
	struct kvm_memory_slot *slot;
	struct kvm_memslots *slots;
	struct kvm_memslot_iter iter;
	bool found_memslot = false;
	bool ret = false;
	int i;

	gfn_range.arg = range->arg;
	gfn_range.may_block = range->may_block;

	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
		slots = __kvm_memslots(kvm, i);

		kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
			slot = iter.slot;
			gfn_range.slot = slot;

			gfn_range.start = max(range->start, slot->base_gfn);
			gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
			if (gfn_range.start >= gfn_range.end)
				continue;

			if (!found_memslot) {
				found_memslot = true;
				KVM_MMU_LOCK(kvm);
				if (!IS_KVM_NULL_FN(range->on_lock))
					range->on_lock(kvm);
			}

			ret |= range->handler(kvm, &gfn_range);
		}
	}

	if (range->flush_on_ret && ret)
		kvm_flush_remote_tlbs(kvm);

	if (found_memslot)
		KVM_MMU_UNLOCK(kvm);
}

static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
					  struct kvm_gfn_range *range)
{
	/*
	 * Unconditionally add the range to the invalidation set, regardless of
	 * whether or not the arch callback actually needs to zap SPTEs.  E.g.
	 * if KVM supports RWX attributes in the future and the attributes are
	 * going from R=>RW, zapping isn't strictly necessary.  Unconditionally
	 * adding the range allows KVM to require that MMU invalidations add at
	 * least one range between begin() and end(), e.g. allows KVM to detect
	 * bugs where the add() is missed.  Relaxing the rule *might* be safe,
	 * but it's not obvious that allowing new mappings while the attributes
	 * are in flux is desirable or worth the complexity.
	 */
	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);

	return kvm_arch_pre_set_memory_attributes(kvm, range);
}

/* Set @attributes for the gfn range [@start, @end). */
static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
				     unsigned long attributes)
{
	struct kvm_mmu_notifier_range pre_set_range = {
		.start = start,
		.end = end,
		.handler = kvm_pre_set_memory_attributes,
		.on_lock = kvm_mmu_invalidate_begin,
		.flush_on_ret = true,
		.may_block = true,
	};
	struct kvm_mmu_notifier_range post_set_range = {
		.start = start,
		.end = end,
		.arg.attributes = attributes,
		.handler = kvm_arch_post_set_memory_attributes,
		.on_lock = kvm_mmu_invalidate_end,
		.may_block = true,
	};
	unsigned long i;
	void *entry;
	int r = 0;

	entry = attributes ? xa_mk_value(attributes) : NULL;

	mutex_lock(&kvm->slots_lock);

	/* Nothing to do if the entire range as the desired attributes. */
	if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes))
		goto out_unlock;

	/*
	 * Reserve memory ahead of time to avoid having to deal with failures
	 * partway through setting the new attributes.
	 */
	for (i = start; i < end; i++) {
		r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
		if (r)
			goto out_unlock;
	}

	kvm_handle_gfn_range(kvm, &pre_set_range);

	for (i = start; i < end; i++) {
		r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
				    GFP_KERNEL_ACCOUNT));
		KVM_BUG_ON(r, kvm);
	}

	kvm_handle_gfn_range(kvm, &post_set_range);

out_unlock:
	mutex_unlock(&kvm->slots_lock);

	return r;
}
static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
					   struct kvm_memory_attributes *attrs)
{
	gfn_t start, end;

	/* flags is currently not used. */
	if (attrs->flags)
		return -EINVAL;
	if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
		return -EINVAL;
	if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
		return -EINVAL;
	if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
		return -EINVAL;

	start = attrs->address >> PAGE_SHIFT;
	end = (attrs->address + attrs->size) >> PAGE_SHIFT;

	/*
	 * xarray tracks data using "unsigned long", and as a result so does
	 * KVM.  For simplicity, supports generic attributes only on 64-bit
	 * architectures.
	 */
	BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));

	return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
}
#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */

struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
{
	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
}
EXPORT_SYMBOL_GPL(gfn_to_memslot);

struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
{
	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
	u64 gen = slots->generation;
	struct kvm_memory_slot *slot;

	/*
	 * This also protects against using a memslot from a different address space,
	 * since different address spaces have different generation numbers.
	 */
	if (unlikely(gen != vcpu->last_used_slot_gen)) {
		vcpu->last_used_slot = NULL;
		vcpu->last_used_slot_gen = gen;
	}

	slot = try_get_memslot(vcpu->last_used_slot, gfn);
	if (slot)
		return slot;

	/*
	 * Fall back to searching all memslots. We purposely use
	 * search_memslots() instead of __gfn_to_memslot() to avoid
	 * thrashing the VM-wide last_used_slot in kvm_memslots.
	 */
	slot = search_memslots(slots, gfn, false);
	if (slot) {
		vcpu->last_used_slot = slot;
		return slot;
	}

	return NULL;
}

bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
{
	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);

	return kvm_is_visible_memslot(memslot);
}
EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);

bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
{
	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);

	return kvm_is_visible_memslot(memslot);
}
EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);

unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
{
	struct vm_area_struct *vma;
	unsigned long addr, size;

	size = PAGE_SIZE;

	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
	if (kvm_is_error_hva(addr))
		return PAGE_SIZE;

	mmap_read_lock(current->mm);
	vma = find_vma(current->mm, addr);
	if (!vma)
		goto out;

	size = vma_kernel_pagesize(vma);

out:
	mmap_read_unlock(current->mm);

	return size;
}

static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
{
	return slot->flags & KVM_MEM_READONLY;
}

static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
				       gfn_t *nr_pages, bool write)
{
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return KVM_HVA_ERR_BAD;

	if (memslot_is_readonly(slot) && write)
		return KVM_HVA_ERR_RO_BAD;

	if (nr_pages)
		*nr_pages = slot->npages - (gfn - slot->base_gfn);

	return __gfn_to_hva_memslot(slot, gfn);
}

static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
				     gfn_t *nr_pages)
{
	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
}

unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
					gfn_t gfn)
{
	return gfn_to_hva_many(slot, gfn, NULL);
}
EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);

unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
{
	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
}
EXPORT_SYMBOL_GPL(gfn_to_hva);

unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
{
	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
}
EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);

/*
 * Return the hva of a @gfn and the R/W attribute if possible.
 *
 * @slot: the kvm_memory_slot which contains @gfn
 * @gfn: the gfn to be translated
 * @writable: used to return the read/write attribute of the @slot if the hva
 * is valid and @writable is not NULL
 */
unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
				      gfn_t gfn, bool *writable)
{
	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);

	if (!kvm_is_error_hva(hva) && writable)
		*writable = !memslot_is_readonly(slot);

	return hva;
}

unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
{
	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);

	return gfn_to_hva_memslot_prot(slot, gfn, writable);
}

unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
{
	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);

	return gfn_to_hva_memslot_prot(slot, gfn, writable);
}

static inline int check_user_page_hwpoison(unsigned long addr)
{
	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;

	rc = get_user_pages(addr, 1, flags, NULL);
	return rc == -EHWPOISON;
}

/*
 * The fast path to get the writable pfn which will be stored in @pfn,
 * true indicates success, otherwise false is returned.  It's also the
 * only part that runs if we can in atomic context.
 */
static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
			    bool *writable, kvm_pfn_t *pfn)
{
	struct page *page[1];

	/*
	 * Fast pin a writable pfn only if it is a write fault request
	 * or the caller allows to map a writable pfn for a read fault
	 * request.
	 */
	if (!(write_fault || writable))
		return false;

	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
		*pfn = page_to_pfn(page[0]);

		if (writable)
			*writable = true;
		return true;
	}

	return false;
}

/*
 * The slow path to get the pfn of the specified host virtual address,
 * 1 indicates success, -errno is returned if error is detected.
 */
static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
			   bool interruptible, bool *writable, kvm_pfn_t *pfn)
{
	/*
	 * When a VCPU accesses a page that is not mapped into the secondary
	 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
	 * make progress. We always want to honor NUMA hinting faults in that
	 * case, because GUP usage corresponds to memory accesses from the VCPU.
	 * Otherwise, we'd not trigger NUMA hinting faults once a page is
	 * mapped into the secondary MMU and gets accessed by a VCPU.
	 *
	 * Note that get_user_page_fast_only() and FOLL_WRITE for now
	 * implicitly honor NUMA hinting faults and don't need this flag.
	 */
	unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
	struct page *page;
	int npages;

	might_sleep();

	if (writable)
		*writable = write_fault;

	if (write_fault)
		flags |= FOLL_WRITE;
	if (async)
		flags |= FOLL_NOWAIT;
	if (interruptible)
		flags |= FOLL_INTERRUPTIBLE;

	npages = get_user_pages_unlocked(addr, 1, &page, flags);
	if (npages != 1)
		return npages;

	/* map read fault as writable if possible */
	if (unlikely(!write_fault) && writable) {
		struct page *wpage;

		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
			*writable = true;
			put_page(page);
			page = wpage;
		}
	}
	*pfn = page_to_pfn(page);
	return npages;
}

static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
{
	if (unlikely(!(vma->vm_flags & VM_READ)))
		return false;

	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
		return false;

	return true;
}

static int kvm_try_get_pfn(kvm_pfn_t pfn)
{
	struct page *page = kvm_pfn_to_refcounted_page(pfn);

	if (!page)
		return 1;

	return get_page_unless_zero(page);
}

static int hva_to_pfn_remapped(struct vm_area_struct *vma,
			       unsigned long addr, bool write_fault,
			       bool *writable, kvm_pfn_t *p_pfn)
{
	struct follow_pfnmap_args args = { .vma = vma, .address = addr };
	kvm_pfn_t pfn;
	int r;

	r = follow_pfnmap_start(&args);
	if (r) {
		/*
		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
		 * not call the fault handler, so do it here.
		 */
		bool unlocked = false;
		r = fixup_user_fault(current->mm, addr,
				     (write_fault ? FAULT_FLAG_WRITE : 0),
				     &unlocked);
		if (unlocked)
			return -EAGAIN;
		if (r)
			return r;

		r = follow_pfnmap_start(&args);
		if (r)
			return r;
	}

	if (write_fault && !args.writable) {
		pfn = KVM_PFN_ERR_RO_FAULT;
		goto out;
	}

	if (writable)
		*writable = args.writable;
	pfn = args.pfn;

	/*
	 * Get a reference here because callers of *hva_to_pfn* and
	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
	 * simply do nothing for reserved pfns.
	 *
	 * Whoever called remap_pfn_range is also going to call e.g.
	 * unmap_mapping_range before the underlying pages are freed,
	 * causing a call to our MMU notifier.
	 *
	 * Certain IO or PFNMAP mappings can be backed with valid
	 * struct pages, but be allocated without refcounting e.g.,
	 * tail pages of non-compound higher order allocations, which
	 * would then underflow the refcount when the caller does the
	 * required put_page. Don't allow those pages here.
	 */
	if (!kvm_try_get_pfn(pfn))
		r = -EFAULT;
out:
	follow_pfnmap_end(&args);
	*p_pfn = pfn;

	return r;
}

/*
 * Pin guest page in memory and return its pfn.
 * @addr: host virtual address which maps memory to the guest
 * @atomic: whether this function is forbidden from sleeping
 * @interruptible: whether the process can be interrupted by non-fatal signals
 * @async: whether this function need to wait IO complete if the
 *         host page is not in the memory
 * @write_fault: whether we should get a writable host page
 * @writable: whether it allows to map a writable host page for !@write_fault
 *
 * The function will map a writable host page for these two cases:
 * 1): @write_fault = true
 * 2): @write_fault = false && @writable, @writable will tell the caller
 *     whether the mapping is writable.
 */
kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
		     bool *async, bool write_fault, bool *writable)
{
	struct vm_area_struct *vma;
	kvm_pfn_t pfn;
	int npages, r;

	/* we can do it either atomically or asynchronously, not both */
	BUG_ON(atomic && async);

	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
		return pfn;

	if (atomic)
		return KVM_PFN_ERR_FAULT;

	npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
				 writable, &pfn);
	if (npages == 1)
		return pfn;
	if (npages == -EINTR)
		return KVM_PFN_ERR_SIGPENDING;

	mmap_read_lock(current->mm);
	if (npages == -EHWPOISON ||
	      (!async && check_user_page_hwpoison(addr))) {
		pfn = KVM_PFN_ERR_HWPOISON;
		goto exit;
	}

retry:
	vma = vma_lookup(current->mm, addr);

	if (vma == NULL)
		pfn = KVM_PFN_ERR_FAULT;
	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
		r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
		if (r == -EAGAIN)
			goto retry;
		if (r < 0)
			pfn = KVM_PFN_ERR_FAULT;
	} else {
		if (async && vma_is_valid(vma, write_fault))
			*async = true;
		pfn = KVM_PFN_ERR_FAULT;
	}
exit:
	mmap_read_unlock(current->mm);
	return pfn;
}

kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
			       bool atomic, bool interruptible, bool *async,
			       bool write_fault, bool *writable, hva_t *hva)
{
	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);

	if (hva)
		*hva = addr;

	if (kvm_is_error_hva(addr)) {
		if (writable)
			*writable = false;

		return addr == KVM_HVA_ERR_RO_BAD ? KVM_PFN_ERR_RO_FAULT :
						    KVM_PFN_NOSLOT;
	}

	/* Do not map writable pfn in the readonly memslot. */
	if (writable && memslot_is_readonly(slot)) {
		*writable = false;
		writable = NULL;
	}

	return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
			  writable);
}
EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);

kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
		      bool *writable)
{
	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
				    NULL, write_fault, writable, NULL);
}
EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);

kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
{
	return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
				    NULL, NULL);
}
EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);

kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
{
	return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
				    NULL, NULL);
}
EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);

kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
{
	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
}
EXPORT_SYMBOL_GPL(gfn_to_pfn);

int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
			    struct page **pages, int nr_pages)
{
	unsigned long addr;
	gfn_t entry = 0;

	addr = gfn_to_hva_many(slot, gfn, &entry);
	if (kvm_is_error_hva(addr))
		return -1;

	if (entry < nr_pages)
		return 0;

	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
}
EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);

/*
 * Do not use this helper unless you are absolutely certain the gfn _must_ be
 * backed by 'struct page'.  A valid example is if the backing memslot is
 * controlled by KVM.  Note, if the returned page is valid, it's refcount has
 * been elevated by gfn_to_pfn().
 */
struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
{
	kvm_pfn_t pfn;

	pfn = gfn_to_pfn(kvm, gfn);

	if (is_error_noslot_pfn(pfn))
		return NULL;

	return kvm_pfn_to_refcounted_page(pfn);
}
EXPORT_SYMBOL_GPL(gfn_to_page);

void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
{
	if (dirty)
		kvm_release_pfn_dirty(pfn);
	else
		kvm_release_pfn_clean(pfn);
}

int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
{
	kvm_pfn_t pfn;
	void *hva = NULL;
	struct page *page = KVM_UNMAPPED_PAGE;

	if (!map)
		return -EINVAL;

	pfn = gfn_to_pfn(vcpu->kvm, gfn);
	if (is_error_noslot_pfn(pfn))
		return -EINVAL;

	if (pfn_valid(pfn)) {
		page = pfn_to_page(pfn);
		hva = kmap(page);
#ifdef CONFIG_HAS_IOMEM
	} else {
		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
#endif
	}

	if (!hva)
		return -EFAULT;

	map->page = page;
	map->hva = hva;
	map->pfn = pfn;
	map->gfn = gfn;

	return 0;
}
EXPORT_SYMBOL_GPL(kvm_vcpu_map);

void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
{
	if (!map)
		return;

	if (!map->hva)
		return;

	if (map->page != KVM_UNMAPPED_PAGE)
		kunmap(map->page);
#ifdef CONFIG_HAS_IOMEM
	else
		memunmap(map->hva);
#endif

	if (dirty)
		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);

	kvm_release_pfn(map->pfn, dirty);

	map->hva = NULL;
	map->page = NULL;
}
EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);

static bool kvm_is_ad_tracked_page(struct page *page)
{
	/*
	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
	 * touched (e.g. set dirty) except by its owner".
	 */
	return !PageReserved(page);
}

static void kvm_set_page_dirty(struct page *page)
{
	if (kvm_is_ad_tracked_page(page))
		SetPageDirty(page);
}

static void kvm_set_page_accessed(struct page *page)
{
	if (kvm_is_ad_tracked_page(page))
		mark_page_accessed(page);
}

void kvm_release_page_clean(struct page *page)
{
	if (WARN_ON(!page))
		return;

	kvm_set_page_accessed(page);
	put_page(page);
}
EXPORT_SYMBOL_GPL(kvm_release_page_clean);

void kvm_release_pfn_clean(kvm_pfn_t pfn)
{
	struct page *page;

	if (is_error_noslot_pfn(pfn))
		return;

	page = kvm_pfn_to_refcounted_page(pfn);
	if (!page)
		return;

	kvm_release_page_clean(page);
}
EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);

void kvm_release_page_dirty(struct page *page)
{
	if (WARN_ON(!page))
		return;

	kvm_set_page_dirty(page);
	kvm_release_page_clean(page);
}
EXPORT_SYMBOL_GPL(kvm_release_page_dirty);

void kvm_release_pfn_dirty(kvm_pfn_t pfn)
{
	struct page *page;

	if (is_error_noslot_pfn(pfn))
		return;

	page = kvm_pfn_to_refcounted_page(pfn);
	if (!page)
		return;

	kvm_release_page_dirty(page);
}
EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);

/*
 * Note, checking for an error/noslot pfn is the caller's responsibility when
 * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
 * "set" helpers are not to be used when the pfn might point at garbage.
 */
void kvm_set_pfn_dirty(kvm_pfn_t pfn)
{
	if (WARN_ON(is_error_noslot_pfn(pfn)))
		return;

	if (pfn_valid(pfn))
		kvm_set_page_dirty(pfn_to_page(pfn));
}
EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);

void kvm_set_pfn_accessed(kvm_pfn_t pfn)
{
	if (WARN_ON(is_error_noslot_pfn(pfn)))
		return;

	if (pfn_valid(pfn))
		kvm_set_page_accessed(pfn_to_page(pfn));
}
EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);

static int next_segment(unsigned long len, int offset)
{
	if (len > PAGE_SIZE - offset)
		return PAGE_SIZE - offset;
	else
		return len;
}

/* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */
static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
				 void *data, int offset, int len)
{
	int r;
	unsigned long addr;

	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
		return -EFAULT;

	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
	if (kvm_is_error_hva(addr))
		return -EFAULT;
	r = __copy_from_user(data, (void __user *)addr + offset, len);
	if (r)
		return -EFAULT;
	return 0;
}

int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
			int len)
{
	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);

	return __kvm_read_guest_page(slot, gfn, data, offset, len);
}
EXPORT_SYMBOL_GPL(kvm_read_guest_page);

int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
			     int offset, int len)
{
	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);

	return __kvm_read_guest_page(slot, gfn, data, offset, len);
}
EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);

int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	int seg;
	int offset = offset_in_page(gpa);
	int ret;

	while ((seg = next_segment(len, offset)) != 0) {
		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
		if (ret < 0)
			return ret;
		offset = 0;
		len -= seg;
		data += seg;
		++gfn;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_read_guest);

int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	int seg;
	int offset = offset_in_page(gpa);
	int ret;

	while ((seg = next_segment(len, offset)) != 0) {
		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
		if (ret < 0)
			return ret;
		offset = 0;
		len -= seg;
		data += seg;
		++gfn;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);

static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
			           void *data, int offset, unsigned long len)
{
	int r;
	unsigned long addr;

	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
		return -EFAULT;

	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
	if (kvm_is_error_hva(addr))
		return -EFAULT;
	pagefault_disable();
	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
	pagefault_enable();
	if (r)
		return -EFAULT;
	return 0;
}

int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
			       void *data, unsigned long len)
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	int offset = offset_in_page(gpa);

	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
}
EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);

/* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */
static int __kvm_write_guest_page(struct kvm *kvm,
				  struct kvm_memory_slot *memslot, gfn_t gfn,
			          const void *data, int offset, int len)
{
	int r;
	unsigned long addr;

	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
		return -EFAULT;

	addr = gfn_to_hva_memslot(memslot, gfn);
	if (kvm_is_error_hva(addr))
		return -EFAULT;
	r = __copy_to_user((void __user *)addr + offset, data, len);
	if (r)
		return -EFAULT;
	mark_page_dirty_in_slot(kvm, memslot, gfn);
	return 0;
}

int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
			 const void *data, int offset, int len)
{
	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);

	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
}
EXPORT_SYMBOL_GPL(kvm_write_guest_page);

int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
			      const void *data, int offset, int len)
{
	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);

	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
}
EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);

int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
		    unsigned long len)
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	int seg;
	int offset = offset_in_page(gpa);
	int ret;

	while ((seg = next_segment(len, offset)) != 0) {
		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
		if (ret < 0)
			return ret;
		offset = 0;
		len -= seg;
		data += seg;
		++gfn;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_write_guest);

int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
		         unsigned long len)
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	int seg;
	int offset = offset_in_page(gpa);
	int ret;

	while ((seg = next_segment(len, offset)) != 0) {
		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
		if (ret < 0)
			return ret;
		offset = 0;
		len -= seg;
		data += seg;
		++gfn;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);

static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
				       struct gfn_to_hva_cache *ghc,
				       gpa_t gpa, unsigned long len)
{
	int offset = offset_in_page(gpa);
	gfn_t start_gfn = gpa >> PAGE_SHIFT;
	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
	gfn_t nr_pages_avail;

	/* Update ghc->generation before performing any error checks. */
	ghc->generation = slots->generation;

	if (start_gfn > end_gfn) {
		ghc->hva = KVM_HVA_ERR_BAD;
		return -EINVAL;
	}

	/*
	 * If the requested region crosses two memslots, we still
	 * verify that the entire region is valid here.
	 */
	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
					   &nr_pages_avail);
		if (kvm_is_error_hva(ghc->hva))
			return -EFAULT;
	}

	/* Use the slow path for cross page reads and writes. */
	if (nr_pages_needed == 1)
		ghc->hva += offset;
	else
		ghc->memslot = NULL;

	ghc->gpa = gpa;
	ghc->len = len;
	return 0;
}

int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
			      gpa_t gpa, unsigned long len)
{
	struct kvm_memslots *slots = kvm_memslots(kvm);
	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
}
EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);

int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
				  void *data, unsigned int offset,
				  unsigned long len)
{
	struct kvm_memslots *slots = kvm_memslots(kvm);
	int r;
	gpa_t gpa = ghc->gpa + offset;

	if (WARN_ON_ONCE(len + offset > ghc->len))
		return -EINVAL;

	if (slots->generation != ghc->generation) {
		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
			return -EFAULT;
	}

	if (kvm_is_error_hva(ghc->hva))
		return -EFAULT;

	if (unlikely(!ghc->memslot))
		return kvm_write_guest(kvm, gpa, data, len);

	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
	if (r)
		return -EFAULT;
	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);

	return 0;
}
EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);

int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
			   void *data, unsigned long len)
{
	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
}
EXPORT_SYMBOL_GPL(kvm_write_guest_cached);

int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
				 void *data, unsigned int offset,
				 unsigned long len)
{
	struct kvm_memslots *slots = kvm_memslots(kvm);
	int r;
	gpa_t gpa = ghc->gpa + offset;

	if (WARN_ON_ONCE(len + offset > ghc->len))
		return -EINVAL;

	if (slots->generation != ghc->generation) {
		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
			return -EFAULT;
	}

	if (kvm_is_error_hva(ghc->hva))
		return -EFAULT;

	if (unlikely(!ghc->memslot))
		return kvm_read_guest(kvm, gpa, data, len);

	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
	if (r)
		return -EFAULT;

	return 0;
}
EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);

int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
			  void *data, unsigned long len)
{
	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
}
EXPORT_SYMBOL_GPL(kvm_read_guest_cached);

int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
{
	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
	gfn_t gfn = gpa >> PAGE_SHIFT;
	int seg;
	int offset = offset_in_page(gpa);
	int ret;

	while ((seg = next_segment(len, offset)) != 0) {
		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg);
		if (ret < 0)
			return ret;
		offset = 0;
		len -= seg;
		++gfn;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_clear_guest);

void mark_page_dirty_in_slot(struct kvm *kvm,
			     const struct kvm_memory_slot *memslot,
		 	     gfn_t gfn)
{
	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();

#ifdef CONFIG_HAVE_KVM_DIRTY_RING
	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
		return;

	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
#endif

	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
		unsigned long rel_gfn = gfn - memslot->base_gfn;
		u32 slot = (memslot->as_id << 16) | memslot->id;

		if (kvm->dirty_ring_size && vcpu)
			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
		else if (memslot->dirty_bitmap)
			set_bit_le(rel_gfn, memslot->dirty_bitmap);
	}
}
EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);

void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
{
	struct kvm_memory_slot *memslot;

	memslot = gfn_to_memslot(kvm, gfn);
	mark_page_dirty_in_slot(kvm, memslot, gfn);
}
EXPORT_SYMBOL_GPL(mark_page_dirty);

void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
{
	struct kvm_memory_slot *memslot;

	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
}
EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);

void kvm_sigset_activate(struct kvm_vcpu *vcpu)
{
	if (!vcpu->sigset_active)
		return;

	/*
	 * This does a lockless modification of ->real_blocked, which is fine
	 * because, only current can change ->real_blocked and all readers of
	 * ->real_blocked don't care as long ->real_blocked is always a subset
	 * of ->blocked.
	 */
	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
}

void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
{
	if (!vcpu->sigset_active)
		return;

	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
	sigemptyset(&current->real_blocked);
}

static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
{
	unsigned int old, val, grow, grow_start;

	old = val = vcpu->halt_poll_ns;
	grow_start = READ_ONCE(halt_poll_ns_grow_start);
	grow = READ_ONCE(halt_poll_ns_grow);
	if (!grow)
		goto out;

	val *= grow;
	if (val < grow_start)
		val = grow_start;

	vcpu->halt_poll_ns = val;
out:
	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
}

static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
{
	unsigned int old, val, shrink, grow_start;

	old = val = vcpu->halt_poll_ns;
	shrink = READ_ONCE(halt_poll_ns_shrink);
	grow_start = READ_ONCE(halt_poll_ns_grow_start);
	if (shrink == 0)
		val = 0;
	else
		val /= shrink;

	if (val < grow_start)
		val = 0;

	vcpu->halt_poll_ns = val;
	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
}

static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
{
	int ret = -EINTR;
	int idx = srcu_read_lock(&vcpu->kvm->srcu);

	if (kvm_arch_vcpu_runnable(vcpu))
		goto out;
	if (kvm_cpu_has_pending_timer(vcpu))
		goto out;
	if (signal_pending(current))
		goto out;
	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
		goto out;

	ret = 0;
out:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
}

/*
 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
 * pending.  This is mostly used when halting a vCPU, but may also be used
 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
 */
bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
{
	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
	bool waited = false;

	vcpu->stat.generic.blocking = 1;

	preempt_disable();
	kvm_arch_vcpu_blocking(vcpu);
	prepare_to_rcuwait(wait);
	preempt_enable();

	for (;;) {
		set_current_state(TASK_INTERRUPTIBLE);

		if (kvm_vcpu_check_block(vcpu) < 0)
			break;

		waited = true;
		schedule();
	}

	preempt_disable();
	finish_rcuwait(wait);
	kvm_arch_vcpu_unblocking(vcpu);
	preempt_enable();

	vcpu->stat.generic.blocking = 0;

	return waited;
}

static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
					  ktime_t end, bool success)
{
	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));

	++vcpu->stat.generic.halt_attempted_poll;

	if (success) {
		++vcpu->stat.generic.halt_successful_poll;

		if (!vcpu_valid_wakeup(vcpu))
			++vcpu->stat.generic.halt_poll_invalid;

		stats->halt_poll_success_ns += poll_ns;
		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
	} else {
		stats->halt_poll_fail_ns += poll_ns;
		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
	}
}

static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
{
	struct kvm *kvm = vcpu->kvm;

	if (kvm->override_halt_poll_ns) {
		/*
		 * Ensure kvm->max_halt_poll_ns is not read before
		 * kvm->override_halt_poll_ns.
		 *
		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
		 */
		smp_rmb();
		return READ_ONCE(kvm->max_halt_poll_ns);
	}

	return READ_ONCE(halt_poll_ns);
}

/*
 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
 * polling is enabled, busy wait for a short time before blocking to avoid the
 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
 * is halted.
 */
void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
{
	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
	ktime_t start, cur, poll_end;
	bool waited = false;
	bool do_halt_poll;
	u64 halt_ns;

	if (vcpu->halt_poll_ns > max_halt_poll_ns)
		vcpu->halt_poll_ns = max_halt_poll_ns;

	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;

	start = cur = poll_end = ktime_get();
	if (do_halt_poll) {
		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);

		do {
			if (kvm_vcpu_check_block(vcpu) < 0)
				goto out;
			cpu_relax();
			poll_end = cur = ktime_get();
		} while (kvm_vcpu_can_poll(cur, stop));
	}

	waited = kvm_vcpu_block(vcpu);

	cur = ktime_get();
	if (waited) {
		vcpu->stat.generic.halt_wait_ns +=
			ktime_to_ns(cur) - ktime_to_ns(poll_end);
		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
				ktime_to_ns(cur) - ktime_to_ns(poll_end));
	}
out:
	/* The total time the vCPU was "halted", including polling time. */
	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);

	/*
	 * Note, halt-polling is considered successful so long as the vCPU was
	 * never actually scheduled out, i.e. even if the wake event arrived
	 * after of the halt-polling loop itself, but before the full wait.
	 */
	if (do_halt_poll)
		update_halt_poll_stats(vcpu, start, poll_end, !waited);

	if (halt_poll_allowed) {
		/* Recompute the max halt poll time in case it changed. */
		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);

		if (!vcpu_valid_wakeup(vcpu)) {
			shrink_halt_poll_ns(vcpu);
		} else if (max_halt_poll_ns) {
			if (halt_ns <= vcpu->halt_poll_ns)
				;
			/* we had a long block, shrink polling */
			else if (vcpu->halt_poll_ns &&
				 halt_ns > max_halt_poll_ns)
				shrink_halt_poll_ns(vcpu);
			/* we had a short halt and our poll time is too small */
			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
				 halt_ns < max_halt_poll_ns)
				grow_halt_poll_ns(vcpu);
		} else {
			vcpu->halt_poll_ns = 0;
		}
	}

	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
}
EXPORT_SYMBOL_GPL(kvm_vcpu_halt);

bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
{
	if (__kvm_vcpu_wake_up(vcpu)) {
		WRITE_ONCE(vcpu->ready, true);
		++vcpu->stat.generic.halt_wakeup;
		return true;
	}

	return false;
}
EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);

#ifndef CONFIG_S390
/*
 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
 */
void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
{
	int me, cpu;

	if (kvm_vcpu_wake_up(vcpu))
		return;

	me = get_cpu();
	/*
	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
	 * within the vCPU thread itself.
	 */
	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
		if (vcpu->mode == IN_GUEST_MODE)
			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
		goto out;
	}

	/*
	 * Note, the vCPU could get migrated to a different pCPU at any point
	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
	 * vCPU also requires it to leave IN_GUEST_MODE.
	 */
	if (kvm_arch_vcpu_should_kick(vcpu)) {
		cpu = READ_ONCE(vcpu->cpu);
		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
			smp_send_reschedule(cpu);
	}
out:
	put_cpu();
}
EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
#endif /* !CONFIG_S390 */

int kvm_vcpu_yield_to(struct kvm_vcpu *target)
{
	struct pid *pid;
	struct task_struct *task = NULL;
	int ret = 0;

	rcu_read_lock();
	pid = rcu_dereference(target->pid);
	if (pid)
		task = get_pid_task(pid, PIDTYPE_PID);
	rcu_read_unlock();
	if (!task)
		return ret;
	ret = yield_to(task, 1);
	put_task_struct(task);

	return ret;
}
EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);

/*
 * Helper that checks whether a VCPU is eligible for directed yield.
 * Most eligible candidate to yield is decided by following heuristics:
 *
 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
 *  (preempted lock holder), indicated by @in_spin_loop.
 *  Set at the beginning and cleared at the end of interception/PLE handler.
 *
 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
 *  chance last time (mostly it has become eligible now since we have probably
 *  yielded to lockholder in last iteration. This is done by toggling
 *  @dy_eligible each time a VCPU checked for eligibility.)
 *
 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
 *  to preempted lock-holder could result in wrong VCPU selection and CPU
 *  burning. Giving priority for a potential lock-holder increases lock
 *  progress.
 *
 *  Since algorithm is based on heuristics, accessing another VCPU data without
 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
 *  and continue with next VCPU and so on.
 */
static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
	bool eligible;

	eligible = !vcpu->spin_loop.in_spin_loop ||
		    vcpu->spin_loop.dy_eligible;

	if (vcpu->spin_loop.in_spin_loop)
		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);

	return eligible;
#else
	return true;
#endif
}

/*
 * Unlike kvm_arch_vcpu_runnable, this function is called outside
 * a vcpu_load/vcpu_put pair.  However, for most architectures
 * kvm_arch_vcpu_runnable does not require vcpu_load.
 */
bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
{
	return kvm_arch_vcpu_runnable(vcpu);
}

static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
{
	if (kvm_arch_dy_runnable(vcpu))
		return true;

#ifdef CONFIG_KVM_ASYNC_PF
	if (!list_empty_careful(&vcpu->async_pf.done))
		return true;
#endif

	return false;
}

/*
 * By default, simply query the target vCPU's current mode when checking if a
 * vCPU was preempted in kernel mode.  All architectures except x86 (or more
 * specifical, except VMX) allow querying whether or not a vCPU is in kernel
 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
 * directly for cross-vCPU checks is functionally correct and accurate.
 */
bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
{
	return kvm_arch_vcpu_in_kernel(vcpu);
}

bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
{
	return false;
}

void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
{
	struct kvm *kvm = me->kvm;
	struct kvm_vcpu *vcpu;
	int last_boosted_vcpu;
	unsigned long i;
	int yielded = 0;
	int try = 3;
	int pass;

	last_boosted_vcpu = READ_ONCE(kvm->last_boosted_vcpu);
	kvm_vcpu_set_in_spin_loop(me, true);
	/*
	 * We boost the priority of a VCPU that is runnable but not
	 * currently running, because it got preempted by something
	 * else and called schedule in __vcpu_run.  Hopefully that
	 * VCPU is holding the lock that we need and will release it.
	 * We approximate round-robin by starting at the last boosted VCPU.
	 */
	for (pass = 0; pass < 2 && !yielded && try; pass++) {
		kvm_for_each_vcpu(i, vcpu, kvm) {
			if (!pass && i <= last_boosted_vcpu) {
				i = last_boosted_vcpu;
				continue;
			} else if (pass && i > last_boosted_vcpu)
				break;
			if (!READ_ONCE(vcpu->ready))
				continue;
			if (vcpu == me)
				continue;
			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
				continue;

			/*
			 * Treat the target vCPU as being in-kernel if it has a
			 * pending interrupt, as the vCPU trying to yield may
			 * be spinning waiting on IPI delivery, i.e. the target
			 * vCPU is in-kernel for the purposes of directed yield.
			 */
			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
			    !kvm_arch_vcpu_preempted_in_kernel(vcpu))
				continue;
			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
				continue;

			yielded = kvm_vcpu_yield_to(vcpu);
			if (yielded > 0) {
				WRITE_ONCE(kvm->last_boosted_vcpu, i);
				break;
			} else if (yielded < 0) {
				try--;
				if (!try)
					break;
			}
		}
	}
	kvm_vcpu_set_in_spin_loop(me, false);

	/* Ensure vcpu is not eligible during next spinloop */
	kvm_vcpu_set_dy_eligible(me, false);
}
EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);

static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
{
#ifdef CONFIG_HAVE_KVM_DIRTY_RING
	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
	     kvm->dirty_ring_size / PAGE_SIZE);
#else
	return false;
#endif
}

static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
{
	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
	struct page *page;

	if (vmf->pgoff == 0)
		page = virt_to_page(vcpu->run);
#ifdef CONFIG_X86
	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
		page = virt_to_page(vcpu->arch.pio_data);
#endif
#ifdef CONFIG_KVM_MMIO
	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
#endif
	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
		page = kvm_dirty_ring_get_page(
		    &vcpu->dirty_ring,
		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
	else
		return kvm_arch_vcpu_fault(vcpu, vmf);
	get_page(page);
	vmf->page = page;
	return 0;
}

static const struct vm_operations_struct kvm_vcpu_vm_ops = {
	.fault = kvm_vcpu_fault,
};

static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct kvm_vcpu *vcpu = file->private_data;
	unsigned long pages = vma_pages(vma);

	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
		return -EINVAL;

	vma->vm_ops = &kvm_vcpu_vm_ops;
	return 0;
}

static int kvm_vcpu_release(struct inode *inode, struct file *filp)
{
	struct kvm_vcpu *vcpu = filp->private_data;

	kvm_put_kvm(vcpu->kvm);
	return 0;
}

static struct file_operations kvm_vcpu_fops = {
	.release        = kvm_vcpu_release,
	.unlocked_ioctl = kvm_vcpu_ioctl,
	.mmap           = kvm_vcpu_mmap,
	.llseek		= noop_llseek,
	KVM_COMPAT(kvm_vcpu_compat_ioctl),
};

/*
 * Allocates an inode for the vcpu.
 */
static int create_vcpu_fd(struct kvm_vcpu *vcpu)
{
	char name[8 + 1 + ITOA_MAX_LEN + 1];

	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
}

#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
static int vcpu_get_pid(void *data, u64 *val)
{
	struct kvm_vcpu *vcpu = data;

	rcu_read_lock();
	*val = pid_nr(rcu_dereference(vcpu->pid));
	rcu_read_unlock();
	return 0;
}

DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");

static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	struct dentry *debugfs_dentry;
	char dir_name[ITOA_MAX_LEN * 2];

	if (!debugfs_initialized())
		return;

	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
	debugfs_dentry = debugfs_create_dir(dir_name,
					    vcpu->kvm->debugfs_dentry);
	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
			    &vcpu_get_pid_fops);

	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
}
#endif

/*
 * Creates some virtual cpus.  Good luck creating more than one.
 */
static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id)
{
	int r;
	struct kvm_vcpu *vcpu;
	struct page *page;

	/*
	 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject
	 * too-large values instead of silently truncating.
	 *
	 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first
	 * changing the storage type (at the very least, IDs should be tracked
	 * as unsigned ints).
	 */
	BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX);
	if (id >= KVM_MAX_VCPU_IDS)
		return -EINVAL;

	mutex_lock(&kvm->lock);
	if (kvm->created_vcpus >= kvm->max_vcpus) {
		mutex_unlock(&kvm->lock);
		return -EINVAL;
	}

	r = kvm_arch_vcpu_precreate(kvm, id);
	if (r) {
		mutex_unlock(&kvm->lock);
		return r;
	}

	kvm->created_vcpus++;
	mutex_unlock(&kvm->lock);

	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
	if (!vcpu) {
		r = -ENOMEM;
		goto vcpu_decrement;
	}

	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
	if (!page) {
		r = -ENOMEM;
		goto vcpu_free;
	}
	vcpu->run = page_address(page);

	kvm_vcpu_init(vcpu, kvm, id);

	r = kvm_arch_vcpu_create(vcpu);
	if (r)
		goto vcpu_free_run_page;

	if (kvm->dirty_ring_size) {
		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
					 id, kvm->dirty_ring_size);
		if (r)
			goto arch_vcpu_destroy;
	}

	mutex_lock(&kvm->lock);

#ifdef CONFIG_LOCKDEP
	/* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
	mutex_lock(&vcpu->mutex);
	mutex_unlock(&vcpu->mutex);
#endif

	if (kvm_get_vcpu_by_id(kvm, id)) {
		r = -EEXIST;
		goto unlock_vcpu_destroy;
	}

	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
	r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
	if (r)
		goto unlock_vcpu_destroy;

	/* Now it's all set up, let userspace reach it */
	kvm_get_kvm(kvm);
	r = create_vcpu_fd(vcpu);
	if (r < 0)
		goto kvm_put_xa_release;

	if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
		r = -EINVAL;
		goto kvm_put_xa_release;
	}

	/*
	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
	 * pointer before kvm->online_vcpu's incremented value.
	 */
	smp_wmb();
	atomic_inc(&kvm->online_vcpus);

	mutex_unlock(&kvm->lock);
	kvm_arch_vcpu_postcreate(vcpu);
	kvm_create_vcpu_debugfs(vcpu);
	return r;

kvm_put_xa_release:
	kvm_put_kvm_no_destroy(kvm);
	xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
unlock_vcpu_destroy:
	mutex_unlock(&kvm->lock);
	kvm_dirty_ring_free(&vcpu->dirty_ring);
arch_vcpu_destroy:
	kvm_arch_vcpu_destroy(vcpu);
vcpu_free_run_page:
	free_page((unsigned long)vcpu->run);
vcpu_free:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
vcpu_decrement:
	mutex_lock(&kvm->lock);
	kvm->created_vcpus--;
	mutex_unlock(&kvm->lock);
	return r;
}

static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
{
	if (sigset) {
		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
		vcpu->sigset_active = 1;
		vcpu->sigset = *sigset;
	} else
		vcpu->sigset_active = 0;
	return 0;
}

static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
			      size_t size, loff_t *offset)
{
	struct kvm_vcpu *vcpu = file->private_data;

	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
			&kvm_vcpu_stats_desc[0], &vcpu->stat,
			sizeof(vcpu->stat), user_buffer, size, offset);
}

static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
{
	struct kvm_vcpu *vcpu = file->private_data;

	kvm_put_kvm(vcpu->kvm);
	return 0;
}

static const struct file_operations kvm_vcpu_stats_fops = {
	.owner = THIS_MODULE,
	.read = kvm_vcpu_stats_read,
	.release = kvm_vcpu_stats_release,
	.llseek = noop_llseek,
};

static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
{
	int fd;
	struct file *file;
	char name[15 + ITOA_MAX_LEN + 1];

	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);

	fd = get_unused_fd_flags(O_CLOEXEC);
	if (fd < 0)
		return fd;

	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
	if (IS_ERR(file)) {
		put_unused_fd(fd);
		return PTR_ERR(file);
	}

	kvm_get_kvm(vcpu->kvm);

	file->f_mode |= FMODE_PREAD;
	fd_install(fd, file);

	return fd;
}

#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
				     struct kvm_pre_fault_memory *range)
{
	int idx;
	long r;
	u64 full_size;

	if (range->flags)
		return -EINVAL;

	if (!PAGE_ALIGNED(range->gpa) ||
	    !PAGE_ALIGNED(range->size) ||
	    range->gpa + range->size <= range->gpa)
		return -EINVAL;

	vcpu_load(vcpu);
	idx = srcu_read_lock(&vcpu->kvm->srcu);

	full_size = range->size;
	do {
		if (signal_pending(current)) {
			r = -EINTR;
			break;
		}

		r = kvm_arch_vcpu_pre_fault_memory(vcpu, range);
		if (WARN_ON_ONCE(r == 0 || r == -EIO))
			break;

		if (r < 0)
			break;

		range->size -= r;
		range->gpa += r;
		cond_resched();
	} while (range->size);

	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	vcpu_put(vcpu);

	/* Return success if at least one page was mapped successfully.  */
	return full_size == range->size ? r : 0;
}
#endif

static long kvm_vcpu_ioctl(struct file *filp,
			   unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	int r;
	struct kvm_fpu *fpu = NULL;
	struct kvm_sregs *kvm_sregs = NULL;

	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
		return -EIO;

	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
		return -EINVAL;

	/*
	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
	 * execution; mutex_lock() would break them.
	 */
	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
	if (r != -ENOIOCTLCMD)
		return r;

	if (mutex_lock_killable(&vcpu->mutex))
		return -EINTR;
	switch (ioctl) {
	case KVM_RUN: {
		struct pid *oldpid;
		r = -EINVAL;
		if (arg)
			goto out;
		oldpid = rcu_access_pointer(vcpu->pid);
		if (unlikely(oldpid != task_pid(current))) {
			/* The thread running this VCPU changed. */
			struct pid *newpid;

			r = kvm_arch_vcpu_run_pid_change(vcpu);
			if (r)
				break;

			newpid = get_task_pid(current, PIDTYPE_PID);
			rcu_assign_pointer(vcpu->pid, newpid);
			if (oldpid)
				synchronize_rcu();
			put_pid(oldpid);
		}
		vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe);
		r = kvm_arch_vcpu_ioctl_run(vcpu);
		vcpu->wants_to_run = false;

		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
		break;
	}
	case KVM_GET_REGS: {
		struct kvm_regs *kvm_regs;

		r = -ENOMEM;
		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
		if (!kvm_regs)
			goto out;
		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
		if (r)
			goto out_free1;
		r = -EFAULT;
		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
			goto out_free1;
		r = 0;
out_free1:
		kfree(kvm_regs);
		break;
	}
	case KVM_SET_REGS: {
		struct kvm_regs *kvm_regs;

		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
		if (IS_ERR(kvm_regs)) {
			r = PTR_ERR(kvm_regs);
			goto out;
		}
		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
		kfree(kvm_regs);
		break;
	}
	case KVM_GET_SREGS: {
		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
		r = -ENOMEM;
		if (!kvm_sregs)
			goto out;
		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_SREGS: {
		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
		if (IS_ERR(kvm_sregs)) {
			r = PTR_ERR(kvm_sregs);
			kvm_sregs = NULL;
			goto out;
		}
		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
		break;
	}
	case KVM_GET_MP_STATE: {
		struct kvm_mp_state mp_state;

		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_MP_STATE: {
		struct kvm_mp_state mp_state;

		r = -EFAULT;
		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
			goto out;
		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
		break;
	}
	case KVM_TRANSLATE: {
		struct kvm_translation tr;

		r = -EFAULT;
		if (copy_from_user(&tr, argp, sizeof(tr)))
			goto out;
		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &tr, sizeof(tr)))
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_GUEST_DEBUG: {
		struct kvm_guest_debug dbg;

		r = -EFAULT;
		if (copy_from_user(&dbg, argp, sizeof(dbg)))
			goto out;
		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
		break;
	}
	case KVM_SET_SIGNAL_MASK: {
		struct kvm_signal_mask __user *sigmask_arg = argp;
		struct kvm_signal_mask kvm_sigmask;
		sigset_t sigset, *p;

		p = NULL;
		if (argp) {
			r = -EFAULT;
			if (copy_from_user(&kvm_sigmask, argp,
					   sizeof(kvm_sigmask)))
				goto out;
			r = -EINVAL;
			if (kvm_sigmask.len != sizeof(sigset))
				goto out;
			r = -EFAULT;
			if (copy_from_user(&sigset, sigmask_arg->sigset,
					   sizeof(sigset)))
				goto out;
			p = &sigset;
		}
		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
		break;
	}
	case KVM_GET_FPU: {
		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
		r = -ENOMEM;
		if (!fpu)
			goto out;
		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_FPU: {
		fpu = memdup_user(argp, sizeof(*fpu));
		if (IS_ERR(fpu)) {
			r = PTR_ERR(fpu);
			fpu = NULL;
			goto out;
		}
		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
		break;
	}
	case KVM_GET_STATS_FD: {
		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
		break;
	}
#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
	case KVM_PRE_FAULT_MEMORY: {
		struct kvm_pre_fault_memory range;

		r = -EFAULT;
		if (copy_from_user(&range, argp, sizeof(range)))
			break;
		r = kvm_vcpu_pre_fault_memory(vcpu, &range);
		/* Pass back leftover range. */
		if (copy_to_user(argp, &range, sizeof(range)))
			r = -EFAULT;
		break;
	}
#endif
	default:
		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
	}
out:
	mutex_unlock(&vcpu->mutex);
	kfree(fpu);
	kfree(kvm_sregs);
	return r;
}

#ifdef CONFIG_KVM_COMPAT
static long kvm_vcpu_compat_ioctl(struct file *filp,
				  unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = compat_ptr(arg);
	int r;

	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
		return -EIO;

	switch (ioctl) {
	case KVM_SET_SIGNAL_MASK: {
		struct kvm_signal_mask __user *sigmask_arg = argp;
		struct kvm_signal_mask kvm_sigmask;
		sigset_t sigset;

		if (argp) {
			r = -EFAULT;
			if (copy_from_user(&kvm_sigmask, argp,
					   sizeof(kvm_sigmask)))
				goto out;
			r = -EINVAL;
			if (kvm_sigmask.len != sizeof(compat_sigset_t))
				goto out;
			r = -EFAULT;
			if (get_compat_sigset(&sigset,
					      (compat_sigset_t __user *)sigmask_arg->sigset))
				goto out;
			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
		} else
			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
		break;
	}
	default:
		r = kvm_vcpu_ioctl(filp, ioctl, arg);
	}

out:
	return r;
}
#endif

static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
{
	struct kvm_device *dev = filp->private_data;

	if (dev->ops->mmap)
		return dev->ops->mmap(dev, vma);

	return -ENODEV;
}

static int kvm_device_ioctl_attr(struct kvm_device *dev,
				 int (*accessor)(struct kvm_device *dev,
						 struct kvm_device_attr *attr),
				 unsigned long arg)
{
	struct kvm_device_attr attr;

	if (!accessor)
		return -EPERM;

	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
		return -EFAULT;

	return accessor(dev, &attr);
}

static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
			     unsigned long arg)
{
	struct kvm_device *dev = filp->private_data;

	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
		return -EIO;

	switch (ioctl) {
	case KVM_SET_DEVICE_ATTR:
		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
	case KVM_GET_DEVICE_ATTR:
		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
	case KVM_HAS_DEVICE_ATTR:
		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
	default:
		if (dev->ops->ioctl)
			return dev->ops->ioctl(dev, ioctl, arg);

		return -ENOTTY;
	}
}

static int kvm_device_release(struct inode *inode, struct file *filp)
{
	struct kvm_device *dev = filp->private_data;
	struct kvm *kvm = dev->kvm;

	if (dev->ops->release) {
		mutex_lock(&kvm->lock);
		list_del_rcu(&dev->vm_node);
		synchronize_rcu();
		dev->ops->release(dev);
		mutex_unlock(&kvm->lock);
	}

	kvm_put_kvm(kvm);
	return 0;
}

static struct file_operations kvm_device_fops = {
	.unlocked_ioctl = kvm_device_ioctl,
	.release = kvm_device_release,
	KVM_COMPAT(kvm_device_ioctl),
	.mmap = kvm_device_mmap,
};

struct kvm_device *kvm_device_from_filp(struct file *filp)
{
	if (filp->f_op != &kvm_device_fops)
		return NULL;

	return filp->private_data;
}

static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
#ifdef CONFIG_KVM_MPIC
	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
#endif
};

int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
{
	if (type >= ARRAY_SIZE(kvm_device_ops_table))
		return -ENOSPC;

	if (kvm_device_ops_table[type] != NULL)
		return -EEXIST;

	kvm_device_ops_table[type] = ops;
	return 0;
}

void kvm_unregister_device_ops(u32 type)
{
	if (kvm_device_ops_table[type] != NULL)
		kvm_device_ops_table[type] = NULL;
}

static int kvm_ioctl_create_device(struct kvm *kvm,
				   struct kvm_create_device *cd)
{
	const struct kvm_device_ops *ops;
	struct kvm_device *dev;
	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
	int type;
	int ret;

	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
		return -ENODEV;

	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
	ops = kvm_device_ops_table[type];
	if (ops == NULL)
		return -ENODEV;

	if (test)
		return 0;

	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
	if (!dev)
		return -ENOMEM;

	dev->ops = ops;
	dev->kvm = kvm;

	mutex_lock(&kvm->lock);
	ret = ops->create(dev, type);
	if (ret < 0) {
		mutex_unlock(&kvm->lock);
		kfree(dev);
		return ret;
	}
	list_add_rcu(&dev->vm_node, &kvm->devices);
	mutex_unlock(&kvm->lock);

	if (ops->init)
		ops->init(dev);

	kvm_get_kvm(kvm);
	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
	if (ret < 0) {
		kvm_put_kvm_no_destroy(kvm);
		mutex_lock(&kvm->lock);
		list_del_rcu(&dev->vm_node);
		synchronize_rcu();
		if (ops->release)
			ops->release(dev);
		mutex_unlock(&kvm->lock);
		if (ops->destroy)
			ops->destroy(dev);
		return ret;
	}

	cd->fd = ret;
	return 0;
}

static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
{
	switch (arg) {
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_USER_MEMORY2:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
	case KVM_CAP_INTERNAL_ERROR_DATA:
#ifdef CONFIG_HAVE_KVM_MSI
	case KVM_CAP_SIGNAL_MSI:
#endif
#ifdef CONFIG_HAVE_KVM_IRQCHIP
	case KVM_CAP_IRQFD:
#endif
	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
	case KVM_CAP_CHECK_EXTENSION_VM:
	case KVM_CAP_ENABLE_CAP_VM:
	case KVM_CAP_HALT_POLL:
		return 1;
#ifdef CONFIG_KVM_MMIO
	case KVM_CAP_COALESCED_MMIO:
		return KVM_COALESCED_MMIO_PAGE_OFFSET;
	case KVM_CAP_COALESCED_PIO:
		return 1;
#endif
#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
		return KVM_DIRTY_LOG_MANUAL_CAPS;
#endif
#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
	case KVM_CAP_IRQ_ROUTING:
		return KVM_MAX_IRQ_ROUTES;
#endif
#if KVM_MAX_NR_ADDRESS_SPACES > 1
	case KVM_CAP_MULTI_ADDRESS_SPACE:
		if (kvm)
			return kvm_arch_nr_memslot_as_ids(kvm);
		return KVM_MAX_NR_ADDRESS_SPACES;
#endif
	case KVM_CAP_NR_MEMSLOTS:
		return KVM_USER_MEM_SLOTS;
	case KVM_CAP_DIRTY_LOG_RING:
#ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
#else
		return 0;
#endif
	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
#ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
#else
		return 0;
#endif
#ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
#endif
	case KVM_CAP_BINARY_STATS_FD:
	case KVM_CAP_SYSTEM_EVENT_DATA:
	case KVM_CAP_DEVICE_CTRL:
		return 1;
#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
	case KVM_CAP_MEMORY_ATTRIBUTES:
		return kvm_supported_mem_attributes(kvm);
#endif
#ifdef CONFIG_KVM_PRIVATE_MEM
	case KVM_CAP_GUEST_MEMFD:
		return !kvm || kvm_arch_has_private_mem(kvm);
#endif
	default:
		break;
	}
	return kvm_vm_ioctl_check_extension(kvm, arg);
}

static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
{
	int r;

	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
		return -EINVAL;

	/* the size should be power of 2 */
	if (!size || (size & (size - 1)))
		return -EINVAL;

	/* Should be bigger to keep the reserved entries, or a page */
	if (size < kvm_dirty_ring_get_rsvd_entries() *
	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
		return -EINVAL;

	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
	    sizeof(struct kvm_dirty_gfn))
		return -E2BIG;

	/* We only allow it to set once */
	if (kvm->dirty_ring_size)
		return -EINVAL;

	mutex_lock(&kvm->lock);

	if (kvm->created_vcpus) {
		/* We don't allow to change this value after vcpu created */
		r = -EINVAL;
	} else {
		kvm->dirty_ring_size = size;
		r = 0;
	}

	mutex_unlock(&kvm->lock);
	return r;
}

static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
{
	unsigned long i;
	struct kvm_vcpu *vcpu;
	int cleared = 0;

	if (!kvm->dirty_ring_size)
		return -EINVAL;

	mutex_lock(&kvm->slots_lock);

	kvm_for_each_vcpu(i, vcpu, kvm)
		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);

	mutex_unlock(&kvm->slots_lock);

	if (cleared)
		kvm_flush_remote_tlbs(kvm);

	return cleared;
}

int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
						  struct kvm_enable_cap *cap)
{
	return -EINVAL;
}

bool kvm_are_all_memslots_empty(struct kvm *kvm)
{
	int i;

	lockdep_assert_held(&kvm->slots_lock);

	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
			return false;
	}

	return true;
}
EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);

static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
					   struct kvm_enable_cap *cap)
{
	switch (cap->cap) {
#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;

		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;

		if (cap->flags || (cap->args[0] & ~allowed_options))
			return -EINVAL;
		kvm->manual_dirty_log_protect = cap->args[0];
		return 0;
	}
#endif
	case KVM_CAP_HALT_POLL: {
		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
			return -EINVAL;

		kvm->max_halt_poll_ns = cap->args[0];

		/*
		 * Ensure kvm->override_halt_poll_ns does not become visible
		 * before kvm->max_halt_poll_ns.
		 *
		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
		 */
		smp_wmb();
		kvm->override_halt_poll_ns = true;

		return 0;
	}
	case KVM_CAP_DIRTY_LOG_RING:
	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
			return -EINVAL;

		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
		int r = -EINVAL;

		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
		    !kvm->dirty_ring_size || cap->flags)
			return r;

		mutex_lock(&kvm->slots_lock);

		/*
		 * For simplicity, allow enabling ring+bitmap if and only if
		 * there are no memslots, e.g. to ensure all memslots allocate
		 * a bitmap after the capability is enabled.
		 */
		if (kvm_are_all_memslots_empty(kvm)) {
			kvm->dirty_ring_with_bitmap = true;
			r = 0;
		}

		mutex_unlock(&kvm->slots_lock);

		return r;
	}
	default:
		return kvm_vm_ioctl_enable_cap(kvm, cap);
	}
}

static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
			      size_t size, loff_t *offset)
{
	struct kvm *kvm = file->private_data;

	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
				&kvm_vm_stats_desc[0], &kvm->stat,
				sizeof(kvm->stat), user_buffer, size, offset);
}

static int kvm_vm_stats_release(struct inode *inode, struct file *file)
{
	struct kvm *kvm = file->private_data;

	kvm_put_kvm(kvm);
	return 0;
}

static const struct file_operations kvm_vm_stats_fops = {
	.owner = THIS_MODULE,
	.read = kvm_vm_stats_read,
	.release = kvm_vm_stats_release,
	.llseek = noop_llseek,
};

static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
{
	int fd;
	struct file *file;

	fd = get_unused_fd_flags(O_CLOEXEC);
	if (fd < 0)
		return fd;

	file = anon_inode_getfile("kvm-vm-stats",
			&kvm_vm_stats_fops, kvm, O_RDONLY);
	if (IS_ERR(file)) {
		put_unused_fd(fd);
		return PTR_ERR(file);
	}

	kvm_get_kvm(kvm);

	file->f_mode |= FMODE_PREAD;
	fd_install(fd, file);

	return fd;
}

#define SANITY_CHECK_MEM_REGION_FIELD(field)					\
do {										\
	BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) !=		\
		     offsetof(struct kvm_userspace_memory_region2, field));	\
	BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) !=		\
		     sizeof_field(struct kvm_userspace_memory_region2, field));	\
} while (0)

static long kvm_vm_ioctl(struct file *filp,
			   unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
	int r;

	if (kvm->mm != current->mm || kvm->vm_dead)
		return -EIO;
	switch (ioctl) {
	case KVM_CREATE_VCPU:
		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
		break;
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;

		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			goto out;
		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
		break;
	}
	case KVM_SET_USER_MEMORY_REGION2:
	case KVM_SET_USER_MEMORY_REGION: {
		struct kvm_userspace_memory_region2 mem;
		unsigned long size;

		if (ioctl == KVM_SET_USER_MEMORY_REGION) {
			/*
			 * Fields beyond struct kvm_userspace_memory_region shouldn't be
			 * accessed, but avoid leaking kernel memory in case of a bug.
			 */
			memset(&mem, 0, sizeof(mem));
			size = sizeof(struct kvm_userspace_memory_region);
		} else {
			size = sizeof(struct kvm_userspace_memory_region2);
		}

		/* Ensure the common parts of the two structs are identical. */
		SANITY_CHECK_MEM_REGION_FIELD(slot);
		SANITY_CHECK_MEM_REGION_FIELD(flags);
		SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
		SANITY_CHECK_MEM_REGION_FIELD(memory_size);
		SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);

		r = -EFAULT;
		if (copy_from_user(&mem, argp, size))
			goto out;

		r = -EINVAL;
		if (ioctl == KVM_SET_USER_MEMORY_REGION &&
		    (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
			goto out;

		r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
		break;
	}
	case KVM_GET_DIRTY_LOG: {
		struct kvm_dirty_log log;

		r = -EFAULT;
		if (copy_from_user(&log, argp, sizeof(log)))
			goto out;
		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
		break;
	}
#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
	case KVM_CLEAR_DIRTY_LOG: {
		struct kvm_clear_dirty_log log;

		r = -EFAULT;
		if (copy_from_user(&log, argp, sizeof(log)))
			goto out;
		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
		break;
	}
#endif
#ifdef CONFIG_KVM_MMIO
	case KVM_REGISTER_COALESCED_MMIO: {
		struct kvm_coalesced_mmio_zone zone;

		r = -EFAULT;
		if (copy_from_user(&zone, argp, sizeof(zone)))
			goto out;
		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
		break;
	}
	case KVM_UNREGISTER_COALESCED_MMIO: {
		struct kvm_coalesced_mmio_zone zone;

		r = -EFAULT;
		if (copy_from_user(&zone, argp, sizeof(zone)))
			goto out;
		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
		break;
	}
#endif
	case KVM_IRQFD: {
		struct kvm_irqfd data;

		r = -EFAULT;
		if (copy_from_user(&data, argp, sizeof(data)))
			goto out;
		r = kvm_irqfd(kvm, &data);
		break;
	}
	case KVM_IOEVENTFD: {
		struct kvm_ioeventfd data;

		r = -EFAULT;
		if (copy_from_user(&data, argp, sizeof(data)))
			goto out;
		r = kvm_ioeventfd(kvm, &data);
		break;
	}
#ifdef CONFIG_HAVE_KVM_MSI
	case KVM_SIGNAL_MSI: {
		struct kvm_msi msi;

		r = -EFAULT;
		if (copy_from_user(&msi, argp, sizeof(msi)))
			goto out;
		r = kvm_send_userspace_msi(kvm, &msi);
		break;
	}
#endif
#ifdef __KVM_HAVE_IRQ_LINE
	case KVM_IRQ_LINE_STATUS:
	case KVM_IRQ_LINE: {
		struct kvm_irq_level irq_event;

		r = -EFAULT;
		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
			goto out;

		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
					ioctl == KVM_IRQ_LINE_STATUS);
		if (r)
			goto out;

		r = -EFAULT;
		if (ioctl == KVM_IRQ_LINE_STATUS) {
			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
				goto out;
		}

		r = 0;
		break;
	}
#endif
#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
	case KVM_SET_GSI_ROUTING: {
		struct kvm_irq_routing routing;
		struct kvm_irq_routing __user *urouting;
		struct kvm_irq_routing_entry *entries = NULL;

		r = -EFAULT;
		if (copy_from_user(&routing, argp, sizeof(routing)))
			goto out;
		r = -EINVAL;
		if (!kvm_arch_can_set_irq_routing(kvm))
			goto out;
		if (routing.nr > KVM_MAX_IRQ_ROUTES)
			goto out;
		if (routing.flags)
			goto out;
		if (routing.nr) {
			urouting = argp;
			entries = vmemdup_array_user(urouting->entries,
						     routing.nr, sizeof(*entries));
			if (IS_ERR(entries)) {
				r = PTR_ERR(entries);
				goto out;
			}
		}
		r = kvm_set_irq_routing(kvm, entries, routing.nr,
					routing.flags);
		kvfree(entries);
		break;
	}
#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
	case KVM_SET_MEMORY_ATTRIBUTES: {
		struct kvm_memory_attributes attrs;

		r = -EFAULT;
		if (copy_from_user(&attrs, argp, sizeof(attrs)))
			goto out;

		r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
		break;
	}
#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
	case KVM_CREATE_DEVICE: {
		struct kvm_create_device cd;

		r = -EFAULT;
		if (copy_from_user(&cd, argp, sizeof(cd)))
			goto out;

		r = kvm_ioctl_create_device(kvm, &cd);
		if (r)
			goto out;

		r = -EFAULT;
		if (copy_to_user(argp, &cd, sizeof(cd)))
			goto out;

		r = 0;
		break;
	}
	case KVM_CHECK_EXTENSION:
		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
		break;
	case KVM_RESET_DIRTY_RINGS:
		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
		break;
	case KVM_GET_STATS_FD:
		r = kvm_vm_ioctl_get_stats_fd(kvm);
		break;
#ifdef CONFIG_KVM_PRIVATE_MEM
	case KVM_CREATE_GUEST_MEMFD: {
		struct kvm_create_guest_memfd guest_memfd;

		r = -EFAULT;
		if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
			goto out;

		r = kvm_gmem_create(kvm, &guest_memfd);
		break;
	}
#endif
	default:
		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
	}
out:
	return r;
}

#ifdef CONFIG_KVM_COMPAT
struct compat_kvm_dirty_log {
	__u32 slot;
	__u32 padding1;
	union {
		compat_uptr_t dirty_bitmap; /* one bit per page */
		__u64 padding2;
	};
};

struct compat_kvm_clear_dirty_log {
	__u32 slot;
	__u32 num_pages;
	__u64 first_page;
	union {
		compat_uptr_t dirty_bitmap; /* one bit per page */
		__u64 padding2;
	};
};

long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
				     unsigned long arg)
{
	return -ENOTTY;
}

static long kvm_vm_compat_ioctl(struct file *filp,
			   unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	int r;

	if (kvm->mm != current->mm || kvm->vm_dead)
		return -EIO;

	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
	if (r != -ENOTTY)
		return r;

	switch (ioctl) {
#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
	case KVM_CLEAR_DIRTY_LOG: {
		struct compat_kvm_clear_dirty_log compat_log;
		struct kvm_clear_dirty_log log;

		if (copy_from_user(&compat_log, (void __user *)arg,
				   sizeof(compat_log)))
			return -EFAULT;
		log.slot	 = compat_log.slot;
		log.num_pages	 = compat_log.num_pages;
		log.first_page	 = compat_log.first_page;
		log.padding2	 = compat_log.padding2;
		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);

		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
		break;
	}
#endif
	case KVM_GET_DIRTY_LOG: {
		struct compat_kvm_dirty_log compat_log;
		struct kvm_dirty_log log;

		if (copy_from_user(&compat_log, (void __user *)arg,
				   sizeof(compat_log)))
			return -EFAULT;
		log.slot	 = compat_log.slot;
		log.padding1	 = compat_log.padding1;
		log.padding2	 = compat_log.padding2;
		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);

		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
		break;
	}
	default:
		r = kvm_vm_ioctl(filp, ioctl, arg);
	}
	return r;
}
#endif

static struct file_operations kvm_vm_fops = {
	.release        = kvm_vm_release,
	.unlocked_ioctl = kvm_vm_ioctl,
	.llseek		= noop_llseek,
	KVM_COMPAT(kvm_vm_compat_ioctl),
};

bool file_is_kvm(struct file *file)
{
	return file && file->f_op == &kvm_vm_fops;
}
EXPORT_SYMBOL_GPL(file_is_kvm);

static int kvm_dev_ioctl_create_vm(unsigned long type)
{
	char fdname[ITOA_MAX_LEN + 1];
	int r, fd;
	struct kvm *kvm;
	struct file *file;

	fd = get_unused_fd_flags(O_CLOEXEC);
	if (fd < 0)
		return fd;

	snprintf(fdname, sizeof(fdname), "%d", fd);

	kvm = kvm_create_vm(type, fdname);
	if (IS_ERR(kvm)) {
		r = PTR_ERR(kvm);
		goto put_fd;
	}

	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
	if (IS_ERR(file)) {
		r = PTR_ERR(file);
		goto put_kvm;
	}

	/*
	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
	 * already set, with ->release() being kvm_vm_release().  In error
	 * cases it will be called by the final fput(file) and will take
	 * care of doing kvm_put_kvm(kvm).
	 */
	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);

	fd_install(fd, file);
	return fd;

put_kvm:
	kvm_put_kvm(kvm);
put_fd:
	put_unused_fd(fd);
	return r;
}

static long kvm_dev_ioctl(struct file *filp,
			  unsigned int ioctl, unsigned long arg)
{
	int r = -EINVAL;

	switch (ioctl) {
	case KVM_GET_API_VERSION:
		if (arg)
			goto out;
		r = KVM_API_VERSION;
		break;
	case KVM_CREATE_VM:
		r = kvm_dev_ioctl_create_vm(arg);
		break;
	case KVM_CHECK_EXTENSION:
		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
		break;
	case KVM_GET_VCPU_MMAP_SIZE:
		if (arg)
			goto out;
		r = PAGE_SIZE;     /* struct kvm_run */
#ifdef CONFIG_X86
		r += PAGE_SIZE;    /* pio data page */
#endif
#ifdef CONFIG_KVM_MMIO
		r += PAGE_SIZE;    /* coalesced mmio ring page */
#endif
		break;
	default:
		return kvm_arch_dev_ioctl(filp, ioctl, arg);
	}
out:
	return r;
}

static struct file_operations kvm_chardev_ops = {
	.unlocked_ioctl = kvm_dev_ioctl,
	.llseek		= noop_llseek,
	KVM_COMPAT(kvm_dev_ioctl),
};

static struct miscdevice kvm_dev = {
	KVM_MINOR,
	"kvm",
	&kvm_chardev_ops,
};

#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
static bool enable_virt_at_load = true;
module_param(enable_virt_at_load, bool, 0444);

__visible bool kvm_rebooting;
EXPORT_SYMBOL_GPL(kvm_rebooting);

static DEFINE_PER_CPU(bool, virtualization_enabled);
static DEFINE_MUTEX(kvm_usage_lock);
static int kvm_usage_count;

__weak void kvm_arch_enable_virtualization(void)
{

}

__weak void kvm_arch_disable_virtualization(void)
{

}

static int kvm_enable_virtualization_cpu(void)
{
	if (__this_cpu_read(virtualization_enabled))
		return 0;

	if (kvm_arch_enable_virtualization_cpu()) {
		pr_info("kvm: enabling virtualization on CPU%d failed\n",
			raw_smp_processor_id());
		return -EIO;
	}

	__this_cpu_write(virtualization_enabled, true);
	return 0;
}

static int kvm_online_cpu(unsigned int cpu)
{
	/*
	 * Abort the CPU online process if hardware virtualization cannot
	 * be enabled. Otherwise running VMs would encounter unrecoverable
	 * errors when scheduled to this CPU.
	 */
	return kvm_enable_virtualization_cpu();
}

static void kvm_disable_virtualization_cpu(void *ign)
{
	if (!__this_cpu_read(virtualization_enabled))
		return;

	kvm_arch_disable_virtualization_cpu();

	__this_cpu_write(virtualization_enabled, false);
}

static int kvm_offline_cpu(unsigned int cpu)
{
	kvm_disable_virtualization_cpu(NULL);
	return 0;
}

static void kvm_shutdown(void)
{
	/*
	 * Disable hardware virtualization and set kvm_rebooting to indicate
	 * that KVM has asynchronously disabled hardware virtualization, i.e.
	 * that relevant errors and exceptions aren't entirely unexpected.
	 * Some flavors of hardware virtualization need to be disabled before
	 * transferring control to firmware (to perform shutdown/reboot), e.g.
	 * on x86, virtualization can block INIT interrupts, which are used by
	 * firmware to pull APs back under firmware control.  Note, this path
	 * is used for both shutdown and reboot scenarios, i.e. neither name is
	 * 100% comprehensive.
	 */
	pr_info("kvm: exiting hardware virtualization\n");
	kvm_rebooting = true;
	on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1);
}

static int kvm_suspend(void)
{
	/*
	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
	 * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage
	 * count is stable.  Assert that kvm_usage_lock is not held to ensure
	 * the system isn't suspended while KVM is enabling hardware.  Hardware
	 * enabling can be preempted, but the task cannot be frozen until it has
	 * dropped all locks (userspace tasks are frozen via a fake signal).
	 */
	lockdep_assert_not_held(&kvm_usage_lock);
	lockdep_assert_irqs_disabled();

	kvm_disable_virtualization_cpu(NULL);
	return 0;
}

static void kvm_resume(void)
{
	lockdep_assert_not_held(&kvm_usage_lock);
	lockdep_assert_irqs_disabled();

	WARN_ON_ONCE(kvm_enable_virtualization_cpu());
}

static struct syscore_ops kvm_syscore_ops = {
	.suspend = kvm_suspend,
	.resume = kvm_resume,
	.shutdown = kvm_shutdown,
};

static int kvm_enable_virtualization(void)
{
	int r;

	guard(mutex)(&kvm_usage_lock);

	if (kvm_usage_count++)
		return 0;

	kvm_arch_enable_virtualization();

	r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
			      kvm_online_cpu, kvm_offline_cpu);
	if (r)
		goto err_cpuhp;

	register_syscore_ops(&kvm_syscore_ops);

	/*
	 * Undo virtualization enabling and bail if the system is going down.
	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
	 * possible for an in-flight operation to enable virtualization after
	 * syscore_shutdown() is called, i.e. without kvm_shutdown() being
	 * invoked.  Note, this relies on system_state being set _before_
	 * kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked
	 * or this CPU observes the impending shutdown.  Which is why KVM uses
	 * a syscore ops hook instead of registering a dedicated reboot
	 * notifier (the latter runs before system_state is updated).
	 */
	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
	    system_state == SYSTEM_RESTART) {
		r = -EBUSY;
		goto err_rebooting;
	}

	return 0;

err_rebooting:
	unregister_syscore_ops(&kvm_syscore_ops);
	cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
err_cpuhp:
	kvm_arch_disable_virtualization();
	--kvm_usage_count;
	return r;
}

static void kvm_disable_virtualization(void)
{
	guard(mutex)(&kvm_usage_lock);

	if (--kvm_usage_count)
		return;

	unregister_syscore_ops(&kvm_syscore_ops);
	cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
	kvm_arch_disable_virtualization();
}

static int kvm_init_virtualization(void)
{
	if (enable_virt_at_load)
		return kvm_enable_virtualization();

	return 0;
}

static void kvm_uninit_virtualization(void)
{
	if (enable_virt_at_load)
		kvm_disable_virtualization();
}
#else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
static int kvm_enable_virtualization(void)
{
	return 0;
}

static int kvm_init_virtualization(void)
{
	return 0;
}

static void kvm_disable_virtualization(void)
{

}

static void kvm_uninit_virtualization(void)
{

}
#endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */

static void kvm_iodevice_destructor(struct kvm_io_device *dev)
{
	if (dev->ops->destructor)
		dev->ops->destructor(dev);
}

static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
{
	int i;

	for (i = 0; i < bus->dev_count; i++) {
		struct kvm_io_device *pos = bus->range[i].dev;

		kvm_iodevice_destructor(pos);
	}
	kfree(bus);
}

static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
				 const struct kvm_io_range *r2)
{
	gpa_t addr1 = r1->addr;
	gpa_t addr2 = r2->addr;

	if (addr1 < addr2)
		return -1;

	/* If r2->len == 0, match the exact address.  If r2->len != 0,
	 * accept any overlapping write.  Any order is acceptable for
	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
	 * we process all of them.
	 */
	if (r2->len) {
		addr1 += r1->len;
		addr2 += r2->len;
	}

	if (addr1 > addr2)
		return 1;

	return 0;
}

static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
{
	return kvm_io_bus_cmp(p1, p2);
}

static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
			     gpa_t addr, int len)
{
	struct kvm_io_range *range, key;
	int off;

	key = (struct kvm_io_range) {
		.addr = addr,
		.len = len,
	};

	range = bsearch(&key, bus->range, bus->dev_count,
			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
	if (range == NULL)
		return -ENOENT;

	off = range - bus->range;

	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
		off--;

	return off;
}

static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
			      struct kvm_io_range *range, const void *val)
{
	int idx;

	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
	if (idx < 0)
		return -EOPNOTSUPP;

	while (idx < bus->dev_count &&
		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
					range->len, val))
			return idx;
		idx++;
	}

	return -EOPNOTSUPP;
}

/* kvm_io_bus_write - called under kvm->slots_lock */
int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
		     int len, const void *val)
{
	struct kvm_io_bus *bus;
	struct kvm_io_range range;
	int r;

	range = (struct kvm_io_range) {
		.addr = addr,
		.len = len,
	};

	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
	if (!bus)
		return -ENOMEM;
	r = __kvm_io_bus_write(vcpu, bus, &range, val);
	return r < 0 ? r : 0;
}
EXPORT_SYMBOL_GPL(kvm_io_bus_write);

/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
			    gpa_t addr, int len, const void *val, long cookie)
{
	struct kvm_io_bus *bus;
	struct kvm_io_range range;

	range = (struct kvm_io_range) {
		.addr = addr,
		.len = len,
	};

	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
	if (!bus)
		return -ENOMEM;

	/* First try the device referenced by cookie. */
	if ((cookie >= 0) && (cookie < bus->dev_count) &&
	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
					val))
			return cookie;

	/*
	 * cookie contained garbage; fall back to search and return the
	 * correct cookie value.
	 */
	return __kvm_io_bus_write(vcpu, bus, &range, val);
}

static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
			     struct kvm_io_range *range, void *val)
{
	int idx;

	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
	if (idx < 0)
		return -EOPNOTSUPP;

	while (idx < bus->dev_count &&
		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
				       range->len, val))
			return idx;
		idx++;
	}

	return -EOPNOTSUPP;
}

/* kvm_io_bus_read - called under kvm->slots_lock */
int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
		    int len, void *val)
{
	struct kvm_io_bus *bus;
	struct kvm_io_range range;
	int r;

	range = (struct kvm_io_range) {
		.addr = addr,
		.len = len,
	};

	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
	if (!bus)
		return -ENOMEM;
	r = __kvm_io_bus_read(vcpu, bus, &range, val);
	return r < 0 ? r : 0;
}

int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
			    int len, struct kvm_io_device *dev)
{
	int i;
	struct kvm_io_bus *new_bus, *bus;
	struct kvm_io_range range;

	lockdep_assert_held(&kvm->slots_lock);

	bus = kvm_get_bus(kvm, bus_idx);
	if (!bus)
		return -ENOMEM;

	/* exclude ioeventfd which is limited by maximum fd */
	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
		return -ENOSPC;

	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
			  GFP_KERNEL_ACCOUNT);
	if (!new_bus)
		return -ENOMEM;

	range = (struct kvm_io_range) {
		.addr = addr,
		.len = len,
		.dev = dev,
	};

	for (i = 0; i < bus->dev_count; i++)
		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
			break;

	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
	new_bus->dev_count++;
	new_bus->range[i] = range;
	memcpy(new_bus->range + i + 1, bus->range + i,
		(bus->dev_count - i) * sizeof(struct kvm_io_range));
	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
	synchronize_srcu_expedited(&kvm->srcu);
	kfree(bus);

	return 0;
}

int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
			      struct kvm_io_device *dev)
{
	int i;
	struct kvm_io_bus *new_bus, *bus;

	lockdep_assert_held(&kvm->slots_lock);

	bus = kvm_get_bus(kvm, bus_idx);
	if (!bus)
		return 0;

	for (i = 0; i < bus->dev_count; i++) {
		if (bus->range[i].dev == dev) {
			break;
		}
	}

	if (i == bus->dev_count)
		return 0;

	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
			  GFP_KERNEL_ACCOUNT);
	if (new_bus) {
		memcpy(new_bus, bus, struct_size(bus, range, i));
		new_bus->dev_count--;
		memcpy(new_bus->range + i, bus->range + i + 1,
				flex_array_size(new_bus, range, new_bus->dev_count - i));
	}

	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
	synchronize_srcu_expedited(&kvm->srcu);

	/*
	 * If NULL bus is installed, destroy the old bus, including all the
	 * attached devices. Otherwise, destroy the caller's device only.
	 */
	if (!new_bus) {
		pr_err("kvm: failed to shrink bus, removing it completely\n");
		kvm_io_bus_destroy(bus);
		return -ENOMEM;
	}

	kvm_iodevice_destructor(dev);
	kfree(bus);
	return 0;
}

struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
					 gpa_t addr)
{
	struct kvm_io_bus *bus;
	int dev_idx, srcu_idx;
	struct kvm_io_device *iodev = NULL;

	srcu_idx = srcu_read_lock(&kvm->srcu);

	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
	if (!bus)
		goto out_unlock;

	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
	if (dev_idx < 0)
		goto out_unlock;

	iodev = bus->range[dev_idx].dev;

out_unlock:
	srcu_read_unlock(&kvm->srcu, srcu_idx);

	return iodev;
}
EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);

static int kvm_debugfs_open(struct inode *inode, struct file *file,
			   int (*get)(void *, u64 *), int (*set)(void *, u64),
			   const char *fmt)
{
	int ret;
	struct kvm_stat_data *stat_data = inode->i_private;

	/*
	 * The debugfs files are a reference to the kvm struct which
        * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
        * avoids the race between open and the removal of the debugfs directory.
	 */
	if (!kvm_get_kvm_safe(stat_data->kvm))
		return -ENOENT;

	ret = simple_attr_open(inode, file, get,
			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
			       ? set : NULL, fmt);
	if (ret)
		kvm_put_kvm(stat_data->kvm);

	return ret;
}

static int kvm_debugfs_release(struct inode *inode, struct file *file)
{
	struct kvm_stat_data *stat_data = inode->i_private;

	simple_attr_release(inode, file);
	kvm_put_kvm(stat_data->kvm);

	return 0;
}

static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
{
	*val = *(u64 *)((void *)(&kvm->stat) + offset);

	return 0;
}

static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
{
	*(u64 *)((void *)(&kvm->stat) + offset) = 0;

	return 0;
}

static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
{
	unsigned long i;
	struct kvm_vcpu *vcpu;

	*val = 0;

	kvm_for_each_vcpu(i, vcpu, kvm)
		*val += *(u64 *)((void *)(&vcpu->stat) + offset);

	return 0;
}

static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
{
	unsigned long i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;

	return 0;
}

static int kvm_stat_data_get(void *data, u64 *val)
{
	int r = -EFAULT;
	struct kvm_stat_data *stat_data = data;

	switch (stat_data->kind) {
	case KVM_STAT_VM:
		r = kvm_get_stat_per_vm(stat_data->kvm,
					stat_data->desc->desc.offset, val);
		break;
	case KVM_STAT_VCPU:
		r = kvm_get_stat_per_vcpu(stat_data->kvm,
					  stat_data->desc->desc.offset, val);
		break;
	}

	return r;
}

static int kvm_stat_data_clear(void *data, u64 val)
{
	int r = -EFAULT;
	struct kvm_stat_data *stat_data = data;

	if (val)
		return -EINVAL;

	switch (stat_data->kind) {
	case KVM_STAT_VM:
		r = kvm_clear_stat_per_vm(stat_data->kvm,
					  stat_data->desc->desc.offset);
		break;
	case KVM_STAT_VCPU:
		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
					    stat_data->desc->desc.offset);
		break;
	}

	return r;
}

static int kvm_stat_data_open(struct inode *inode, struct file *file)
{
	__simple_attr_check_format("%llu\n", 0ull);
	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
				kvm_stat_data_clear, "%llu\n");
}

static const struct file_operations stat_fops_per_vm = {
	.owner = THIS_MODULE,
	.open = kvm_stat_data_open,
	.release = kvm_debugfs_release,
	.read = simple_attr_read,
	.write = simple_attr_write,
};

static int vm_stat_get(void *_offset, u64 *val)
{
	unsigned offset = (long)_offset;
	struct kvm *kvm;
	u64 tmp_val;

	*val = 0;
	mutex_lock(&kvm_lock);
	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
		*val += tmp_val;
	}
	mutex_unlock(&kvm_lock);
	return 0;
}

static int vm_stat_clear(void *_offset, u64 val)
{
	unsigned offset = (long)_offset;
	struct kvm *kvm;

	if (val)
		return -EINVAL;

	mutex_lock(&kvm_lock);
	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm_clear_stat_per_vm(kvm, offset);
	}
	mutex_unlock(&kvm_lock);

	return 0;
}

DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");

static int vcpu_stat_get(void *_offset, u64 *val)
{
	unsigned offset = (long)_offset;
	struct kvm *kvm;
	u64 tmp_val;

	*val = 0;
	mutex_lock(&kvm_lock);
	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
		*val += tmp_val;
	}
	mutex_unlock(&kvm_lock);
	return 0;
}

static int vcpu_stat_clear(void *_offset, u64 val)
{
	unsigned offset = (long)_offset;
	struct kvm *kvm;

	if (val)
		return -EINVAL;

	mutex_lock(&kvm_lock);
	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm_clear_stat_per_vcpu(kvm, offset);
	}
	mutex_unlock(&kvm_lock);

	return 0;
}

DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
			"%llu\n");
DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");

static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
{
	struct kobj_uevent_env *env;
	unsigned long long created, active;

	if (!kvm_dev.this_device || !kvm)
		return;

	mutex_lock(&kvm_lock);
	if (type == KVM_EVENT_CREATE_VM) {
		kvm_createvm_count++;
		kvm_active_vms++;
	} else if (type == KVM_EVENT_DESTROY_VM) {
		kvm_active_vms--;
	}
	created = kvm_createvm_count;
	active = kvm_active_vms;
	mutex_unlock(&kvm_lock);

	env = kzalloc(sizeof(*env), GFP_KERNEL);
	if (!env)
		return;

	add_uevent_var(env, "CREATED=%llu", created);
	add_uevent_var(env, "COUNT=%llu", active);

	if (type == KVM_EVENT_CREATE_VM) {
		add_uevent_var(env, "EVENT=create");
		kvm->userspace_pid = task_pid_nr(current);
	} else if (type == KVM_EVENT_DESTROY_VM) {
		add_uevent_var(env, "EVENT=destroy");
	}
	add_uevent_var(env, "PID=%d", kvm->userspace_pid);

	if (!IS_ERR(kvm->debugfs_dentry)) {
		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);

		if (p) {
			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
			if (!IS_ERR(tmp))
				add_uevent_var(env, "STATS_PATH=%s", tmp);
			kfree(p);
		}
	}
	/* no need for checks, since we are adding at most only 5 keys */
	env->envp[env->envp_idx++] = NULL;
	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
	kfree(env);
}

static void kvm_init_debug(void)
{
	const struct file_operations *fops;
	const struct _kvm_stats_desc *pdesc;
	int i;

	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);

	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
		pdesc = &kvm_vm_stats_desc[i];
		if (kvm_stats_debugfs_mode(pdesc) & 0222)
			fops = &vm_stat_fops;
		else
			fops = &vm_stat_readonly_fops;
		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
				kvm_debugfs_dir,
				(void *)(long)pdesc->desc.offset, fops);
	}

	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
		pdesc = &kvm_vcpu_stats_desc[i];
		if (kvm_stats_debugfs_mode(pdesc) & 0222)
			fops = &vcpu_stat_fops;
		else
			fops = &vcpu_stat_readonly_fops;
		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
				kvm_debugfs_dir,
				(void *)(long)pdesc->desc.offset, fops);
	}
}

static inline
struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
{
	return container_of(pn, struct kvm_vcpu, preempt_notifier);
}

static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
{
	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);

	WRITE_ONCE(vcpu->preempted, false);
	WRITE_ONCE(vcpu->ready, false);

	__this_cpu_write(kvm_running_vcpu, vcpu);
	kvm_arch_vcpu_load(vcpu, cpu);

	WRITE_ONCE(vcpu->scheduled_out, false);
}

static void kvm_sched_out(struct preempt_notifier *pn,
			  struct task_struct *next)
{
	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);

	WRITE_ONCE(vcpu->scheduled_out, true);

	if (current->on_rq && vcpu->wants_to_run) {
		WRITE_ONCE(vcpu->preempted, true);
		WRITE_ONCE(vcpu->ready, true);
	}
	kvm_arch_vcpu_put(vcpu);
	__this_cpu_write(kvm_running_vcpu, NULL);
}

/**
 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
 *
 * We can disable preemption locally around accessing the per-CPU variable,
 * and use the resolved vcpu pointer after enabling preemption again,
 * because even if the current thread is migrated to another CPU, reading
 * the per-CPU value later will give us the same value as we update the
 * per-CPU variable in the preempt notifier handlers.
 */
struct kvm_vcpu *kvm_get_running_vcpu(void)
{
	struct kvm_vcpu *vcpu;

	preempt_disable();
	vcpu = __this_cpu_read(kvm_running_vcpu);
	preempt_enable();

	return vcpu;
}
EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);

/**
 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
{
        return &kvm_running_vcpu;
}

#ifdef CONFIG_GUEST_PERF_EVENTS
static unsigned int kvm_guest_state(void)
{
	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
	unsigned int state;

	if (!kvm_arch_pmi_in_guest(vcpu))
		return 0;

	state = PERF_GUEST_ACTIVE;
	if (!kvm_arch_vcpu_in_kernel(vcpu))
		state |= PERF_GUEST_USER;

	return state;
}

static unsigned long kvm_guest_get_ip(void)
{
	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();

	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
		return 0;

	return kvm_arch_vcpu_get_ip(vcpu);
}

static struct perf_guest_info_callbacks kvm_guest_cbs = {
	.state			= kvm_guest_state,
	.get_ip			= kvm_guest_get_ip,
	.handle_intel_pt_intr	= NULL,
};

void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
{
	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
	perf_register_guest_info_callbacks(&kvm_guest_cbs);
}
void kvm_unregister_perf_callbacks(void)
{
	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
}
#endif

int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
{
	int r;
	int cpu;

	/* A kmem cache lets us meet the alignment requirements of fx_save. */
	if (!vcpu_align)
		vcpu_align = __alignof__(struct kvm_vcpu);
	kvm_vcpu_cache =
		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
					   SLAB_ACCOUNT,
					   offsetof(struct kvm_vcpu, arch),
					   offsetofend(struct kvm_vcpu, stats_id)
					   - offsetof(struct kvm_vcpu, arch),
					   NULL);
	if (!kvm_vcpu_cache)
		return -ENOMEM;

	for_each_possible_cpu(cpu) {
		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
					    GFP_KERNEL, cpu_to_node(cpu))) {
			r = -ENOMEM;
			goto err_cpu_kick_mask;
		}
	}

	r = kvm_irqfd_init();
	if (r)
		goto err_irqfd;

	r = kvm_async_pf_init();
	if (r)
		goto err_async_pf;

	kvm_chardev_ops.owner = module;
	kvm_vm_fops.owner = module;
	kvm_vcpu_fops.owner = module;
	kvm_device_fops.owner = module;

	kvm_preempt_ops.sched_in = kvm_sched_in;
	kvm_preempt_ops.sched_out = kvm_sched_out;

	kvm_init_debug();

	r = kvm_vfio_ops_init();
	if (WARN_ON_ONCE(r))
		goto err_vfio;

	kvm_gmem_init(module);

	r = kvm_init_virtualization();
	if (r)
		goto err_virt;

	/*
	 * Registration _must_ be the very last thing done, as this exposes
	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
	 */
	r = misc_register(&kvm_dev);
	if (r) {
		pr_err("kvm: misc device register failed\n");
		goto err_register;
	}

	return 0;

err_register:
	kvm_uninit_virtualization();
err_virt:
	kvm_vfio_ops_exit();
err_vfio:
	kvm_async_pf_deinit();
err_async_pf:
	kvm_irqfd_exit();
err_irqfd:
err_cpu_kick_mask:
	for_each_possible_cpu(cpu)
		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
	kmem_cache_destroy(kvm_vcpu_cache);
	return r;
}
EXPORT_SYMBOL_GPL(kvm_init);

void kvm_exit(void)
{
	int cpu;

	/*
	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
	 * to KVM while the module is being stopped.
	 */
	misc_deregister(&kvm_dev);

	kvm_uninit_virtualization();

	debugfs_remove_recursive(kvm_debugfs_dir);
	for_each_possible_cpu(cpu)
		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
	kmem_cache_destroy(kvm_vcpu_cache);
	kvm_vfio_ops_exit();
	kvm_async_pf_deinit();
	kvm_irqfd_exit();
}
EXPORT_SYMBOL_GPL(kvm_exit);

struct kvm_vm_worker_thread_context {
	struct kvm *kvm;
	struct task_struct *parent;
	struct completion init_done;
	kvm_vm_thread_fn_t thread_fn;
	uintptr_t data;
	int err;
};

static int kvm_vm_worker_thread(void *context)
{
	/*
	 * The init_context is allocated on the stack of the parent thread, so
	 * we have to locally copy anything that is needed beyond initialization
	 */
	struct kvm_vm_worker_thread_context *init_context = context;
	struct task_struct *parent;
	struct kvm *kvm = init_context->kvm;
	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
	uintptr_t data = init_context->data;
	int err;

	err = kthread_park(current);
	/* kthread_park(current) is never supposed to return an error */
	WARN_ON(err != 0);
	if (err)
		goto init_complete;

	err = cgroup_attach_task_all(init_context->parent, current);
	if (err) {
		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
			__func__, err);
		goto init_complete;
	}

	set_user_nice(current, task_nice(init_context->parent));

init_complete:
	init_context->err = err;
	complete(&init_context->init_done);
	init_context = NULL;

	if (err)
		goto out;

	/* Wait to be woken up by the spawner before proceeding. */
	kthread_parkme();

	if (!kthread_should_stop())
		err = thread_fn(kvm, data);

out:
	/*
	 * Move kthread back to its original cgroup to prevent it lingering in
	 * the cgroup of the VM process, after the latter finishes its
	 * execution.
	 *
	 * kthread_stop() waits on the 'exited' completion condition which is
	 * set in exit_mm(), via mm_release(), in do_exit(). However, the
	 * kthread is removed from the cgroup in the cgroup_exit() which is
	 * called after the exit_mm(). This causes the kthread_stop() to return
	 * before the kthread actually quits the cgroup.
	 */
	rcu_read_lock();
	parent = rcu_dereference(current->real_parent);
	get_task_struct(parent);
	rcu_read_unlock();
	cgroup_attach_task_all(parent, current);
	put_task_struct(parent);

	return err;
}

int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
				uintptr_t data, const char *name,
				struct task_struct **thread_ptr)
{
	struct kvm_vm_worker_thread_context init_context = {};
	struct task_struct *thread;

	*thread_ptr = NULL;
	init_context.kvm = kvm;
	init_context.parent = current;
	init_context.thread_fn = thread_fn;
	init_context.data = data;
	init_completion(&init_context.init_done);

	thread = kthread_run(kvm_vm_worker_thread, &init_context,
			     "%s-%d", name, task_pid_nr(current));
	if (IS_ERR(thread))
		return PTR_ERR(thread);

	/* kthread_run is never supposed to return NULL */
	WARN_ON(thread == NULL);

	wait_for_completion(&init_context.init_done);

	if (!init_context.err)
		*thread_ptr = thread;

	return init_context.err;
}