summaryrefslogtreecommitdiff
path: root/src/solvers/bwinf.rs
blob: fcf68760e17f6e4bf623331bcb9d90f9e6e515c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#[derive(Clone, Debug)]
struct Row {
    n: u32, b: u32,
    palette: Vec<bool>,
    max_stone: u32,
    width: u32,
    stones: Vec<u32>,
    max_reachable: u32
}

impl Row {
    fn new(n: u32, b: u32) -> Row {
        Self {
            n, b,
            palette: vec![true; n as usize],
            max_stone: n,
            width: 0,
            stones: Vec::with_capacity(n as usize),
            max_reachable: n
        }
    }

    fn with_stone(n: u32, b: u32, s: u32) -> Row {
        let mut stones = Vec::with_capacity(n as usize);
        stones.push(s);
        let max_stone = n - if s == n { 1 } else { 0 };
        Self {
            n, b,
            palette: (1..=n).map(|i| i != s).collect(),
            max_stone: max_stone,
            width: s,
            stones,
            max_reachable: s + max_stone,
        }
    }

    fn update(&mut self, x: u32) -> bool {
        let stone_len = x - self.width;
        if stone_len > self.n || !self.palette[(stone_len - 1) as usize] {
            return false;
        }
        self.width = x;
        self.palette[(stone_len - 1) as usize] = false;
        self.stones.push(stone_len);
        if self.max_stone == stone_len {
            while !self.palette[(self.max_stone - 1) as usize] {
                self.max_stone -= 1;
            }
            self.max_reachable = x + self.max_stone
        } else {
            self.max_reachable += stone_len
        }
        true
    }

    fn undo_update(&mut self) {
        let stone_len = self.stones.pop().unwrap();
        self.width -= stone_len;
        self.palette[(stone_len - 1) as usize] = true;
        if stone_len > self.max_stone {
            self.max_stone = stone_len;
            self.max_reachable = self.width + stone_len
        } else {
            self.max_reachable -= stone_len
        }
    }

    fn complete(&mut self) {
        self.stones.push(self.b - self.width);
    }

    fn output_repeat(&self) {
        for (i, &stone) in self.stones.iter().enumerate() {
            for _ in 0..stone {
                print!("{}", ['-', '*'][i & 1]);
            }
        }
        println!("");
    }

    fn output_numbers(&self) {
        for stone in self.stones.iter() {
            print!("{:2} ", stone);
        }
        println!("");
    }
}

#[derive(Clone, Debug)]
pub struct Wall {
    n: u32, h: u32, b: u32,
    rows: Vec<Row>,
    x: u32,
    min_max_reachable: u32,
    max_reached: u32,
    steps: u32
}

impl Wall {
    pub fn new(n: u32) -> Self {
        let (h, b) = ((n >> 1) + 1, (n * n + n ) >> 1);
        Self {
            n, h, b,
            rows: vec![Row::new(n, b); h as usize],
            x: 1,
            min_max_reachable: n,
            max_reached: 0,
            steps: 0
        }
    }

    fn new_linear(n: u32) -> Self {
        let (h, b) = ((n >> 1) + 1, (n * n + n ) >> 1);
        let rows = (1..=h).map(|i| Row::with_stone(n, b, i)).collect();
        let x = h + 1;
        Self {
            n, h, b,
            rows,
            x,
            min_max_reachable: 1 + n,
            max_reached: n,
            steps: 0
        }
    }

    fn complete(&mut self) {
        for row in self.rows.iter_mut() {
            row.complete()
        }
    }

    fn order_key(&self, index: u32) -> (i32, i32) {
        let row = self.rows.get(index as usize).unwrap();
        let stones = row.stones.len() as i32;
        let width = row.width as i32;
        let max_stone = row.max_stone as i32;
        let index = index as i32;
        //(-max_stone, index)
        let perc = (self.x as f32 / (self.b as f32)) * (self.h as f32);
        let dif = (perc - (index as f32)).abs().round() as i32;
        (-max_stone, dif)
    }

    fn order(&self) -> Vec<u32> {
        //(0..self.h).collect()
        let mut v: Vec<u32> = (0..self.h).collect();
        let b = self.b;
        v.sort_unstable_by_key(|&row| self.order_key(row));
        v
    }

    pub fn solve(&mut self) -> bool {
        self.steps += 1;
        // complete if already nearly complete
        if self.x == self.b {
            self.complete();
            return true;
        }
        let mut row_empty = false;
        let min_max_reachable = self.min_max_reachable;
        for row_index in self.order() {
            if self.rows[row_index as usize].stones.is_empty() {
                if row_empty {
                    break
                }
                row_empty = true;
            }
            let max_reachable = self.rows[row_index as usize].max_reachable;
            if self.rows[row_index as usize].update(self.x) {
                if max_reachable == self.min_max_reachable {
                    self.min_max_reachable = self.rows.iter()
                        .map(|v| v.max_reachable).min()
                        .unwrap();
                }
                if self.min_max_reachable > self.x {
                    self.x += 1;
                    if self.solve() {
                        return true;
                    }
                    self.x -= 1;
                }
                self.min_max_reachable = min_max_reachable;
                self.rows[row_index as usize].undo_update();
            }
        }
        false
    }

    pub fn output(&self) {
        for row in self.rows.iter() {
            row.output_numbers();
        }
    }
}

/*fn main() {
    let mut wall = Wall::new(26);
    wall.solve();
    wall.output();
}*/