summaryrefslogtreecommitdiff
path: root/src/solvers/gpusolver.rs
blob: 62e6e0fd4521be33b88746b8d3304c7eb111020a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
use crate::permutations::PermutationGenerator;
use crate::solvers::gpu::*;
use crate::solvers::{wall_stats, IteratorSolver, Solver};
use rayon::prelude::*;
use std::sync::mpsc::Sender;
use std::sync::{Arc, Mutex};

#[derive(Debug)]
pub struct GpuSolver {
    n: u32,
    h: u32,
    w: u32,
    chunk: u32,
    permutations: Vec<Vec<u32>>,
    masks: Vec<u64>,
    progress: Arc<Mutex<u32>>,
}

impl GpuSolver {
    fn solve_to_vec(&mut self) -> Vec<RowResult> {
        let (sender, receiver) = std::sync::mpsc::channel();
        if let Ok((sender, handle)) =
            OclManager::launch_sevice(&self.permutations, &self.masks, self.n, 0, sender)
        {
            let chunk = permutohedron::factorial(self.n as usize - 1) as u32;
            self.permute(
                0,
                0,
                ((0..(self.h - 2)).map(|x| x * chunk).collect::<Vec<u32>>()).as_ref(),
                sender.clone(),
            );
            sender.send(Message::CpuDone).unwrap();
            let mut walls = Vec::new();
            while let Ok(Message::RowResult(wall)) = receiver.recv() {
                walls.push(wall);
            }
            sender.send(Message::Terminate).unwrap();
            //println!("{:?}", walls);
            handle.join().unwrap();
            return walls;
        }
        vec![]
    }

    fn permute(&self, index: usize, curr_mask: u64, numbers: &[u32], sender: Sender<Message>) {
        if curr_mask.count_ones() < index as u32 * (self.n - 1) {
            return;
        }
        let mut new_num = Vec::from(numbers);
        if index as usize == numbers.len() {
            let mut info = sys_info::mem_info().unwrap();
            while info.avail < 1024 * 1024 {
                std::thread::sleep(std::time::Duration::from_millis(500));
                info = sys_info::mem_info().unwrap();
                println!("mem wait {:?}", info);
            }
            let i = self.n - 3 - numbers[index - 1] / self.chunk;
            sender
                .send(Message::CheckRequest(CheckRequest::new(
                    new_num, curr_mask, i,
                )))
                .unwrap();
            return;
        }
        let start = numbers[index as usize] / self.chunk;
        for i in start..self.n - (self.h - 1 - index as u32) {
            for n in 1..(numbers.len() - index) {
                new_num[n + index] = (n as u32 + i) * self.chunk;
            }
            if index == 0 {
                let senders: Vec<_> = (0..self.chunk).map(|_| sender.clone()).collect();
                (0..self.chunk)
                    .into_par_iter()
                    .zip(senders)
                    .for_each(|(j, sender)| {
                        let mut new_num = new_num.clone();
                        let tmp = i * self.chunk + j;
                        new_num[index] = tmp;
                        self.permute(
                            index + 1,
                            curr_mask | self.masks[tmp as usize],
                            &new_num,
                            sender,
                        );
                    });
            } else {
                for j in 0..self.chunk {
                    let n_i = i * self.chunk + j;
                    if curr_mask & (1 << (self.permutations[n_i as usize][0] + 1)) > 0 {
                        continue;
                    }
                    new_num[index] = n_i;
                    self.permute(
                        index + 1,
                        curr_mask | self.masks[new_num[index] as usize],
                        &new_num,
                        sender.clone(),
                    );
                }
                if index == 1 {
                    let mut data = self.progress.lock().unwrap();
                    *data += 1;
                    let bias = self.n - (self.h - 1);
                    println!(
                        "progress: {}%",
                        *data as f64 / self.chunk as f64 * 50.0 / bias as f64
                    );
                }
            }
        }
    }
}

fn generate_permutations(n: u32) -> Vec<Vec<u32>> {
    crate::permutations::HeapsPermutations::permutations(n)
}

fn generate_masks(permutations: &[Vec<u32>]) -> Vec<u64> {
    let mut masks = Vec::with_capacity(permutations.len());
    for p in permutations {
        let mut v = 0;
        let mut x = 0u64;
        for i in p.iter().take(p.len() - 1).map(|i| {
            v += i;
            v
        }) {
            x |= 1 << i
        }
        masks.push(x)
    }
    masks
}

impl Solver for GpuSolver {
    fn new(n: u32) -> Self {
        let (h, w) = wall_stats(n);
        let permutations = generate_permutations(n);
        let masks = generate_masks(&permutations);
        let chunk = permutohedron::factorial(n as usize - 1) as u32;
        Self {
            n,
            h,
            w,
            chunk,
            permutations,
            masks,
            progress: Arc::new(Mutex::new(0)),
        }
    }
    fn n(&self) -> u32 {
        self.n
    }
    fn h(&self) -> u32 {
        self.h
    }
    fn w(&self) -> u32 {
        self.w
    }
}

impl IteratorSolver for GpuSolver {
    type IntoIter = std::vec::IntoIter<RowResult>;
    fn solve(mut self) -> Self::IntoIter {
        self.solve_to_vec().into_iter()
    }
}