diff options
author | Paul Walmsley <paul.walmsley@sifive.com> | 2019-10-28 13:53:50 -0700 |
---|---|---|
committer | Paul Walmsley <paul.walmsley@sifive.com> | 2019-11-05 09:11:18 -0800 |
commit | 0c3ac28931d578324e93afab6ee7b740dfdaff6f (patch) | |
tree | 39a42979a74776968705dba4eb44444e7bc9af18 /arch/riscv | |
parent | 86fe639a1c1678d81fc4c82a39a5299df6deb944 (diff) |
riscv: separate MMIO functions into their own header file
Separate the low-level MMIO static inline functions and macros, such
as {read,write}{b,w,l,q}(), into their own header file under
arch/riscv/include: asm/mmio.h. This is done to break a header
dependency chain that arises when both asm/pgtable.h and asm/io.h are
included by asm/timex.h. Since the problem is related to the legacy
I/O port support in asm/io.h, this allows files under arch/riscv that
encounter those issues to simply include asm/mmio.h instead, and
bypass the legacy I/O port functions. Existing users of asm/io.h
don't need to change anything, since asm/mmio.h is included by
asm/io.h.
While here, clean up some checkpatch.pl-related issues with the
original code.
Signed-off-by: Paul Walmsley <paul.walmsley@sifive.com>
Diffstat (limited to 'arch/riscv')
-rw-r--r-- | arch/riscv/include/asm/io.h | 147 | ||||
-rw-r--r-- | arch/riscv/include/asm/mmio.h | 164 |
2 files changed, 167 insertions, 144 deletions
diff --git a/arch/riscv/include/asm/io.h b/arch/riscv/include/asm/io.h index 3ba4d93721d3..d5af79cd89db 100644 --- a/arch/riscv/include/asm/io.h +++ b/arch/riscv/include/asm/io.h @@ -15,152 +15,11 @@ #include <asm/mmiowb.h> #include <asm/pgtable.h> -extern void __iomem *ioremap(phys_addr_t offset, unsigned long size); - -/* - * The RISC-V ISA doesn't yet specify how to query or modify PMAs, so we can't - * change the properties of memory regions. This should be fixed by the - * upcoming platform spec. - */ -#define ioremap_nocache(addr, size) ioremap((addr), (size)) -#define ioremap_wc(addr, size) ioremap((addr), (size)) -#define ioremap_wt(addr, size) ioremap((addr), (size)) - -extern void iounmap(volatile void __iomem *addr); - -/* Generic IO read/write. These perform native-endian accesses. */ -#define __raw_writeb __raw_writeb -static inline void __raw_writeb(u8 val, volatile void __iomem *addr) -{ - asm volatile("sb %0, 0(%1)" : : "r" (val), "r" (addr)); -} - -#define __raw_writew __raw_writew -static inline void __raw_writew(u16 val, volatile void __iomem *addr) -{ - asm volatile("sh %0, 0(%1)" : : "r" (val), "r" (addr)); -} - -#define __raw_writel __raw_writel -static inline void __raw_writel(u32 val, volatile void __iomem *addr) -{ - asm volatile("sw %0, 0(%1)" : : "r" (val), "r" (addr)); -} - -#ifdef CONFIG_64BIT -#define __raw_writeq __raw_writeq -static inline void __raw_writeq(u64 val, volatile void __iomem *addr) -{ - asm volatile("sd %0, 0(%1)" : : "r" (val), "r" (addr)); -} -#endif - -#define __raw_readb __raw_readb -static inline u8 __raw_readb(const volatile void __iomem *addr) -{ - u8 val; - - asm volatile("lb %0, 0(%1)" : "=r" (val) : "r" (addr)); - return val; -} - -#define __raw_readw __raw_readw -static inline u16 __raw_readw(const volatile void __iomem *addr) -{ - u16 val; - - asm volatile("lh %0, 0(%1)" : "=r" (val) : "r" (addr)); - return val; -} - -#define __raw_readl __raw_readl -static inline u32 __raw_readl(const volatile void __iomem *addr) -{ - u32 val; - - asm volatile("lw %0, 0(%1)" : "=r" (val) : "r" (addr)); - return val; -} - -#ifdef CONFIG_64BIT -#define __raw_readq __raw_readq -static inline u64 __raw_readq(const volatile void __iomem *addr) -{ - u64 val; - - asm volatile("ld %0, 0(%1)" : "=r" (val) : "r" (addr)); - return val; -} -#endif - /* - * Unordered I/O memory access primitives. These are even more relaxed than - * the relaxed versions, as they don't even order accesses between successive - * operations to the I/O regions. + * MMIO access functions are separated out to break dependency cycles + * when using {read,write}* fns in low-level headers */ -#define readb_cpu(c) ({ u8 __r = __raw_readb(c); __r; }) -#define readw_cpu(c) ({ u16 __r = le16_to_cpu((__force __le16)__raw_readw(c)); __r; }) -#define readl_cpu(c) ({ u32 __r = le32_to_cpu((__force __le32)__raw_readl(c)); __r; }) - -#define writeb_cpu(v,c) ((void)__raw_writeb((v),(c))) -#define writew_cpu(v,c) ((void)__raw_writew((__force u16)cpu_to_le16(v),(c))) -#define writel_cpu(v,c) ((void)__raw_writel((__force u32)cpu_to_le32(v),(c))) - -#ifdef CONFIG_64BIT -#define readq_cpu(c) ({ u64 __r = le64_to_cpu((__force __le64)__raw_readq(c)); __r; }) -#define writeq_cpu(v,c) ((void)__raw_writeq((__force u64)cpu_to_le64(v),(c))) -#endif - -/* - * Relaxed I/O memory access primitives. These follow the Device memory - * ordering rules but do not guarantee any ordering relative to Normal memory - * accesses. These are defined to order the indicated access (either a read or - * write) with all other I/O memory accesses. Since the platform specification - * defines that all I/O regions are strongly ordered on channel 2, no explicit - * fences are required to enforce this ordering. - */ -/* FIXME: These are now the same as asm-generic */ -#define __io_rbr() do {} while (0) -#define __io_rar() do {} while (0) -#define __io_rbw() do {} while (0) -#define __io_raw() do {} while (0) - -#define readb_relaxed(c) ({ u8 __v; __io_rbr(); __v = readb_cpu(c); __io_rar(); __v; }) -#define readw_relaxed(c) ({ u16 __v; __io_rbr(); __v = readw_cpu(c); __io_rar(); __v; }) -#define readl_relaxed(c) ({ u32 __v; __io_rbr(); __v = readl_cpu(c); __io_rar(); __v; }) - -#define writeb_relaxed(v,c) ({ __io_rbw(); writeb_cpu((v),(c)); __io_raw(); }) -#define writew_relaxed(v,c) ({ __io_rbw(); writew_cpu((v),(c)); __io_raw(); }) -#define writel_relaxed(v,c) ({ __io_rbw(); writel_cpu((v),(c)); __io_raw(); }) - -#ifdef CONFIG_64BIT -#define readq_relaxed(c) ({ u64 __v; __io_rbr(); __v = readq_cpu(c); __io_rar(); __v; }) -#define writeq_relaxed(v,c) ({ __io_rbw(); writeq_cpu((v),(c)); __io_raw(); }) -#endif - -/* - * I/O memory access primitives. Reads are ordered relative to any - * following Normal memory access. Writes are ordered relative to any prior - * Normal memory access. The memory barriers here are necessary as RISC-V - * doesn't define any ordering between the memory space and the I/O space. - */ -#define __io_br() do {} while (0) -#define __io_ar(v) __asm__ __volatile__ ("fence i,r" : : : "memory"); -#define __io_bw() __asm__ __volatile__ ("fence w,o" : : : "memory"); -#define __io_aw() mmiowb_set_pending() - -#define readb(c) ({ u8 __v; __io_br(); __v = readb_cpu(c); __io_ar(__v); __v; }) -#define readw(c) ({ u16 __v; __io_br(); __v = readw_cpu(c); __io_ar(__v); __v; }) -#define readl(c) ({ u32 __v; __io_br(); __v = readl_cpu(c); __io_ar(__v); __v; }) - -#define writeb(v,c) ({ __io_bw(); writeb_cpu((v),(c)); __io_aw(); }) -#define writew(v,c) ({ __io_bw(); writew_cpu((v),(c)); __io_aw(); }) -#define writel(v,c) ({ __io_bw(); writel_cpu((v),(c)); __io_aw(); }) - -#ifdef CONFIG_64BIT -#define readq(c) ({ u64 __v; __io_br(); __v = readq_cpu(c); __io_ar(__v); __v; }) -#define writeq(v,c) ({ __io_bw(); writeq_cpu((v),(c)); __io_aw(); }) -#endif +#include <asm/mmio.h> /* * I/O port access constants. diff --git a/arch/riscv/include/asm/mmio.h b/arch/riscv/include/asm/mmio.h new file mode 100644 index 000000000000..308b98f85753 --- /dev/null +++ b/arch/riscv/include/asm/mmio.h @@ -0,0 +1,164 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * {read,write}{b,w,l,q} based on arch/arm64/include/asm/io.h + * which was based on arch/arm/include/io.h + * + * Copyright (C) 1996-2000 Russell King + * Copyright (C) 2012 ARM Ltd. + * Copyright (C) 2014 Regents of the University of California + */ + +#ifndef _ASM_RISCV_MMIO_H +#define _ASM_RISCV_MMIO_H + +#include <linux/types.h> +#include <asm/mmiowb.h> + +void __iomem *ioremap(phys_addr_t offset, unsigned long size); + +/* + * The RISC-V ISA doesn't yet specify how to query or modify PMAs, so we can't + * change the properties of memory regions. This should be fixed by the + * upcoming platform spec. + */ +#define ioremap_nocache(addr, size) ioremap((addr), (size)) +#define ioremap_wc(addr, size) ioremap((addr), (size)) +#define ioremap_wt(addr, size) ioremap((addr), (size)) + +void iounmap(volatile void __iomem *addr); + +/* Generic IO read/write. These perform native-endian accesses. */ +#define __raw_writeb __raw_writeb +static inline void __raw_writeb(u8 val, volatile void __iomem *addr) +{ + asm volatile("sb %0, 0(%1)" : : "r" (val), "r" (addr)); +} + +#define __raw_writew __raw_writew +static inline void __raw_writew(u16 val, volatile void __iomem *addr) +{ + asm volatile("sh %0, 0(%1)" : : "r" (val), "r" (addr)); +} + +#define __raw_writel __raw_writel +static inline void __raw_writel(u32 val, volatile void __iomem *addr) +{ + asm volatile("sw %0, 0(%1)" : : "r" (val), "r" (addr)); +} + +#ifdef CONFIG_64BIT +#define __raw_writeq __raw_writeq +static inline void __raw_writeq(u64 val, volatile void __iomem *addr) +{ + asm volatile("sd %0, 0(%1)" : : "r" (val), "r" (addr)); +} +#endif + +#define __raw_readb __raw_readb +static inline u8 __raw_readb(const volatile void __iomem *addr) +{ + u8 val; + + asm volatile("lb %0, 0(%1)" : "=r" (val) : "r" (addr)); + return val; +} + +#define __raw_readw __raw_readw +static inline u16 __raw_readw(const volatile void __iomem *addr) +{ + u16 val; + + asm volatile("lh %0, 0(%1)" : "=r" (val) : "r" (addr)); + return val; +} + +#define __raw_readl __raw_readl +static inline u32 __raw_readl(const volatile void __iomem *addr) +{ + u32 val; + + asm volatile("lw %0, 0(%1)" : "=r" (val) : "r" (addr)); + return val; +} + +#ifdef CONFIG_64BIT +#define __raw_readq __raw_readq +static inline u64 __raw_readq(const volatile void __iomem *addr) +{ + u64 val; + + asm volatile("ld %0, 0(%1)" : "=r" (val) : "r" (addr)); + return val; +} +#endif + +/* + * Unordered I/O memory access primitives. These are even more relaxed than + * the relaxed versions, as they don't even order accesses between successive + * operations to the I/O regions. + */ +#define readb_cpu(c) ({ u8 __r = __raw_readb(c); __r; }) +#define readw_cpu(c) ({ u16 __r = le16_to_cpu((__force __le16)__raw_readw(c)); __r; }) +#define readl_cpu(c) ({ u32 __r = le32_to_cpu((__force __le32)__raw_readl(c)); __r; }) + +#define writeb_cpu(v, c) ((void)__raw_writeb((v), (c))) +#define writew_cpu(v, c) ((void)__raw_writew((__force u16)cpu_to_le16(v), (c))) +#define writel_cpu(v, c) ((void)__raw_writel((__force u32)cpu_to_le32(v), (c))) + +#ifdef CONFIG_64BIT +#define readq_cpu(c) ({ u64 __r = le64_to_cpu((__force __le64)__raw_readq(c)); __r; }) +#define writeq_cpu(v, c) ((void)__raw_writeq((__force u64)cpu_to_le64(v), (c))) +#endif + +/* + * Relaxed I/O memory access primitives. These follow the Device memory + * ordering rules but do not guarantee any ordering relative to Normal memory + * accesses. These are defined to order the indicated access (either a read or + * write) with all other I/O memory accesses. Since the platform specification + * defines that all I/O regions are strongly ordered on channel 2, no explicit + * fences are required to enforce this ordering. + */ +/* FIXME: These are now the same as asm-generic */ +#define __io_rbr() do {} while (0) +#define __io_rar() do {} while (0) +#define __io_rbw() do {} while (0) +#define __io_raw() do {} while (0) + +#define readb_relaxed(c) ({ u8 __v; __io_rbr(); __v = readb_cpu(c); __io_rar(); __v; }) +#define readw_relaxed(c) ({ u16 __v; __io_rbr(); __v = readw_cpu(c); __io_rar(); __v; }) +#define readl_relaxed(c) ({ u32 __v; __io_rbr(); __v = readl_cpu(c); __io_rar(); __v; }) + +#define writeb_relaxed(v, c) ({ __io_rbw(); writeb_cpu((v), (c)); __io_raw(); }) +#define writew_relaxed(v, c) ({ __io_rbw(); writew_cpu((v), (c)); __io_raw(); }) +#define writel_relaxed(v, c) ({ __io_rbw(); writel_cpu((v), (c)); __io_raw(); }) + +#ifdef CONFIG_64BIT +#define readq_relaxed(c) ({ u64 __v; __io_rbr(); __v = readq_cpu(c); __io_rar(); __v; }) +#define writeq_relaxed(v, c) ({ __io_rbw(); writeq_cpu((v), (c)); __io_raw(); }) +#endif + +/* + * I/O memory access primitives. Reads are ordered relative to any + * following Normal memory access. Writes are ordered relative to any prior + * Normal memory access. The memory barriers here are necessary as RISC-V + * doesn't define any ordering between the memory space and the I/O space. + */ +#define __io_br() do {} while (0) +#define __io_ar(v) __asm__ __volatile__ ("fence i,r" : : : "memory") +#define __io_bw() __asm__ __volatile__ ("fence w,o" : : : "memory") +#define __io_aw() mmiowb_set_pending() + +#define readb(c) ({ u8 __v; __io_br(); __v = readb_cpu(c); __io_ar(__v); __v; }) +#define readw(c) ({ u16 __v; __io_br(); __v = readw_cpu(c); __io_ar(__v); __v; }) +#define readl(c) ({ u32 __v; __io_br(); __v = readl_cpu(c); __io_ar(__v); __v; }) + +#define writeb(v, c) ({ __io_bw(); writeb_cpu((v), (c)); __io_aw(); }) +#define writew(v, c) ({ __io_bw(); writew_cpu((v), (c)); __io_aw(); }) +#define writel(v, c) ({ __io_bw(); writel_cpu((v), (c)); __io_aw(); }) + +#ifdef CONFIG_64BIT +#define readq(c) ({ u64 __v; __io_br(); __v = readq_cpu(c); __io_ar(__v); __v; }) +#define writeq(v, c) ({ __io_bw(); writeq_cpu((v), (c)); __io_aw(); }) +#endif + +#endif /* _ASM_RISCV_MMIO_H */ |