summaryrefslogtreecommitdiff
path: root/drivers/cpufreq
diff options
context:
space:
mode:
authorDavid S. Miller <davem@davemloft.net>2014-10-03 12:37:23 -0700
committerDavid S. Miller <davem@davemloft.net>2014-10-03 12:37:23 -0700
commitc2bf5ec20488fb91af32f1c7f7c63f338ebacc9f (patch)
treeee3dc48d33d56e11df19b52c33abf2ac85667079 /drivers/cpufreq
parent38df6492eb511d2a6823303cb1a194c4fe423154 (diff)
parent808e7ac0bdef31204184904f6b3ea356a30a9ed5 (diff)
Merge branch 'qdisc_bulk_dequeue'
Jesper Dangaard Brouer says: ==================== qdisc: bulk dequeue support This patchset uses DaveM's recent API changes to dev_hard_start_xmit(), from the qdisc layer, to implement dequeue bulking. Patch01: "qdisc: bulk dequeue support for qdiscs with TCQ_F_ONETXQUEUE" - Implement basic qdisc dequeue bulking - This time, 100% relying on BQL limits, no magic safe-guard constants Patch02: "qdisc: dequeue bulking also pickup GSO/TSO packets" - Extend bulking to bulk several GSO/TSO packets - Seperate patch, as it introduce a small regression, see test section. We do have a patch03, which exports a userspace tunable as a BQL tunable, that can byte-cap or disable the bulking/bursting. But we could not agree on it internally, thus not sending it now. We basically strive to avoid adding any new userspace tunable. Testing patch01: ================ Demonstrating the performance improvement of qdisc dequeue bulking, is tricky because the effect only "kicks-in" once the qdisc system have a backlog. Thus, for a backlog to form, we need either 1) to exceed wirespeed of the link or 2) exceed the capability of the device driver. For practical use-cases, the measureable effect of this will be a reduction in CPU usage 01-TCP_STREAM: -------------- Testing effect for TCP involves disabling TSO and GSO, because TCP already benefit from bulking, via TSO and especially for GSO segmented packets. This patch view TSO/GSO as a seperate kind of bulking, and avoid further bulking of these packet types. The measured perf diff benefit (at 10Gbit/s) for a single netperf TCP_STREAM were 9.24% less CPU used on calls to _raw_spin_lock() (mostly from sch_direct_xmit). If my E5-2695v2(ES) CPU is tuned according to: http://netoptimizer.blogspot.dk/2014/04/basic-tuning-for-network-overload.html Then it is possible that a single netperf TCP_STREAM, with GSO and TSO disabled, can utilize all bandwidth on a 10Gbit/s link. This will then cause a standing backlog queue at the qdisc layer. Trying to pressure the system some more CPU util wise, I'm starting 24x TCP_STREAMs and monitoring the overall CPU utilization. This confirms bulking saves CPU cycles when it "kicks-in". Tool mpstat, while stressing the system with netperf 24x TCP_STREAM, shows: * Disabled bulking: sys:2.58% soft:8.50% idle:88.78% * Enabled bulking: sys:2.43% soft:7.66% idle:89.79% 02-UDP_STREAM ------------- The measured perf diff benefit for UDP_STREAM were 6.41% less CPU used on calls to _raw_spin_lock(). 24x UDP_STREAM with packet size -m 1472 (to avoid sending UDP/IP fragments). 03-trafgen driver test ---------------------- The performance of the 10Gbit/s ixgbe driver is limited due to updating the HW ring-queue tail-pointer on every packet. As previously demonstrated with pktgen. Using trafgen to send RAW frames from userspace (via AF_PACKET), and forcing it through qdisc path (with option --qdisc-path and -t0), sending with 12 CPUs. I can demonstrate this driver layer limitation: * 12.8 Mpps with no qdisc bulking * 14.8 Mpps with qdisc bulking (full 10G-wirespeed) Testing patch02: ================ Testing Bulking several GSO/TSO packets: Measuring HoL (Head-of-Line) blocking for TSO and GSO, with netperf-wrapper. Bulking several TSO show no performance regressions (requeues were in the area 32 requeues/sec for 10G while transmitting approx 813Kpps). Bulking several GSOs does show small regression or very small improvement (requeues were in the area 8000 requeues/sec, for 10G while transmitting approx 813Kpps). Using ixgbe 10Gbit/s with GSO bulking, we can measure some additional latency. Base-case, which is "normal" GSO bulking, sees varying high-prio queue delay between 0.38ms to 0.47ms. Bulking several GSOs together, result in a stable high-prio queue delay of 0.50ms. Corrosponding to: (10000*10^6)*((0.50-0.47)/10^3)/8 = 37500 bytes (10000*10^6)*((0.50-0.38)/10^3)/8 = 150000 bytes 37500/1500 = 25 pkts 150000/1500 = 100 pkts Using igb at 100Mbit/s with GSO bulking, shows an improvement. Base-case sees varying high-prio queue delay between 2.23ms to 2.35ms diff of 0.12ms corrosponding to 1500 bytes at 100Mbit/s. Bulking several GSOs together, result in a stable high-prio queue delay of 2.23ms. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'drivers/cpufreq')
0 files changed, 0 insertions, 0 deletions