diff options
author | Uwe Kleine-König <u.kleine-koenig@baylibre.com> | 2024-09-20 10:57:58 +0200 |
---|---|---|
committer | Uwe Kleine-König <ukleinek@kernel.org> | 2024-09-28 15:12:44 +0200 |
commit | 17e40c25158f2505cbcdeda96624afcbab4af368 (patch) | |
tree | bf7432527efc593d5e488e5147b2f5561d6e4430 /drivers/pwm | |
parent | 1cc2e1faafb3b5a2be25112559bdb495736b5af7 (diff) |
pwm: New abstraction for PWM waveforms
Up to now the configuration of a PWM setting is described exclusively by
a struct pwm_state which contains information about period, duty_cycle,
polarity and if the PWM is enabled. (There is another member usage_power
which doesn't completely fit into pwm_state, I ignore it here for
simplicity.)
Instead of a polarity the new abstraction has a member duty_offset_ns
that defines when the rising edge happens after the period start. This
is more general, as with a pwm_state the rising edge can only happen at
the period's start or such that the falling edge is at the end of the
period (i.e. duty_offset_ns == 0 or duty_offset_ns == period_length_ns -
duty_length_ns).
A disabled PWM is modeled by .period_length_ns = 0. In my eyes this is a
nice usage of that otherwise unusable setting, as it doesn't define
anything about the future which matches the fact that consumers should
consider the state of the output as undefined and it's just there to say
"No further requirements about the output, you can save some power.".
Further I renamed period and duty_cycle to period_length_ns and
duty_length_ns. In the past there was confusion from time to time about
duty_cycle being measured in nanoseconds because people expected a
percentage of period instead. With "length_ns" as suffix the semantic
should be more obvious to people unfamiliar with the pwm subsystem.
period is renamed to period_length_ns for consistency.
The API for consumers doesn't change yet, but lowlevel drivers can
implement callbacks that work with pwm_waveforms instead of pwm_states.
A new thing about these callbacks is that the calculation of hardware
settings needed to implement a certain waveform is separated from
actually writing these settings. The motivation for that is that this
allows a consumer to query the hardware capabilities without actually
modifying the hardware state.
The rounding rules that are expected to be implemented in the
round_waveform_tohw() are: First pick the biggest possible period not
bigger than wf->period_length_ns. For that period pick the biggest
possible duty setting not bigger than wf->duty_length_ns. Third pick the
biggest possible offset not bigger than wf->duty_offset_ns. If the
requested period is too small for the hardware, it's expected that a
setting with the minimal period and duty_length_ns = duty_offset_ns = 0
is returned and this fact is signaled by a return value of 1.
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@baylibre.com>
Tested-by: Trevor Gamblin <tgamblin@baylibre.com>
Link: https://lore.kernel.org/r/df0faa33bf9e7c9e2e5eab8d31bbf61e861bd401.1726819463.git.u.kleine-koenig@baylibre.com
[ukleinek: Update pwm_check_rounding() to return bool instead of int.]
Signed-off-by: Uwe Kleine-König <ukleinek@kernel.org>
Diffstat (limited to 'drivers/pwm')
-rw-r--r-- | drivers/pwm/core.c | 234 |
1 files changed, 213 insertions, 21 deletions
diff --git a/drivers/pwm/core.c b/drivers/pwm/core.c index 5a095eb46b54..bbe7bfdb1549 100644 --- a/drivers/pwm/core.c +++ b/drivers/pwm/core.c @@ -49,6 +49,102 @@ static void pwmchip_unlock(struct pwm_chip *chip) DEFINE_GUARD(pwmchip, struct pwm_chip *, pwmchip_lock(_T), pwmchip_unlock(_T)) +static void pwm_wf2state(const struct pwm_waveform *wf, struct pwm_state *state) +{ + if (wf->period_length_ns) { + if (wf->duty_length_ns + wf->duty_offset_ns < wf->period_length_ns) + *state = (struct pwm_state){ + .enabled = true, + .polarity = PWM_POLARITY_NORMAL, + .period = wf->period_length_ns, + .duty_cycle = wf->duty_length_ns, + }; + else + *state = (struct pwm_state){ + .enabled = true, + .polarity = PWM_POLARITY_INVERSED, + .period = wf->period_length_ns, + .duty_cycle = wf->period_length_ns - wf->duty_length_ns, + }; + } else { + *state = (struct pwm_state){ + .enabled = false, + }; + } +} + +static void pwm_state2wf(const struct pwm_state *state, struct pwm_waveform *wf) +{ + if (state->enabled) { + if (state->polarity == PWM_POLARITY_NORMAL) + *wf = (struct pwm_waveform){ + .period_length_ns = state->period, + .duty_length_ns = state->duty_cycle, + .duty_offset_ns = 0, + }; + else + *wf = (struct pwm_waveform){ + .period_length_ns = state->period, + .duty_length_ns = state->period - state->duty_cycle, + .duty_offset_ns = state->duty_cycle, + }; + } else { + *wf = (struct pwm_waveform){ + .period_length_ns = 0, + }; + } +} + +static bool pwm_check_rounding(const struct pwm_waveform *wf, + const struct pwm_waveform *wf_rounded) +{ + if (!wf->period_length_ns) + return true; + + if (wf->period_length_ns < wf_rounded->period_length_ns) + return false; + + if (wf->duty_length_ns < wf_rounded->duty_length_ns) + return false; + + if (wf->duty_offset_ns < wf_rounded->duty_offset_ns) + return false; + + return true; +} + +static int __pwm_round_waveform_tohw(struct pwm_chip *chip, struct pwm_device *pwm, + const struct pwm_waveform *wf, void *wfhw) +{ + const struct pwm_ops *ops = chip->ops; + + return ops->round_waveform_tohw(chip, pwm, wf, wfhw); +} + +static int __pwm_round_waveform_fromhw(struct pwm_chip *chip, struct pwm_device *pwm, + const void *wfhw, struct pwm_waveform *wf) +{ + const struct pwm_ops *ops = chip->ops; + + return ops->round_waveform_fromhw(chip, pwm, wfhw, wf); +} + +static int __pwm_read_waveform(struct pwm_chip *chip, struct pwm_device *pwm, void *wfhw) +{ + const struct pwm_ops *ops = chip->ops; + + return ops->read_waveform(chip, pwm, wfhw); +} + +static int __pwm_write_waveform(struct pwm_chip *chip, struct pwm_device *pwm, const void *wfhw) +{ + const struct pwm_ops *ops = chip->ops; + + return ops->write_waveform(chip, pwm, wfhw); +} + +#define WFHWSIZE 20 + static void pwm_apply_debug(struct pwm_device *pwm, const struct pwm_state *state) { @@ -182,6 +278,7 @@ static bool pwm_state_valid(const struct pwm_state *state) static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state) { struct pwm_chip *chip; + const struct pwm_ops *ops; int err; if (!pwm || !state) @@ -205,6 +302,7 @@ static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state) } chip = pwm->chip; + ops = chip->ops; if (state->period == pwm->state.period && state->duty_cycle == pwm->state.duty_cycle && @@ -213,18 +311,69 @@ static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state) state->usage_power == pwm->state.usage_power) return 0; - err = chip->ops->apply(chip, pwm, state); - trace_pwm_apply(pwm, state, err); - if (err) - return err; + if (ops->write_waveform) { + struct pwm_waveform wf; + char wfhw[WFHWSIZE]; - pwm->state = *state; + BUG_ON(WFHWSIZE < ops->sizeof_wfhw); - /* - * only do this after pwm->state was applied as some - * implementations of .get_state depend on this - */ - pwm_apply_debug(pwm, state); + pwm_state2wf(state, &wf); + + /* + * The rounding is wrong here for states with inverted polarity. + * While .apply() rounds down duty_cycle (which represents the + * time from the start of the period to the inner edge), + * .round_waveform_tohw() rounds down the time the PWM is high. + * Can be fixed if the need arises, until reported otherwise + * let's assume that consumers don't care. + */ + + err = __pwm_round_waveform_tohw(chip, pwm, &wf, &wfhw); + if (err) { + if (err > 0) + /* + * This signals an invalid request, typically + * the requested period (or duty_offset) is + * smaller than possible with the hardware. + */ + return -EINVAL; + + return err; + } + + if (IS_ENABLED(CONFIG_PWM_DEBUG)) { + struct pwm_waveform wf_rounded; + + err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded); + if (err) + return err; + + if (!pwm_check_rounding(&wf, &wf_rounded)) + dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n", + wf.duty_length_ns, wf.period_length_ns, wf.duty_offset_ns, + wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns); + } + + err = __pwm_write_waveform(chip, pwm, &wfhw); + if (err) + return err; + + pwm->state = *state; + + } else { + err = ops->apply(chip, pwm, state); + trace_pwm_apply(pwm, state, err); + if (err) + return err; + + pwm->state = *state; + + /* + * only do this after pwm->state was applied as some + * implementations of .get_state() depend on this + */ + pwm_apply_debug(pwm, state); + } return 0; } @@ -292,6 +441,41 @@ int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state) } EXPORT_SYMBOL_GPL(pwm_apply_atomic); +static int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state) +{ + struct pwm_chip *chip = pwm->chip; + const struct pwm_ops *ops = chip->ops; + int ret = -EOPNOTSUPP; + + if (ops->read_waveform) { + char wfhw[WFHWSIZE]; + struct pwm_waveform wf; + + BUG_ON(WFHWSIZE < ops->sizeof_wfhw); + + scoped_guard(pwmchip, chip) { + + ret = __pwm_read_waveform(chip, pwm, &wfhw); + if (ret) + return ret; + + ret = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf); + if (ret) + return ret; + } + + pwm_wf2state(&wf, state); + + } else if (ops->get_state) { + scoped_guard(pwmchip, chip) + ret = ops->get_state(chip, pwm, state); + + trace_pwm_get(pwm, state, ret); + } + + return ret; +} + /** * pwm_adjust_config() - adjust the current PWM config to the PWM arguments * @pwm: PWM device @@ -435,7 +619,7 @@ err_get_device: } } - if (ops->get_state) { + if (ops->read_waveform || ops->get_state) { /* * Zero-initialize state because most drivers are unaware of * .usage_power. The other members of state are supposed to be @@ -445,11 +629,7 @@ err_get_device: */ struct pwm_state state = { 0, }; - scoped_guard(pwmchip, chip) - err = ops->get_state(chip, pwm, &state); - - trace_pwm_get(pwm, &state, err); - + err = pwm_get_state_hw(pwm, &state); if (!err) pwm->state = state; @@ -1136,12 +1316,24 @@ static bool pwm_ops_check(const struct pwm_chip *chip) { const struct pwm_ops *ops = chip->ops; - if (!ops->apply) - return false; + if (ops->write_waveform) { + if (!ops->round_waveform_tohw || + !ops->round_waveform_fromhw || + !ops->write_waveform) + return false; - if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state) - dev_warn(pwmchip_parent(chip), - "Please implement the .get_state() callback\n"); + if (WFHWSIZE < ops->sizeof_wfhw) { + dev_warn(pwmchip_parent(chip), "WFHWSIZE < %zu\n", ops->sizeof_wfhw); + return false; + } + } else { + if (!ops->apply) + return false; + + if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state) + dev_warn(pwmchip_parent(chip), + "Please implement the .get_state() callback\n"); + } return true; } |