summaryrefslogtreecommitdiff
path: root/drivers/soc/qcom/rpmh-rsc.c
diff options
context:
space:
mode:
authorDouglas Anderson <dianders@chromium.org>2020-05-04 10:50:19 -0700
committerBjorn Andersson <bjorn.andersson@linaro.org>2020-05-15 11:45:21 -0700
commitd2a8cfc6f320263b90ca523590a339661d0f4fae (patch)
tree4610bbcfc44e8d0c4b615934375973afd9483b0b /drivers/soc/qcom/rpmh-rsc.c
parent555701a45f146673c8961f084b6880c637d41129 (diff)
soc: qcom: rpmh-rsc: Remove the pm_lock
It has been postulated that the pm_lock is bad for performance because a CPU currently running rpmh_flush() could block other CPUs from coming out of idle. Similarly CPUs coming out of / going into idle all need to contend with each other for the spinlock just to update the variable tracking who's in PM. Let's optimize this a bit. Specifically: - Use a count rather than a bitmask. This is faster to access and also means we can use the atomic_inc_return() function to really detect who the last one to enter PM was. - Accept that it's OK if we race and are doing the flush (because we think we're last) while another CPU is coming out of idle. As long as we block that CPU if/when it tries to do an active-only transfer we're OK. Signed-off-by: Douglas Anderson <dianders@chromium.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Link: https://lore.kernel.org/r/20200504104917.v6.5.I295cb72bc5334a2af80313cbe97cb5c9dcb1442c@changeid Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Diffstat (limited to 'drivers/soc/qcom/rpmh-rsc.c')
-rw-r--r--drivers/soc/qcom/rpmh-rsc.c75
1 files changed, 46 insertions, 29 deletions
diff --git a/drivers/soc/qcom/rpmh-rsc.c b/drivers/soc/qcom/rpmh-rsc.c
index fb142dfbb237..237d7d5cc8a8 100644
--- a/drivers/soc/qcom/rpmh-rsc.c
+++ b/drivers/soc/qcom/rpmh-rsc.c
@@ -750,6 +750,8 @@ int rpmh_rsc_write_ctrl_data(struct rsc_drv *drv, const struct tcs_request *msg)
* SLEEP and WAKE sets. If AMCs are busy, controller can not enter
* power collapse, so deny from the last cpu's pm notification.
*
+ * Context: Must be called with the drv->lock held.
+ *
* Return:
* * False - AMCs are idle
* * True - AMCs are busy
@@ -764,9 +766,6 @@ static bool rpmh_rsc_ctrlr_is_busy(struct rsc_drv *drv)
* dedicated TCS for active state use, then re-purposed wake TCSes
* should be checked for not busy, because we used wake TCSes for
* active requests in this case.
- *
- * Since this is called from the last cpu, need not take drv->lock
- * before checking tcs_is_free().
*/
if (!tcs->num_tcs)
tcs = &drv->tcs[WAKE_TCS];
@@ -801,43 +800,62 @@ static int rpmh_rsc_cpu_pm_callback(struct notifier_block *nfb,
{
struct rsc_drv *drv = container_of(nfb, struct rsc_drv, rsc_pm);
int ret = NOTIFY_OK;
-
- spin_lock(&drv->pm_lock);
+ int cpus_in_pm;
switch (action) {
case CPU_PM_ENTER:
- cpumask_set_cpu(smp_processor_id(), &drv->cpus_entered_pm);
-
- if (!cpumask_equal(&drv->cpus_entered_pm, cpu_online_mask))
- goto exit;
+ cpus_in_pm = atomic_inc_return(&drv->cpus_in_pm);
+ /*
+ * NOTE: comments for num_online_cpus() point out that it's
+ * only a snapshot so we need to be careful. It should be OK
+ * for us to use, though. It's important for us not to miss
+ * if we're the last CPU going down so it would only be a
+ * problem if a CPU went offline right after we did the check
+ * AND that CPU was not idle AND that CPU was the last non-idle
+ * CPU. That can't happen. CPUs would have to come out of idle
+ * before the CPU could go offline.
+ */
+ if (cpus_in_pm < num_online_cpus())
+ return NOTIFY_OK;
break;
case CPU_PM_ENTER_FAILED:
case CPU_PM_EXIT:
- cpumask_clear_cpu(smp_processor_id(), &drv->cpus_entered_pm);
- goto exit;
+ atomic_dec(&drv->cpus_in_pm);
+ return NOTIFY_OK;
default:
- ret = NOTIFY_DONE;
- goto exit;
+ return NOTIFY_DONE;
}
- ret = rpmh_rsc_ctrlr_is_busy(drv);
- if (ret) {
- ret = NOTIFY_BAD;
- goto exit;
+ /*
+ * It's likely we're on the last CPU. Grab the drv->lock and write
+ * out the sleep/wake commands to RPMH hardware. Grabbing the lock
+ * means that if we race with another CPU coming up we are still
+ * guaranteed to be safe. If another CPU came up just after we checked
+ * and has grabbed the lock or started an active transfer then we'll
+ * notice we're busy and abort. If another CPU comes up after we start
+ * flushing it will be blocked from starting an active transfer until
+ * we're done flushing. If another CPU starts an active transfer after
+ * we release the lock we're still OK because we're no longer the last
+ * CPU.
+ */
+ if (spin_trylock(&drv->lock)) {
+ if (rpmh_rsc_ctrlr_is_busy(drv) || rpmh_flush(&drv->client))
+ ret = NOTIFY_BAD;
+ spin_unlock(&drv->lock);
+ } else {
+ /* Another CPU must be up */
+ return NOTIFY_OK;
}
- ret = rpmh_flush(&drv->client);
- if (ret)
- ret = NOTIFY_BAD;
- else
- ret = NOTIFY_OK;
-
-exit:
- if (ret == NOTIFY_BAD)
- /* We won't be called w/ CPU_PM_ENTER_FAILED */
- cpumask_clear_cpu(smp_processor_id(), &drv->cpus_entered_pm);
+ if (ret == NOTIFY_BAD) {
+ /* Double-check if we're here because someone else is up */
+ if (cpus_in_pm < num_online_cpus())
+ ret = NOTIFY_OK;
+ else
+ /* We won't be called w/ CPU_PM_ENTER_FAILED */
+ atomic_dec(&drv->cpus_in_pm);
+ }
- spin_unlock(&drv->pm_lock);
return ret;
}
@@ -980,7 +998,6 @@ static int rpmh_rsc_probe(struct platform_device *pdev)
solver_config = solver_config >> DRV_HW_SOLVER_SHIFT;
if (!solver_config) {
drv->rsc_pm.notifier_call = rpmh_rsc_cpu_pm_callback;
- spin_lock_init(&drv->pm_lock);
cpu_pm_register_notifier(&drv->rsc_pm);
}