diff options
author | Lukasz Luba <lukasz.luba@arm.com> | 2022-07-07 08:15:52 +0100 |
---|---|---|
committer | Rafael J. Wysocki <rafael.j.wysocki@intel.com> | 2022-07-15 19:17:30 +0200 |
commit | ae6ccaa650380d243cf43d31c864c5ced2fd4612 (patch) | |
tree | 31a1316e5a8e779db5d4697fa05bb43853fed24a /drivers/thermal | |
parent | 32346491ddf24599decca06190ebca03ff9de7f8 (diff) |
PM: EM: convert power field to micro-Watts precision and align drivers
The milli-Watts precision causes rounding errors while calculating
efficiency cost for each OPP. This is especially visible in the 'simple'
Energy Model (EM), where the power for each OPP is provided from OPP
framework. This can cause some OPPs to be marked inefficient, while
using micro-Watts precision that might not happen.
Update all EM users which access 'power' field and assume the value is
in milli-Watts.
Solve also an issue with potential overflow in calculation of energy
estimation on 32bit machine. It's needed now since the power value
(thus the 'cost' as well) are higher.
Example calculation which shows the rounding error and impact:
power = 'dyn-power-coeff' * volt_mV * volt_mV * freq_MHz
power_a_uW = (100 * 600mW * 600mW * 500MHz) / 10^6 = 18000
power_a_mW = (100 * 600mW * 600mW * 500MHz) / 10^9 = 18
power_b_uW = (100 * 605mW * 605mW * 600MHz) / 10^6 = 21961
power_b_mW = (100 * 605mW * 605mW * 600MHz) / 10^9 = 21
max_freq = 2000MHz
cost_a_mW = 18 * 2000MHz/500MHz = 72
cost_a_uW = 18000 * 2000MHz/500MHz = 72000
cost_b_mW = 21 * 2000MHz/600MHz = 70 // <- artificially better
cost_b_uW = 21961 * 2000MHz/600MHz = 73203
The 'cost_b_mW' (which is based on old milli-Watts) is misleadingly
better that the 'cost_b_uW' (this patch uses micro-Watts) and such
would have impact on the 'inefficient OPPs' information in the Cpufreq
framework. This patch set removes the rounding issue.
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Diffstat (limited to 'drivers/thermal')
-rw-r--r-- | drivers/thermal/cpufreq_cooling.c | 13 | ||||
-rw-r--r-- | drivers/thermal/devfreq_cooling.c | 19 |
2 files changed, 26 insertions, 6 deletions
diff --git a/drivers/thermal/cpufreq_cooling.c b/drivers/thermal/cpufreq_cooling.c index b8151d95a806..dc19e7c80751 100644 --- a/drivers/thermal/cpufreq_cooling.c +++ b/drivers/thermal/cpufreq_cooling.c @@ -21,6 +21,7 @@ #include <linux/pm_qos.h> #include <linux/slab.h> #include <linux/thermal.h> +#include <linux/units.h> #include <trace/events/thermal.h> @@ -101,6 +102,7 @@ static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev, static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev, u32 freq) { + unsigned long power_mw; int i; for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) { @@ -108,16 +110,23 @@ static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev, break; } - return cpufreq_cdev->em->table[i + 1].power; + power_mw = cpufreq_cdev->em->table[i + 1].power; + power_mw /= MICROWATT_PER_MILLIWATT; + + return power_mw; } static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev, u32 power) { + unsigned long em_power_mw; int i; for (i = cpufreq_cdev->max_level; i > 0; i--) { - if (power >= cpufreq_cdev->em->table[i].power) + /* Convert EM power to milli-Watts to make safe comparison */ + em_power_mw = cpufreq_cdev->em->table[i].power; + em_power_mw /= MICROWATT_PER_MILLIWATT; + if (power >= em_power_mw) break; } diff --git a/drivers/thermal/devfreq_cooling.c b/drivers/thermal/devfreq_cooling.c index 8c76f9655e57..8d1260f65061 100644 --- a/drivers/thermal/devfreq_cooling.c +++ b/drivers/thermal/devfreq_cooling.c @@ -200,7 +200,11 @@ static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cd res = dfc->power_ops->get_real_power(df, power, freq, voltage); if (!res) { state = dfc->capped_state; + + /* Convert EM power into milli-Watts first */ dfc->res_util = dfc->em_pd->table[state].power; + dfc->res_util /= MICROWATT_PER_MILLIWATT; + dfc->res_util *= SCALE_ERROR_MITIGATION; if (*power > 1) @@ -218,8 +222,10 @@ static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cd _normalize_load(&status); - /* Scale power for utilization */ + /* Convert EM power into milli-Watts first */ *power = dfc->em_pd->table[perf_idx].power; + *power /= MICROWATT_PER_MILLIWATT; + /* Scale power for utilization */ *power *= status.busy_time; *power >>= 10; } @@ -244,6 +250,7 @@ static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev, perf_idx = dfc->max_state - state; *power = dfc->em_pd->table[perf_idx].power; + *power /= MICROWATT_PER_MILLIWATT; return 0; } @@ -254,7 +261,7 @@ static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev, struct devfreq_cooling_device *dfc = cdev->devdata; struct devfreq *df = dfc->devfreq; struct devfreq_dev_status status; - unsigned long freq; + unsigned long freq, em_power_mw; s32 est_power; int i; @@ -279,9 +286,13 @@ static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev, * Find the first cooling state that is within the power * budget. The EM power table is sorted ascending. */ - for (i = dfc->max_state; i > 0; i--) - if (est_power >= dfc->em_pd->table[i].power) + for (i = dfc->max_state; i > 0; i--) { + /* Convert EM power to milli-Watts to make safe comparison */ + em_power_mw = dfc->em_pd->table[i].power; + em_power_mw /= MICROWATT_PER_MILLIWATT; + if (est_power >= em_power_mw) break; + } *state = dfc->max_state - i; dfc->capped_state = *state; |