diff options
| author | Arnd Bergmann <arnd@arndb.de> | 2011-09-20 21:45:56 +0200 | 
|---|---|---|
| committer | Arnd Bergmann <arnd@arndb.de> | 2011-09-20 21:45:56 +0200 | 
| commit | 1fdb4888e45f1413972a8e9da55f3ffc08b9abcb (patch) | |
| tree | 635ef73cdff38d21a529bbdcab4cd2cb39a29484 /fs/xfs/xfs_buf.c | |
| parent | 1884af9365a96314164f4110d4528d425e5dd843 (diff) | |
| parent | ceb1c532ba6220900e61ec7073a9234661efa450 (diff) | |
Merge branch 'omap/cleanup' into next/cleanup
Diffstat (limited to 'fs/xfs/xfs_buf.c')
| -rw-r--r-- | fs/xfs/xfs_buf.c | 1876 | 
1 files changed, 1876 insertions, 0 deletions
| diff --git a/fs/xfs/xfs_buf.c b/fs/xfs/xfs_buf.c new file mode 100644 index 000000000000..c57836dc778f --- /dev/null +++ b/fs/xfs/xfs_buf.c @@ -0,0 +1,1876 @@ +/* + * Copyright (c) 2000-2006 Silicon Graphics, Inc. + * All Rights Reserved. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it would be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write the Free Software Foundation, + * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA + */ +#include "xfs.h" +#include <linux/stddef.h> +#include <linux/errno.h> +#include <linux/gfp.h> +#include <linux/pagemap.h> +#include <linux/init.h> +#include <linux/vmalloc.h> +#include <linux/bio.h> +#include <linux/sysctl.h> +#include <linux/proc_fs.h> +#include <linux/workqueue.h> +#include <linux/percpu.h> +#include <linux/blkdev.h> +#include <linux/hash.h> +#include <linux/kthread.h> +#include <linux/migrate.h> +#include <linux/backing-dev.h> +#include <linux/freezer.h> + +#include "xfs_sb.h" +#include "xfs_inum.h" +#include "xfs_log.h" +#include "xfs_ag.h" +#include "xfs_mount.h" +#include "xfs_trace.h" + +static kmem_zone_t *xfs_buf_zone; +STATIC int xfsbufd(void *); +STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int); + +static struct workqueue_struct *xfslogd_workqueue; +struct workqueue_struct *xfsdatad_workqueue; +struct workqueue_struct *xfsconvertd_workqueue; + +#ifdef XFS_BUF_LOCK_TRACKING +# define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid) +# define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1) +# define XB_GET_OWNER(bp)	((bp)->b_last_holder) +#else +# define XB_SET_OWNER(bp)	do { } while (0) +# define XB_CLEAR_OWNER(bp)	do { } while (0) +# define XB_GET_OWNER(bp)	do { } while (0) +#endif + +#define xb_to_gfp(flags) \ +	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \ +	  ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN) + +#define xb_to_km(flags) \ +	 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP) + +#define xfs_buf_allocate(flags) \ +	kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags)) +#define xfs_buf_deallocate(bp) \ +	kmem_zone_free(xfs_buf_zone, (bp)); + +static inline int +xfs_buf_is_vmapped( +	struct xfs_buf	*bp) +{ +	/* +	 * Return true if the buffer is vmapped. +	 * +	 * The XBF_MAPPED flag is set if the buffer should be mapped, but the +	 * code is clever enough to know it doesn't have to map a single page, +	 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1. +	 */ +	return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1; +} + +static inline int +xfs_buf_vmap_len( +	struct xfs_buf	*bp) +{ +	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; +} + +/* + * xfs_buf_lru_add - add a buffer to the LRU. + * + * The LRU takes a new reference to the buffer so that it will only be freed + * once the shrinker takes the buffer off the LRU. + */ +STATIC void +xfs_buf_lru_add( +	struct xfs_buf	*bp) +{ +	struct xfs_buftarg *btp = bp->b_target; + +	spin_lock(&btp->bt_lru_lock); +	if (list_empty(&bp->b_lru)) { +		atomic_inc(&bp->b_hold); +		list_add_tail(&bp->b_lru, &btp->bt_lru); +		btp->bt_lru_nr++; +	} +	spin_unlock(&btp->bt_lru_lock); +} + +/* + * xfs_buf_lru_del - remove a buffer from the LRU + * + * The unlocked check is safe here because it only occurs when there are not + * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there + * to optimise the shrinker removing the buffer from the LRU and calling + * xfs_buf_free(). i.e. it removes an unnecessary round trip on the + * bt_lru_lock. + */ +STATIC void +xfs_buf_lru_del( +	struct xfs_buf	*bp) +{ +	struct xfs_buftarg *btp = bp->b_target; + +	if (list_empty(&bp->b_lru)) +		return; + +	spin_lock(&btp->bt_lru_lock); +	if (!list_empty(&bp->b_lru)) { +		list_del_init(&bp->b_lru); +		btp->bt_lru_nr--; +	} +	spin_unlock(&btp->bt_lru_lock); +} + +/* + * When we mark a buffer stale, we remove the buffer from the LRU and clear the + * b_lru_ref count so that the buffer is freed immediately when the buffer + * reference count falls to zero. If the buffer is already on the LRU, we need + * to remove the reference that LRU holds on the buffer. + * + * This prevents build-up of stale buffers on the LRU. + */ +void +xfs_buf_stale( +	struct xfs_buf	*bp) +{ +	bp->b_flags |= XBF_STALE; +	atomic_set(&(bp)->b_lru_ref, 0); +	if (!list_empty(&bp->b_lru)) { +		struct xfs_buftarg *btp = bp->b_target; + +		spin_lock(&btp->bt_lru_lock); +		if (!list_empty(&bp->b_lru)) { +			list_del_init(&bp->b_lru); +			btp->bt_lru_nr--; +			atomic_dec(&bp->b_hold); +		} +		spin_unlock(&btp->bt_lru_lock); +	} +	ASSERT(atomic_read(&bp->b_hold) >= 1); +} + +STATIC void +_xfs_buf_initialize( +	xfs_buf_t		*bp, +	xfs_buftarg_t		*target, +	xfs_off_t		range_base, +	size_t			range_length, +	xfs_buf_flags_t		flags) +{ +	/* +	 * We don't want certain flags to appear in b_flags. +	 */ +	flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD); + +	memset(bp, 0, sizeof(xfs_buf_t)); +	atomic_set(&bp->b_hold, 1); +	atomic_set(&bp->b_lru_ref, 1); +	init_completion(&bp->b_iowait); +	INIT_LIST_HEAD(&bp->b_lru); +	INIT_LIST_HEAD(&bp->b_list); +	RB_CLEAR_NODE(&bp->b_rbnode); +	sema_init(&bp->b_sema, 0); /* held, no waiters */ +	XB_SET_OWNER(bp); +	bp->b_target = target; +	bp->b_file_offset = range_base; +	/* +	 * Set buffer_length and count_desired to the same value initially. +	 * I/O routines should use count_desired, which will be the same in +	 * most cases but may be reset (e.g. XFS recovery). +	 */ +	bp->b_buffer_length = bp->b_count_desired = range_length; +	bp->b_flags = flags; +	bp->b_bn = XFS_BUF_DADDR_NULL; +	atomic_set(&bp->b_pin_count, 0); +	init_waitqueue_head(&bp->b_waiters); + +	XFS_STATS_INC(xb_create); + +	trace_xfs_buf_init(bp, _RET_IP_); +} + +/* + *	Allocate a page array capable of holding a specified number + *	of pages, and point the page buf at it. + */ +STATIC int +_xfs_buf_get_pages( +	xfs_buf_t		*bp, +	int			page_count, +	xfs_buf_flags_t		flags) +{ +	/* Make sure that we have a page list */ +	if (bp->b_pages == NULL) { +		bp->b_offset = xfs_buf_poff(bp->b_file_offset); +		bp->b_page_count = page_count; +		if (page_count <= XB_PAGES) { +			bp->b_pages = bp->b_page_array; +		} else { +			bp->b_pages = kmem_alloc(sizeof(struct page *) * +					page_count, xb_to_km(flags)); +			if (bp->b_pages == NULL) +				return -ENOMEM; +		} +		memset(bp->b_pages, 0, sizeof(struct page *) * page_count); +	} +	return 0; +} + +/* + *	Frees b_pages if it was allocated. + */ +STATIC void +_xfs_buf_free_pages( +	xfs_buf_t	*bp) +{ +	if (bp->b_pages != bp->b_page_array) { +		kmem_free(bp->b_pages); +		bp->b_pages = NULL; +	} +} + +/* + *	Releases the specified buffer. + * + * 	The modification state of any associated pages is left unchanged. + * 	The buffer most not be on any hash - use xfs_buf_rele instead for + * 	hashed and refcounted buffers + */ +void +xfs_buf_free( +	xfs_buf_t		*bp) +{ +	trace_xfs_buf_free(bp, _RET_IP_); + +	ASSERT(list_empty(&bp->b_lru)); + +	if (bp->b_flags & _XBF_PAGES) { +		uint		i; + +		if (xfs_buf_is_vmapped(bp)) +			vm_unmap_ram(bp->b_addr - bp->b_offset, +					bp->b_page_count); + +		for (i = 0; i < bp->b_page_count; i++) { +			struct page	*page = bp->b_pages[i]; + +			__free_page(page); +		} +	} else if (bp->b_flags & _XBF_KMEM) +		kmem_free(bp->b_addr); +	_xfs_buf_free_pages(bp); +	xfs_buf_deallocate(bp); +} + +/* + * Allocates all the pages for buffer in question and builds it's page list. + */ +STATIC int +xfs_buf_allocate_memory( +	xfs_buf_t		*bp, +	uint			flags) +{ +	size_t			size = bp->b_count_desired; +	size_t			nbytes, offset; +	gfp_t			gfp_mask = xb_to_gfp(flags); +	unsigned short		page_count, i; +	xfs_off_t		end; +	int			error; + +	/* +	 * for buffers that are contained within a single page, just allocate +	 * the memory from the heap - there's no need for the complexity of +	 * page arrays to keep allocation down to order 0. +	 */ +	if (bp->b_buffer_length < PAGE_SIZE) { +		bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags)); +		if (!bp->b_addr) { +			/* low memory - use alloc_page loop instead */ +			goto use_alloc_page; +		} + +		if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) & +								PAGE_MASK) != +		    ((unsigned long)bp->b_addr & PAGE_MASK)) { +			/* b_addr spans two pages - use alloc_page instead */ +			kmem_free(bp->b_addr); +			bp->b_addr = NULL; +			goto use_alloc_page; +		} +		bp->b_offset = offset_in_page(bp->b_addr); +		bp->b_pages = bp->b_page_array; +		bp->b_pages[0] = virt_to_page(bp->b_addr); +		bp->b_page_count = 1; +		bp->b_flags |= XBF_MAPPED | _XBF_KMEM; +		return 0; +	} + +use_alloc_page: +	end = bp->b_file_offset + bp->b_buffer_length; +	page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset); +	error = _xfs_buf_get_pages(bp, page_count, flags); +	if (unlikely(error)) +		return error; + +	offset = bp->b_offset; +	bp->b_flags |= _XBF_PAGES; + +	for (i = 0; i < bp->b_page_count; i++) { +		struct page	*page; +		uint		retries = 0; +retry: +		page = alloc_page(gfp_mask); +		if (unlikely(page == NULL)) { +			if (flags & XBF_READ_AHEAD) { +				bp->b_page_count = i; +				error = ENOMEM; +				goto out_free_pages; +			} + +			/* +			 * This could deadlock. +			 * +			 * But until all the XFS lowlevel code is revamped to +			 * handle buffer allocation failures we can't do much. +			 */ +			if (!(++retries % 100)) +				xfs_err(NULL, +		"possible memory allocation deadlock in %s (mode:0x%x)", +					__func__, gfp_mask); + +			XFS_STATS_INC(xb_page_retries); +			congestion_wait(BLK_RW_ASYNC, HZ/50); +			goto retry; +		} + +		XFS_STATS_INC(xb_page_found); + +		nbytes = min_t(size_t, size, PAGE_SIZE - offset); +		size -= nbytes; +		bp->b_pages[i] = page; +		offset = 0; +	} +	return 0; + +out_free_pages: +	for (i = 0; i < bp->b_page_count; i++) +		__free_page(bp->b_pages[i]); +	return error; +} + +/* + *	Map buffer into kernel address-space if necessary. + */ +STATIC int +_xfs_buf_map_pages( +	xfs_buf_t		*bp, +	uint			flags) +{ +	ASSERT(bp->b_flags & _XBF_PAGES); +	if (bp->b_page_count == 1) { +		/* A single page buffer is always mappable */ +		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; +		bp->b_flags |= XBF_MAPPED; +	} else if (flags & XBF_MAPPED) { +		int retried = 0; + +		do { +			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, +						-1, PAGE_KERNEL); +			if (bp->b_addr) +				break; +			vm_unmap_aliases(); +		} while (retried++ <= 1); + +		if (!bp->b_addr) +			return -ENOMEM; +		bp->b_addr += bp->b_offset; +		bp->b_flags |= XBF_MAPPED; +	} + +	return 0; +} + +/* + *	Finding and Reading Buffers + */ + +/* + *	Look up, and creates if absent, a lockable buffer for + *	a given range of an inode.  The buffer is returned + *	locked.	 If other overlapping buffers exist, they are + *	released before the new buffer is created and locked, + *	which may imply that this call will block until those buffers + *	are unlocked.  No I/O is implied by this call. + */ +xfs_buf_t * +_xfs_buf_find( +	xfs_buftarg_t		*btp,	/* block device target		*/ +	xfs_off_t		ioff,	/* starting offset of range	*/ +	size_t			isize,	/* length of range		*/ +	xfs_buf_flags_t		flags, +	xfs_buf_t		*new_bp) +{ +	xfs_off_t		range_base; +	size_t			range_length; +	struct xfs_perag	*pag; +	struct rb_node		**rbp; +	struct rb_node		*parent; +	xfs_buf_t		*bp; + +	range_base = (ioff << BBSHIFT); +	range_length = (isize << BBSHIFT); + +	/* Check for IOs smaller than the sector size / not sector aligned */ +	ASSERT(!(range_length < (1 << btp->bt_sshift))); +	ASSERT(!(range_base & (xfs_off_t)btp->bt_smask)); + +	/* get tree root */ +	pag = xfs_perag_get(btp->bt_mount, +				xfs_daddr_to_agno(btp->bt_mount, ioff)); + +	/* walk tree */ +	spin_lock(&pag->pag_buf_lock); +	rbp = &pag->pag_buf_tree.rb_node; +	parent = NULL; +	bp = NULL; +	while (*rbp) { +		parent = *rbp; +		bp = rb_entry(parent, struct xfs_buf, b_rbnode); + +		if (range_base < bp->b_file_offset) +			rbp = &(*rbp)->rb_left; +		else if (range_base > bp->b_file_offset) +			rbp = &(*rbp)->rb_right; +		else { +			/* +			 * found a block offset match. If the range doesn't +			 * match, the only way this is allowed is if the buffer +			 * in the cache is stale and the transaction that made +			 * it stale has not yet committed. i.e. we are +			 * reallocating a busy extent. Skip this buffer and +			 * continue searching to the right for an exact match. +			 */ +			if (bp->b_buffer_length != range_length) { +				ASSERT(bp->b_flags & XBF_STALE); +				rbp = &(*rbp)->rb_right; +				continue; +			} +			atomic_inc(&bp->b_hold); +			goto found; +		} +	} + +	/* No match found */ +	if (new_bp) { +		_xfs_buf_initialize(new_bp, btp, range_base, +				range_length, flags); +		rb_link_node(&new_bp->b_rbnode, parent, rbp); +		rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree); +		/* the buffer keeps the perag reference until it is freed */ +		new_bp->b_pag = pag; +		spin_unlock(&pag->pag_buf_lock); +	} else { +		XFS_STATS_INC(xb_miss_locked); +		spin_unlock(&pag->pag_buf_lock); +		xfs_perag_put(pag); +	} +	return new_bp; + +found: +	spin_unlock(&pag->pag_buf_lock); +	xfs_perag_put(pag); + +	if (!xfs_buf_trylock(bp)) { +		if (flags & XBF_TRYLOCK) { +			xfs_buf_rele(bp); +			XFS_STATS_INC(xb_busy_locked); +			return NULL; +		} +		xfs_buf_lock(bp); +		XFS_STATS_INC(xb_get_locked_waited); +	} + +	/* +	 * if the buffer is stale, clear all the external state associated with +	 * it. We need to keep flags such as how we allocated the buffer memory +	 * intact here. +	 */ +	if (bp->b_flags & XBF_STALE) { +		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); +		bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES; +	} + +	trace_xfs_buf_find(bp, flags, _RET_IP_); +	XFS_STATS_INC(xb_get_locked); +	return bp; +} + +/* + *	Assembles a buffer covering the specified range. + *	Storage in memory for all portions of the buffer will be allocated, + *	although backing storage may not be. + */ +xfs_buf_t * +xfs_buf_get( +	xfs_buftarg_t		*target,/* target for buffer		*/ +	xfs_off_t		ioff,	/* starting offset of range	*/ +	size_t			isize,	/* length of range		*/ +	xfs_buf_flags_t		flags) +{ +	xfs_buf_t		*bp, *new_bp; +	int			error = 0; + +	new_bp = xfs_buf_allocate(flags); +	if (unlikely(!new_bp)) +		return NULL; + +	bp = _xfs_buf_find(target, ioff, isize, flags, new_bp); +	if (bp == new_bp) { +		error = xfs_buf_allocate_memory(bp, flags); +		if (error) +			goto no_buffer; +	} else { +		xfs_buf_deallocate(new_bp); +		if (unlikely(bp == NULL)) +			return NULL; +	} + +	if (!(bp->b_flags & XBF_MAPPED)) { +		error = _xfs_buf_map_pages(bp, flags); +		if (unlikely(error)) { +			xfs_warn(target->bt_mount, +				"%s: failed to map pages\n", __func__); +			goto no_buffer; +		} +	} + +	XFS_STATS_INC(xb_get); + +	/* +	 * Always fill in the block number now, the mapped cases can do +	 * their own overlay of this later. +	 */ +	bp->b_bn = ioff; +	bp->b_count_desired = bp->b_buffer_length; + +	trace_xfs_buf_get(bp, flags, _RET_IP_); +	return bp; + + no_buffer: +	if (flags & (XBF_LOCK | XBF_TRYLOCK)) +		xfs_buf_unlock(bp); +	xfs_buf_rele(bp); +	return NULL; +} + +STATIC int +_xfs_buf_read( +	xfs_buf_t		*bp, +	xfs_buf_flags_t		flags) +{ +	int			status; + +	ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE))); +	ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL); + +	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | XBF_READ_AHEAD); +	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); + +	status = xfs_buf_iorequest(bp); +	if (status || bp->b_error || (flags & XBF_ASYNC)) +		return status; +	return xfs_buf_iowait(bp); +} + +xfs_buf_t * +xfs_buf_read( +	xfs_buftarg_t		*target, +	xfs_off_t		ioff, +	size_t			isize, +	xfs_buf_flags_t		flags) +{ +	xfs_buf_t		*bp; + +	flags |= XBF_READ; + +	bp = xfs_buf_get(target, ioff, isize, flags); +	if (bp) { +		trace_xfs_buf_read(bp, flags, _RET_IP_); + +		if (!XFS_BUF_ISDONE(bp)) { +			XFS_STATS_INC(xb_get_read); +			_xfs_buf_read(bp, flags); +		} else if (flags & XBF_ASYNC) { +			/* +			 * Read ahead call which is already satisfied, +			 * drop the buffer +			 */ +			goto no_buffer; +		} else { +			/* We do not want read in the flags */ +			bp->b_flags &= ~XBF_READ; +		} +	} + +	return bp; + + no_buffer: +	if (flags & (XBF_LOCK | XBF_TRYLOCK)) +		xfs_buf_unlock(bp); +	xfs_buf_rele(bp); +	return NULL; +} + +/* + *	If we are not low on memory then do the readahead in a deadlock + *	safe manner. + */ +void +xfs_buf_readahead( +	xfs_buftarg_t		*target, +	xfs_off_t		ioff, +	size_t			isize) +{ +	if (bdi_read_congested(target->bt_bdi)) +		return; + +	xfs_buf_read(target, ioff, isize, +		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK); +} + +/* + * Read an uncached buffer from disk. Allocates and returns a locked + * buffer containing the disk contents or nothing. + */ +struct xfs_buf * +xfs_buf_read_uncached( +	struct xfs_mount	*mp, +	struct xfs_buftarg	*target, +	xfs_daddr_t		daddr, +	size_t			length, +	int			flags) +{ +	xfs_buf_t		*bp; +	int			error; + +	bp = xfs_buf_get_uncached(target, length, flags); +	if (!bp) +		return NULL; + +	/* set up the buffer for a read IO */ +	XFS_BUF_SET_ADDR(bp, daddr); +	XFS_BUF_READ(bp); + +	xfsbdstrat(mp, bp); +	error = xfs_buf_iowait(bp); +	if (error || bp->b_error) { +		xfs_buf_relse(bp); +		return NULL; +	} +	return bp; +} + +xfs_buf_t * +xfs_buf_get_empty( +	size_t			len, +	xfs_buftarg_t		*target) +{ +	xfs_buf_t		*bp; + +	bp = xfs_buf_allocate(0); +	if (bp) +		_xfs_buf_initialize(bp, target, 0, len, 0); +	return bp; +} + +/* + * Return a buffer allocated as an empty buffer and associated to external + * memory via xfs_buf_associate_memory() back to it's empty state. + */ +void +xfs_buf_set_empty( +	struct xfs_buf		*bp, +	size_t			len) +{ +	if (bp->b_pages) +		_xfs_buf_free_pages(bp); + +	bp->b_pages = NULL; +	bp->b_page_count = 0; +	bp->b_addr = NULL; +	bp->b_file_offset = 0; +	bp->b_buffer_length = bp->b_count_desired = len; +	bp->b_bn = XFS_BUF_DADDR_NULL; +	bp->b_flags &= ~XBF_MAPPED; +} + +static inline struct page * +mem_to_page( +	void			*addr) +{ +	if ((!is_vmalloc_addr(addr))) { +		return virt_to_page(addr); +	} else { +		return vmalloc_to_page(addr); +	} +} + +int +xfs_buf_associate_memory( +	xfs_buf_t		*bp, +	void			*mem, +	size_t			len) +{ +	int			rval; +	int			i = 0; +	unsigned long		pageaddr; +	unsigned long		offset; +	size_t			buflen; +	int			page_count; + +	pageaddr = (unsigned long)mem & PAGE_MASK; +	offset = (unsigned long)mem - pageaddr; +	buflen = PAGE_ALIGN(len + offset); +	page_count = buflen >> PAGE_SHIFT; + +	/* Free any previous set of page pointers */ +	if (bp->b_pages) +		_xfs_buf_free_pages(bp); + +	bp->b_pages = NULL; +	bp->b_addr = mem; + +	rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK); +	if (rval) +		return rval; + +	bp->b_offset = offset; + +	for (i = 0; i < bp->b_page_count; i++) { +		bp->b_pages[i] = mem_to_page((void *)pageaddr); +		pageaddr += PAGE_SIZE; +	} + +	bp->b_count_desired = len; +	bp->b_buffer_length = buflen; +	bp->b_flags |= XBF_MAPPED; + +	return 0; +} + +xfs_buf_t * +xfs_buf_get_uncached( +	struct xfs_buftarg	*target, +	size_t			len, +	int			flags) +{ +	unsigned long		page_count = PAGE_ALIGN(len) >> PAGE_SHIFT; +	int			error, i; +	xfs_buf_t		*bp; + +	bp = xfs_buf_allocate(0); +	if (unlikely(bp == NULL)) +		goto fail; +	_xfs_buf_initialize(bp, target, 0, len, 0); + +	error = _xfs_buf_get_pages(bp, page_count, 0); +	if (error) +		goto fail_free_buf; + +	for (i = 0; i < page_count; i++) { +		bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); +		if (!bp->b_pages[i]) +			goto fail_free_mem; +	} +	bp->b_flags |= _XBF_PAGES; + +	error = _xfs_buf_map_pages(bp, XBF_MAPPED); +	if (unlikely(error)) { +		xfs_warn(target->bt_mount, +			"%s: failed to map pages\n", __func__); +		goto fail_free_mem; +	} + +	trace_xfs_buf_get_uncached(bp, _RET_IP_); +	return bp; + + fail_free_mem: +	while (--i >= 0) +		__free_page(bp->b_pages[i]); +	_xfs_buf_free_pages(bp); + fail_free_buf: +	xfs_buf_deallocate(bp); + fail: +	return NULL; +} + +/* + *	Increment reference count on buffer, to hold the buffer concurrently + *	with another thread which may release (free) the buffer asynchronously. + *	Must hold the buffer already to call this function. + */ +void +xfs_buf_hold( +	xfs_buf_t		*bp) +{ +	trace_xfs_buf_hold(bp, _RET_IP_); +	atomic_inc(&bp->b_hold); +} + +/* + *	Releases a hold on the specified buffer.  If the + *	the hold count is 1, calls xfs_buf_free. + */ +void +xfs_buf_rele( +	xfs_buf_t		*bp) +{ +	struct xfs_perag	*pag = bp->b_pag; + +	trace_xfs_buf_rele(bp, _RET_IP_); + +	if (!pag) { +		ASSERT(list_empty(&bp->b_lru)); +		ASSERT(RB_EMPTY_NODE(&bp->b_rbnode)); +		if (atomic_dec_and_test(&bp->b_hold)) +			xfs_buf_free(bp); +		return; +	} + +	ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode)); + +	ASSERT(atomic_read(&bp->b_hold) > 0); +	if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) { +		if (!(bp->b_flags & XBF_STALE) && +			   atomic_read(&bp->b_lru_ref)) { +			xfs_buf_lru_add(bp); +			spin_unlock(&pag->pag_buf_lock); +		} else { +			xfs_buf_lru_del(bp); +			ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q))); +			rb_erase(&bp->b_rbnode, &pag->pag_buf_tree); +			spin_unlock(&pag->pag_buf_lock); +			xfs_perag_put(pag); +			xfs_buf_free(bp); +		} +	} +} + + +/* + *	Lock a buffer object, if it is not already locked. + * + *	If we come across a stale, pinned, locked buffer, we know that we are + *	being asked to lock a buffer that has been reallocated. Because it is + *	pinned, we know that the log has not been pushed to disk and hence it + *	will still be locked.  Rather than continuing to have trylock attempts + *	fail until someone else pushes the log, push it ourselves before + *	returning.  This means that the xfsaild will not get stuck trying + *	to push on stale inode buffers. + */ +int +xfs_buf_trylock( +	struct xfs_buf		*bp) +{ +	int			locked; + +	locked = down_trylock(&bp->b_sema) == 0; +	if (locked) +		XB_SET_OWNER(bp); +	else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) +		xfs_log_force(bp->b_target->bt_mount, 0); + +	trace_xfs_buf_trylock(bp, _RET_IP_); +	return locked; +} + +/* + *	Lock a buffer object. + * + *	If we come across a stale, pinned, locked buffer, we know that we + *	are being asked to lock a buffer that has been reallocated. Because + *	it is pinned, we know that the log has not been pushed to disk and + *	hence it will still be locked. Rather than sleeping until someone + *	else pushes the log, push it ourselves before trying to get the lock. + */ +void +xfs_buf_lock( +	struct xfs_buf		*bp) +{ +	trace_xfs_buf_lock(bp, _RET_IP_); + +	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) +		xfs_log_force(bp->b_target->bt_mount, 0); +	down(&bp->b_sema); +	XB_SET_OWNER(bp); + +	trace_xfs_buf_lock_done(bp, _RET_IP_); +} + +/* + *	Releases the lock on the buffer object. + *	If the buffer is marked delwri but is not queued, do so before we + *	unlock the buffer as we need to set flags correctly.  We also need to + *	take a reference for the delwri queue because the unlocker is going to + *	drop their's and they don't know we just queued it. + */ +void +xfs_buf_unlock( +	struct xfs_buf		*bp) +{ +	if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) { +		atomic_inc(&bp->b_hold); +		bp->b_flags |= XBF_ASYNC; +		xfs_buf_delwri_queue(bp, 0); +	} + +	XB_CLEAR_OWNER(bp); +	up(&bp->b_sema); + +	trace_xfs_buf_unlock(bp, _RET_IP_); +} + +STATIC void +xfs_buf_wait_unpin( +	xfs_buf_t		*bp) +{ +	DECLARE_WAITQUEUE	(wait, current); + +	if (atomic_read(&bp->b_pin_count) == 0) +		return; + +	add_wait_queue(&bp->b_waiters, &wait); +	for (;;) { +		set_current_state(TASK_UNINTERRUPTIBLE); +		if (atomic_read(&bp->b_pin_count) == 0) +			break; +		io_schedule(); +	} +	remove_wait_queue(&bp->b_waiters, &wait); +	set_current_state(TASK_RUNNING); +} + +/* + *	Buffer Utility Routines + */ + +STATIC void +xfs_buf_iodone_work( +	struct work_struct	*work) +{ +	xfs_buf_t		*bp = +		container_of(work, xfs_buf_t, b_iodone_work); + +	if (bp->b_iodone) +		(*(bp->b_iodone))(bp); +	else if (bp->b_flags & XBF_ASYNC) +		xfs_buf_relse(bp); +} + +void +xfs_buf_ioend( +	xfs_buf_t		*bp, +	int			schedule) +{ +	trace_xfs_buf_iodone(bp, _RET_IP_); + +	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); +	if (bp->b_error == 0) +		bp->b_flags |= XBF_DONE; + +	if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) { +		if (schedule) { +			INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work); +			queue_work(xfslogd_workqueue, &bp->b_iodone_work); +		} else { +			xfs_buf_iodone_work(&bp->b_iodone_work); +		} +	} else { +		complete(&bp->b_iowait); +	} +} + +void +xfs_buf_ioerror( +	xfs_buf_t		*bp, +	int			error) +{ +	ASSERT(error >= 0 && error <= 0xffff); +	bp->b_error = (unsigned short)error; +	trace_xfs_buf_ioerror(bp, error, _RET_IP_); +} + +int +xfs_bwrite( +	struct xfs_mount	*mp, +	struct xfs_buf		*bp) +{ +	int			error; + +	bp->b_flags |= XBF_WRITE; +	bp->b_flags &= ~(XBF_ASYNC | XBF_READ); + +	xfs_buf_delwri_dequeue(bp); +	xfs_bdstrat_cb(bp); + +	error = xfs_buf_iowait(bp); +	if (error) +		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); +	xfs_buf_relse(bp); +	return error; +} + +void +xfs_bdwrite( +	void			*mp, +	struct xfs_buf		*bp) +{ +	trace_xfs_buf_bdwrite(bp, _RET_IP_); + +	bp->b_flags &= ~XBF_READ; +	bp->b_flags |= (XBF_DELWRI | XBF_ASYNC); + +	xfs_buf_delwri_queue(bp, 1); +} + +/* + * Called when we want to stop a buffer from getting written or read. + * We attach the EIO error, muck with its flags, and call xfs_buf_ioend + * so that the proper iodone callbacks get called. + */ +STATIC int +xfs_bioerror( +	xfs_buf_t *bp) +{ +#ifdef XFSERRORDEBUG +	ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone); +#endif + +	/* +	 * No need to wait until the buffer is unpinned, we aren't flushing it. +	 */ +	xfs_buf_ioerror(bp, EIO); + +	/* +	 * We're calling xfs_buf_ioend, so delete XBF_DONE flag. +	 */ +	XFS_BUF_UNREAD(bp); +	XFS_BUF_UNDELAYWRITE(bp); +	XFS_BUF_UNDONE(bp); +	XFS_BUF_STALE(bp); + +	xfs_buf_ioend(bp, 0); + +	return EIO; +} + +/* + * Same as xfs_bioerror, except that we are releasing the buffer + * here ourselves, and avoiding the xfs_buf_ioend call. + * This is meant for userdata errors; metadata bufs come with + * iodone functions attached, so that we can track down errors. + */ +STATIC int +xfs_bioerror_relse( +	struct xfs_buf	*bp) +{ +	int64_t		fl = bp->b_flags; +	/* +	 * No need to wait until the buffer is unpinned. +	 * We aren't flushing it. +	 * +	 * chunkhold expects B_DONE to be set, whether +	 * we actually finish the I/O or not. We don't want to +	 * change that interface. +	 */ +	XFS_BUF_UNREAD(bp); +	XFS_BUF_UNDELAYWRITE(bp); +	XFS_BUF_DONE(bp); +	XFS_BUF_STALE(bp); +	bp->b_iodone = NULL; +	if (!(fl & XBF_ASYNC)) { +		/* +		 * Mark b_error and B_ERROR _both_. +		 * Lot's of chunkcache code assumes that. +		 * There's no reason to mark error for +		 * ASYNC buffers. +		 */ +		xfs_buf_ioerror(bp, EIO); +		XFS_BUF_FINISH_IOWAIT(bp); +	} else { +		xfs_buf_relse(bp); +	} + +	return EIO; +} + + +/* + * All xfs metadata buffers except log state machine buffers + * get this attached as their b_bdstrat callback function. + * This is so that we can catch a buffer + * after prematurely unpinning it to forcibly shutdown the filesystem. + */ +int +xfs_bdstrat_cb( +	struct xfs_buf	*bp) +{ +	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { +		trace_xfs_bdstrat_shut(bp, _RET_IP_); +		/* +		 * Metadata write that didn't get logged but +		 * written delayed anyway. These aren't associated +		 * with a transaction, and can be ignored. +		 */ +		if (!bp->b_iodone && !XFS_BUF_ISREAD(bp)) +			return xfs_bioerror_relse(bp); +		else +			return xfs_bioerror(bp); +	} + +	xfs_buf_iorequest(bp); +	return 0; +} + +/* + * Wrapper around bdstrat so that we can stop data from going to disk in case + * we are shutting down the filesystem.  Typically user data goes thru this + * path; one of the exceptions is the superblock. + */ +void +xfsbdstrat( +	struct xfs_mount	*mp, +	struct xfs_buf		*bp) +{ +	if (XFS_FORCED_SHUTDOWN(mp)) { +		trace_xfs_bdstrat_shut(bp, _RET_IP_); +		xfs_bioerror_relse(bp); +		return; +	} + +	xfs_buf_iorequest(bp); +} + +STATIC void +_xfs_buf_ioend( +	xfs_buf_t		*bp, +	int			schedule) +{ +	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) +		xfs_buf_ioend(bp, schedule); +} + +STATIC void +xfs_buf_bio_end_io( +	struct bio		*bio, +	int			error) +{ +	xfs_buf_t		*bp = (xfs_buf_t *)bio->bi_private; + +	xfs_buf_ioerror(bp, -error); + +	if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) +		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); + +	_xfs_buf_ioend(bp, 1); +	bio_put(bio); +} + +STATIC void +_xfs_buf_ioapply( +	xfs_buf_t		*bp) +{ +	int			rw, map_i, total_nr_pages, nr_pages; +	struct bio		*bio; +	int			offset = bp->b_offset; +	int			size = bp->b_count_desired; +	sector_t		sector = bp->b_bn; + +	total_nr_pages = bp->b_page_count; +	map_i = 0; + +	if (bp->b_flags & XBF_WRITE) { +		if (bp->b_flags & XBF_SYNCIO) +			rw = WRITE_SYNC; +		else +			rw = WRITE; +		if (bp->b_flags & XBF_FUA) +			rw |= REQ_FUA; +		if (bp->b_flags & XBF_FLUSH) +			rw |= REQ_FLUSH; +	} else if (bp->b_flags & XBF_READ_AHEAD) { +		rw = READA; +	} else { +		rw = READ; +	} + +	/* we only use the buffer cache for meta-data */ +	rw |= REQ_META; + +next_chunk: +	atomic_inc(&bp->b_io_remaining); +	nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT); +	if (nr_pages > total_nr_pages) +		nr_pages = total_nr_pages; + +	bio = bio_alloc(GFP_NOIO, nr_pages); +	bio->bi_bdev = bp->b_target->bt_bdev; +	bio->bi_sector = sector; +	bio->bi_end_io = xfs_buf_bio_end_io; +	bio->bi_private = bp; + + +	for (; size && nr_pages; nr_pages--, map_i++) { +		int	rbytes, nbytes = PAGE_SIZE - offset; + +		if (nbytes > size) +			nbytes = size; + +		rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset); +		if (rbytes < nbytes) +			break; + +		offset = 0; +		sector += nbytes >> BBSHIFT; +		size -= nbytes; +		total_nr_pages--; +	} + +	if (likely(bio->bi_size)) { +		if (xfs_buf_is_vmapped(bp)) { +			flush_kernel_vmap_range(bp->b_addr, +						xfs_buf_vmap_len(bp)); +		} +		submit_bio(rw, bio); +		if (size) +			goto next_chunk; +	} else { +		xfs_buf_ioerror(bp, EIO); +		bio_put(bio); +	} +} + +int +xfs_buf_iorequest( +	xfs_buf_t		*bp) +{ +	trace_xfs_buf_iorequest(bp, _RET_IP_); + +	if (bp->b_flags & XBF_DELWRI) { +		xfs_buf_delwri_queue(bp, 1); +		return 0; +	} + +	if (bp->b_flags & XBF_WRITE) { +		xfs_buf_wait_unpin(bp); +	} + +	xfs_buf_hold(bp); + +	/* Set the count to 1 initially, this will stop an I/O +	 * completion callout which happens before we have started +	 * all the I/O from calling xfs_buf_ioend too early. +	 */ +	atomic_set(&bp->b_io_remaining, 1); +	_xfs_buf_ioapply(bp); +	_xfs_buf_ioend(bp, 0); + +	xfs_buf_rele(bp); +	return 0; +} + +/* + *	Waits for I/O to complete on the buffer supplied. + *	It returns immediately if no I/O is pending. + *	It returns the I/O error code, if any, or 0 if there was no error. + */ +int +xfs_buf_iowait( +	xfs_buf_t		*bp) +{ +	trace_xfs_buf_iowait(bp, _RET_IP_); + +	wait_for_completion(&bp->b_iowait); + +	trace_xfs_buf_iowait_done(bp, _RET_IP_); +	return bp->b_error; +} + +xfs_caddr_t +xfs_buf_offset( +	xfs_buf_t		*bp, +	size_t			offset) +{ +	struct page		*page; + +	if (bp->b_flags & XBF_MAPPED) +		return bp->b_addr + offset; + +	offset += bp->b_offset; +	page = bp->b_pages[offset >> PAGE_SHIFT]; +	return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1)); +} + +/* + *	Move data into or out of a buffer. + */ +void +xfs_buf_iomove( +	xfs_buf_t		*bp,	/* buffer to process		*/ +	size_t			boff,	/* starting buffer offset	*/ +	size_t			bsize,	/* length to copy		*/ +	void			*data,	/* data address			*/ +	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/ +{ +	size_t			bend, cpoff, csize; +	struct page		*page; + +	bend = boff + bsize; +	while (boff < bend) { +		page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)]; +		cpoff = xfs_buf_poff(boff + bp->b_offset); +		csize = min_t(size_t, +			      PAGE_SIZE-cpoff, bp->b_count_desired-boff); + +		ASSERT(((csize + cpoff) <= PAGE_SIZE)); + +		switch (mode) { +		case XBRW_ZERO: +			memset(page_address(page) + cpoff, 0, csize); +			break; +		case XBRW_READ: +			memcpy(data, page_address(page) + cpoff, csize); +			break; +		case XBRW_WRITE: +			memcpy(page_address(page) + cpoff, data, csize); +		} + +		boff += csize; +		data += csize; +	} +} + +/* + *	Handling of buffer targets (buftargs). + */ + +/* + * Wait for any bufs with callbacks that have been submitted but have not yet + * returned. These buffers will have an elevated hold count, so wait on those + * while freeing all the buffers only held by the LRU. + */ +void +xfs_wait_buftarg( +	struct xfs_buftarg	*btp) +{ +	struct xfs_buf		*bp; + +restart: +	spin_lock(&btp->bt_lru_lock); +	while (!list_empty(&btp->bt_lru)) { +		bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru); +		if (atomic_read(&bp->b_hold) > 1) { +			spin_unlock(&btp->bt_lru_lock); +			delay(100); +			goto restart; +		} +		/* +		 * clear the LRU reference count so the bufer doesn't get +		 * ignored in xfs_buf_rele(). +		 */ +		atomic_set(&bp->b_lru_ref, 0); +		spin_unlock(&btp->bt_lru_lock); +		xfs_buf_rele(bp); +		spin_lock(&btp->bt_lru_lock); +	} +	spin_unlock(&btp->bt_lru_lock); +} + +int +xfs_buftarg_shrink( +	struct shrinker		*shrink, +	struct shrink_control	*sc) +{ +	struct xfs_buftarg	*btp = container_of(shrink, +					struct xfs_buftarg, bt_shrinker); +	struct xfs_buf		*bp; +	int nr_to_scan = sc->nr_to_scan; +	LIST_HEAD(dispose); + +	if (!nr_to_scan) +		return btp->bt_lru_nr; + +	spin_lock(&btp->bt_lru_lock); +	while (!list_empty(&btp->bt_lru)) { +		if (nr_to_scan-- <= 0) +			break; + +		bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru); + +		/* +		 * Decrement the b_lru_ref count unless the value is already +		 * zero. If the value is already zero, we need to reclaim the +		 * buffer, otherwise it gets another trip through the LRU. +		 */ +		if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) { +			list_move_tail(&bp->b_lru, &btp->bt_lru); +			continue; +		} + +		/* +		 * remove the buffer from the LRU now to avoid needing another +		 * lock round trip inside xfs_buf_rele(). +		 */ +		list_move(&bp->b_lru, &dispose); +		btp->bt_lru_nr--; +	} +	spin_unlock(&btp->bt_lru_lock); + +	while (!list_empty(&dispose)) { +		bp = list_first_entry(&dispose, struct xfs_buf, b_lru); +		list_del_init(&bp->b_lru); +		xfs_buf_rele(bp); +	} + +	return btp->bt_lru_nr; +} + +void +xfs_free_buftarg( +	struct xfs_mount	*mp, +	struct xfs_buftarg	*btp) +{ +	unregister_shrinker(&btp->bt_shrinker); + +	xfs_flush_buftarg(btp, 1); +	if (mp->m_flags & XFS_MOUNT_BARRIER) +		xfs_blkdev_issue_flush(btp); + +	kthread_stop(btp->bt_task); +	kmem_free(btp); +} + +STATIC int +xfs_setsize_buftarg_flags( +	xfs_buftarg_t		*btp, +	unsigned int		blocksize, +	unsigned int		sectorsize, +	int			verbose) +{ +	btp->bt_bsize = blocksize; +	btp->bt_sshift = ffs(sectorsize) - 1; +	btp->bt_smask = sectorsize - 1; + +	if (set_blocksize(btp->bt_bdev, sectorsize)) { +		xfs_warn(btp->bt_mount, +			"Cannot set_blocksize to %u on device %s\n", +			sectorsize, xfs_buf_target_name(btp)); +		return EINVAL; +	} + +	return 0; +} + +/* + *	When allocating the initial buffer target we have not yet + *	read in the superblock, so don't know what sized sectors + *	are being used is at this early stage.  Play safe. + */ +STATIC int +xfs_setsize_buftarg_early( +	xfs_buftarg_t		*btp, +	struct block_device	*bdev) +{ +	return xfs_setsize_buftarg_flags(btp, +			PAGE_SIZE, bdev_logical_block_size(bdev), 0); +} + +int +xfs_setsize_buftarg( +	xfs_buftarg_t		*btp, +	unsigned int		blocksize, +	unsigned int		sectorsize) +{ +	return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1); +} + +STATIC int +xfs_alloc_delwrite_queue( +	xfs_buftarg_t		*btp, +	const char		*fsname) +{ +	INIT_LIST_HEAD(&btp->bt_delwrite_queue); +	spin_lock_init(&btp->bt_delwrite_lock); +	btp->bt_flags = 0; +	btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname); +	if (IS_ERR(btp->bt_task)) +		return PTR_ERR(btp->bt_task); +	return 0; +} + +xfs_buftarg_t * +xfs_alloc_buftarg( +	struct xfs_mount	*mp, +	struct block_device	*bdev, +	int			external, +	const char		*fsname) +{ +	xfs_buftarg_t		*btp; + +	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP); + +	btp->bt_mount = mp; +	btp->bt_dev =  bdev->bd_dev; +	btp->bt_bdev = bdev; +	btp->bt_bdi = blk_get_backing_dev_info(bdev); +	if (!btp->bt_bdi) +		goto error; + +	INIT_LIST_HEAD(&btp->bt_lru); +	spin_lock_init(&btp->bt_lru_lock); +	if (xfs_setsize_buftarg_early(btp, bdev)) +		goto error; +	if (xfs_alloc_delwrite_queue(btp, fsname)) +		goto error; +	btp->bt_shrinker.shrink = xfs_buftarg_shrink; +	btp->bt_shrinker.seeks = DEFAULT_SEEKS; +	register_shrinker(&btp->bt_shrinker); +	return btp; + +error: +	kmem_free(btp); +	return NULL; +} + + +/* + *	Delayed write buffer handling + */ +STATIC void +xfs_buf_delwri_queue( +	xfs_buf_t		*bp, +	int			unlock) +{ +	struct list_head	*dwq = &bp->b_target->bt_delwrite_queue; +	spinlock_t		*dwlk = &bp->b_target->bt_delwrite_lock; + +	trace_xfs_buf_delwri_queue(bp, _RET_IP_); + +	ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC)); + +	spin_lock(dwlk); +	/* If already in the queue, dequeue and place at tail */ +	if (!list_empty(&bp->b_list)) { +		ASSERT(bp->b_flags & _XBF_DELWRI_Q); +		if (unlock) +			atomic_dec(&bp->b_hold); +		list_del(&bp->b_list); +	} + +	if (list_empty(dwq)) { +		/* start xfsbufd as it is about to have something to do */ +		wake_up_process(bp->b_target->bt_task); +	} + +	bp->b_flags |= _XBF_DELWRI_Q; +	list_add_tail(&bp->b_list, dwq); +	bp->b_queuetime = jiffies; +	spin_unlock(dwlk); + +	if (unlock) +		xfs_buf_unlock(bp); +} + +void +xfs_buf_delwri_dequeue( +	xfs_buf_t		*bp) +{ +	spinlock_t		*dwlk = &bp->b_target->bt_delwrite_lock; +	int			dequeued = 0; + +	spin_lock(dwlk); +	if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) { +		ASSERT(bp->b_flags & _XBF_DELWRI_Q); +		list_del_init(&bp->b_list); +		dequeued = 1; +	} +	bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q); +	spin_unlock(dwlk); + +	if (dequeued) +		xfs_buf_rele(bp); + +	trace_xfs_buf_delwri_dequeue(bp, _RET_IP_); +} + +/* + * If a delwri buffer needs to be pushed before it has aged out, then promote + * it to the head of the delwri queue so that it will be flushed on the next + * xfsbufd run. We do this by resetting the queuetime of the buffer to be older + * than the age currently needed to flush the buffer. Hence the next time the + * xfsbufd sees it is guaranteed to be considered old enough to flush. + */ +void +xfs_buf_delwri_promote( +	struct xfs_buf	*bp) +{ +	struct xfs_buftarg *btp = bp->b_target; +	long		age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1; + +	ASSERT(bp->b_flags & XBF_DELWRI); +	ASSERT(bp->b_flags & _XBF_DELWRI_Q); + +	/* +	 * Check the buffer age before locking the delayed write queue as we +	 * don't need to promote buffers that are already past the flush age. +	 */ +	if (bp->b_queuetime < jiffies - age) +		return; +	bp->b_queuetime = jiffies - age; +	spin_lock(&btp->bt_delwrite_lock); +	list_move(&bp->b_list, &btp->bt_delwrite_queue); +	spin_unlock(&btp->bt_delwrite_lock); +} + +STATIC void +xfs_buf_runall_queues( +	struct workqueue_struct	*queue) +{ +	flush_workqueue(queue); +} + +/* + * Move as many buffers as specified to the supplied list + * idicating if we skipped any buffers to prevent deadlocks. + */ +STATIC int +xfs_buf_delwri_split( +	xfs_buftarg_t	*target, +	struct list_head *list, +	unsigned long	age) +{ +	xfs_buf_t	*bp, *n; +	struct list_head *dwq = &target->bt_delwrite_queue; +	spinlock_t	*dwlk = &target->bt_delwrite_lock; +	int		skipped = 0; +	int		force; + +	force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags); +	INIT_LIST_HEAD(list); +	spin_lock(dwlk); +	list_for_each_entry_safe(bp, n, dwq, b_list) { +		ASSERT(bp->b_flags & XBF_DELWRI); + +		if (!xfs_buf_ispinned(bp) && xfs_buf_trylock(bp)) { +			if (!force && +			    time_before(jiffies, bp->b_queuetime + age)) { +				xfs_buf_unlock(bp); +				break; +			} + +			bp->b_flags &= ~(XBF_DELWRI | _XBF_DELWRI_Q); +			bp->b_flags |= XBF_WRITE; +			list_move_tail(&bp->b_list, list); +			trace_xfs_buf_delwri_split(bp, _RET_IP_); +		} else +			skipped++; +	} +	spin_unlock(dwlk); + +	return skipped; + +} + +/* + * Compare function is more complex than it needs to be because + * the return value is only 32 bits and we are doing comparisons + * on 64 bit values + */ +static int +xfs_buf_cmp( +	void		*priv, +	struct list_head *a, +	struct list_head *b) +{ +	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list); +	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list); +	xfs_daddr_t		diff; + +	diff = ap->b_bn - bp->b_bn; +	if (diff < 0) +		return -1; +	if (diff > 0) +		return 1; +	return 0; +} + +STATIC int +xfsbufd( +	void		*data) +{ +	xfs_buftarg_t   *target = (xfs_buftarg_t *)data; + +	current->flags |= PF_MEMALLOC; + +	set_freezable(); + +	do { +		long	age = xfs_buf_age_centisecs * msecs_to_jiffies(10); +		long	tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10); +		struct list_head tmp; +		struct blk_plug plug; + +		if (unlikely(freezing(current))) { +			set_bit(XBT_FORCE_SLEEP, &target->bt_flags); +			refrigerator(); +		} else { +			clear_bit(XBT_FORCE_SLEEP, &target->bt_flags); +		} + +		/* sleep for a long time if there is nothing to do. */ +		if (list_empty(&target->bt_delwrite_queue)) +			tout = MAX_SCHEDULE_TIMEOUT; +		schedule_timeout_interruptible(tout); + +		xfs_buf_delwri_split(target, &tmp, age); +		list_sort(NULL, &tmp, xfs_buf_cmp); + +		blk_start_plug(&plug); +		while (!list_empty(&tmp)) { +			struct xfs_buf *bp; +			bp = list_first_entry(&tmp, struct xfs_buf, b_list); +			list_del_init(&bp->b_list); +			xfs_bdstrat_cb(bp); +		} +		blk_finish_plug(&plug); +	} while (!kthread_should_stop()); + +	return 0; +} + +/* + *	Go through all incore buffers, and release buffers if they belong to + *	the given device. This is used in filesystem error handling to + *	preserve the consistency of its metadata. + */ +int +xfs_flush_buftarg( +	xfs_buftarg_t	*target, +	int		wait) +{ +	xfs_buf_t	*bp; +	int		pincount = 0; +	LIST_HEAD(tmp_list); +	LIST_HEAD(wait_list); +	struct blk_plug plug; + +	xfs_buf_runall_queues(xfsconvertd_workqueue); +	xfs_buf_runall_queues(xfsdatad_workqueue); +	xfs_buf_runall_queues(xfslogd_workqueue); + +	set_bit(XBT_FORCE_FLUSH, &target->bt_flags); +	pincount = xfs_buf_delwri_split(target, &tmp_list, 0); + +	/* +	 * Dropped the delayed write list lock, now walk the temporary list. +	 * All I/O is issued async and then if we need to wait for completion +	 * we do that after issuing all the IO. +	 */ +	list_sort(NULL, &tmp_list, xfs_buf_cmp); + +	blk_start_plug(&plug); +	while (!list_empty(&tmp_list)) { +		bp = list_first_entry(&tmp_list, struct xfs_buf, b_list); +		ASSERT(target == bp->b_target); +		list_del_init(&bp->b_list); +		if (wait) { +			bp->b_flags &= ~XBF_ASYNC; +			list_add(&bp->b_list, &wait_list); +		} +		xfs_bdstrat_cb(bp); +	} +	blk_finish_plug(&plug); + +	if (wait) { +		/* Wait for IO to complete. */ +		while (!list_empty(&wait_list)) { +			bp = list_first_entry(&wait_list, struct xfs_buf, b_list); + +			list_del_init(&bp->b_list); +			xfs_buf_iowait(bp); +			xfs_buf_relse(bp); +		} +	} + +	return pincount; +} + +int __init +xfs_buf_init(void) +{ +	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", +						KM_ZONE_HWALIGN, NULL); +	if (!xfs_buf_zone) +		goto out; + +	xfslogd_workqueue = alloc_workqueue("xfslogd", +					WQ_MEM_RECLAIM | WQ_HIGHPRI, 1); +	if (!xfslogd_workqueue) +		goto out_free_buf_zone; + +	xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1); +	if (!xfsdatad_workqueue) +		goto out_destroy_xfslogd_workqueue; + +	xfsconvertd_workqueue = alloc_workqueue("xfsconvertd", +						WQ_MEM_RECLAIM, 1); +	if (!xfsconvertd_workqueue) +		goto out_destroy_xfsdatad_workqueue; + +	return 0; + + out_destroy_xfsdatad_workqueue: +	destroy_workqueue(xfsdatad_workqueue); + out_destroy_xfslogd_workqueue: +	destroy_workqueue(xfslogd_workqueue); + out_free_buf_zone: +	kmem_zone_destroy(xfs_buf_zone); + out: +	return -ENOMEM; +} + +void +xfs_buf_terminate(void) +{ +	destroy_workqueue(xfsconvertd_workqueue); +	destroy_workqueue(xfsdatad_workqueue); +	destroy_workqueue(xfslogd_workqueue); +	kmem_zone_destroy(xfs_buf_zone); +} + +#ifdef CONFIG_KDB_MODULES +struct list_head * +xfs_get_buftarg_list(void) +{ +	return &xfs_buftarg_list; +} +#endif | 
