summaryrefslogtreecommitdiff
path: root/fs
diff options
context:
space:
mode:
authorDave Chinner <dchinner@redhat.com>2022-11-29 09:09:17 +1100
committerDave Chinner <david@fromorbit.com>2022-11-29 09:09:17 +1100
commitd7b64041164ca177170191d2ad775da074ab2926 (patch)
tree812735ea58fc9549b84944e76f143c28262eaf8d /fs
parent7348b322332d8602a4133f0b861334ea021b134a (diff)
iomap: write iomap validity checks
A recent multithreaded write data corruption has been uncovered in the iomap write code. The core of the problem is partial folio writes can be flushed to disk while a new racing write can map it and fill the rest of the page: writeback new write allocate blocks blocks are unwritten submit IO ..... map blocks iomap indicates UNWRITTEN range loop { lock folio copyin data ..... IO completes runs unwritten extent conv blocks are marked written <iomap now stale> get next folio } Now add memory pressure such that memory reclaim evicts the partially written folio that has already been written to disk. When the new write finally gets to the last partial page of the new write, it does not find it in cache, so it instantiates a new page, sees the iomap is unwritten, and zeros the part of the page that it does not have data from. This overwrites the data on disk that was originally written. The full description of the corruption mechanism can be found here: https://lore.kernel.org/linux-xfs/20220817093627.GZ3600936@dread.disaster.area/ To solve this problem, we need to check whether the iomap is still valid after we lock each folio during the write. We have to do it after we lock the page so that we don't end up with state changes occurring while we wait for the folio to be locked. Hence we need a mechanism to be able to check that the cached iomap is still valid (similar to what we already do in buffered writeback), and we need a way for ->begin_write to back out and tell the high level iomap iterator that we need to remap the remaining write range. The iomap needs to grow some storage for the validity cookie that the filesystem provides to travel with the iomap. XFS, in particular, also needs to know some more information about what the iomap maps (attribute extents rather than file data extents) to for the validity cookie to cover all the types of iomaps we might need to validate. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Diffstat (limited to 'fs')
-rw-r--r--fs/iomap/buffered-io.c29
-rw-r--r--fs/iomap/iter.c19
2 files changed, 46 insertions, 2 deletions
diff --git a/fs/iomap/buffered-io.c b/fs/iomap/buffered-io.c
index dca9ec9dc4a8..356193e44cf0 100644
--- a/fs/iomap/buffered-io.c
+++ b/fs/iomap/buffered-io.c
@@ -584,7 +584,7 @@ static int iomap_write_begin_inline(const struct iomap_iter *iter,
return iomap_read_inline_data(iter, folio);
}
-static int iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
+static int iomap_write_begin(struct iomap_iter *iter, loff_t pos,
size_t len, struct folio **foliop)
{
const struct iomap_page_ops *page_ops = iter->iomap.page_ops;
@@ -618,6 +618,27 @@ static int iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
status = (iter->flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOMEM;
goto out_no_page;
}
+
+ /*
+ * Now we have a locked folio, before we do anything with it we need to
+ * check that the iomap we have cached is not stale. The inode extent
+ * mapping can change due to concurrent IO in flight (e.g.
+ * IOMAP_UNWRITTEN state can change and memory reclaim could have
+ * reclaimed a previously partially written page at this index after IO
+ * completion before this write reaches this file offset) and hence we
+ * could do the wrong thing here (zero a page range incorrectly or fail
+ * to zero) and corrupt data.
+ */
+ if (page_ops && page_ops->iomap_valid) {
+ bool iomap_valid = page_ops->iomap_valid(iter->inode,
+ &iter->iomap);
+ if (!iomap_valid) {
+ iter->iomap.flags |= IOMAP_F_STALE;
+ status = 0;
+ goto out_unlock;
+ }
+ }
+
if (pos + len > folio_pos(folio) + folio_size(folio))
len = folio_pos(folio) + folio_size(folio) - pos;
@@ -773,6 +794,8 @@ again:
status = iomap_write_begin(iter, pos, bytes, &folio);
if (unlikely(status))
break;
+ if (iter->iomap.flags & IOMAP_F_STALE)
+ break;
page = folio_file_page(folio, pos >> PAGE_SHIFT);
if (mapping_writably_mapped(mapping))
@@ -1081,6 +1104,8 @@ static loff_t iomap_unshare_iter(struct iomap_iter *iter)
status = iomap_write_begin(iter, pos, bytes, &folio);
if (unlikely(status))
return status;
+ if (iter->iomap.flags & IOMAP_F_STALE)
+ break;
status = iomap_write_end(iter, pos, bytes, bytes, folio);
if (WARN_ON_ONCE(status == 0))
@@ -1136,6 +1161,8 @@ static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
status = iomap_write_begin(iter, pos, bytes, &folio);
if (status)
return status;
+ if (iter->iomap.flags & IOMAP_F_STALE)
+ break;
offset = offset_in_folio(folio, pos);
if (bytes > folio_size(folio) - offset)
diff --git a/fs/iomap/iter.c b/fs/iomap/iter.c
index a1c7592d2ade..79a0614eaab7 100644
--- a/fs/iomap/iter.c
+++ b/fs/iomap/iter.c
@@ -7,12 +7,28 @@
#include <linux/iomap.h>
#include "trace.h"
+/*
+ * Advance to the next range we need to map.
+ *
+ * If the iomap is marked IOMAP_F_STALE, it means the existing map was not fully
+ * processed - it was aborted because the extent the iomap spanned may have been
+ * changed during the operation. In this case, the iteration behaviour is to
+ * remap the unprocessed range of the iter, and that means we may need to remap
+ * even when we've made no progress (i.e. iter->processed = 0). Hence the
+ * "finished iterating" case needs to distinguish between
+ * (processed = 0) meaning we are done and (processed = 0 && stale) meaning we
+ * need to remap the entire remaining range.
+ */
static inline int iomap_iter_advance(struct iomap_iter *iter)
{
+ bool stale = iter->iomap.flags & IOMAP_F_STALE;
+
/* handle the previous iteration (if any) */
if (iter->iomap.length) {
- if (iter->processed <= 0)
+ if (iter->processed < 0)
return iter->processed;
+ if (!iter->processed && !stale)
+ return 0;
if (WARN_ON_ONCE(iter->processed > iomap_length(iter)))
return -EIO;
iter->pos += iter->processed;
@@ -33,6 +49,7 @@ static inline void iomap_iter_done(struct iomap_iter *iter)
WARN_ON_ONCE(iter->iomap.offset > iter->pos);
WARN_ON_ONCE(iter->iomap.length == 0);
WARN_ON_ONCE(iter->iomap.offset + iter->iomap.length <= iter->pos);
+ WARN_ON_ONCE(iter->iomap.flags & IOMAP_F_STALE);
trace_iomap_iter_dstmap(iter->inode, &iter->iomap);
if (iter->srcmap.type != IOMAP_HOLE)