summaryrefslogtreecommitdiff
path: root/include/linux/mm.h
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2023-11-02 19:38:47 -1000
committerLinus Torvalds <torvalds@linux-foundation.org>2023-11-02 19:38:47 -1000
commitecae0bd5173b1014f95a14a8dfbe40ec10367dcf (patch)
treef571213ef1a35354ea79f0240a180fdb4111b290 /include/linux/mm.h
parentbc3012f4e3a9765de81f454cb8f9bb16aafc6ff5 (diff)
parent9732336006764e2ee61225387e3c70eae9139035 (diff)
Merge tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton: "Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series 'Fixes and cleanups to compaction' - Joel Fernandes has a patchset ('Optimize mremap during mutual alignment within PMD') which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series 'Do not try to access unaccepted memory' Adrian Hunter provides some fixups for the recently-added 'unaccepted memory' feature. To increase the feature's checking coverage. 'Plug a few gaps where RAM is exposed without checking if it is unaccepted memory' - In the series 'cleanups for lockless slab shrink' Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series 'use refcount+RCU method to implement lockless slab shrink' - David Hildenbrand contributes some maintenance work for the rmap code in the series 'Anon rmap cleanups' - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series 'mm: migrate: more folio conversion and unification' - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series 'Add and use bdev_getblk()' - In the series 'Use nth_page() in place of direct struct page manipulation' Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames - In the series 'mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO' has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use - Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code rationalization and folio conversions in the hugetlb code - Yin Fengwei has improved mlock()'s handling of large folios in the series 'support large folio for mlock' - In the series 'Expose swapcache stat for memcg v1' Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2 - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named 'MDWE without inheritance' - Kefeng Wang has provided the series 'mm: convert numa balancing functions to use a folio' which does what it says - In the series 'mm/ksm: add fork-exec support for prctl' Stefan Roesch makes is possible for a process to propagate KSM treatment across exec() - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use 'high bandwidth memory' in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named 'memory tiering: calculate abstract distance based on ACPI HMAT' - In the series 'Smart scanning mode for KSM' Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series 'mm: memcg: fix tracking of pending stats updates values' - In the series 'Implement IOCTL to get and optionally clear info about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU - Hugh Dickins contributed the series 'shmem,tmpfs: general maintenance', a bunch of relatively minor maintenance tweaks to this code - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series 'Handle more faults under the VMA lock'. Some rationalizations of the fault path became possible as a result - In the series 'mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()' David Hildenbrand has implemented some cleanups and folio conversions - In the series 'various improvements to the GUP interface' Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements - Andrey Konovalov has sent along the series 'kasan: assorted fixes and improvements' which does those things - Some page allocator maintenance work from Kemeng Shi in the series 'Two minor cleanups to break_down_buddy_pages' - In thes series 'New selftest for mm' Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults - In the series 'Add folio_end_read' Matthew Wilcox provides cleanups and an optimization to the core pagecache code - Nhat Pham has added memcg accounting for hugetlb memory in the series 'hugetlb memcg accounting' - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series 'Abstract vma_merge() and split_vma()' - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series 'Fix page_owner's use of free timestamps' - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series 'permit write-sealed memfd read-only shared mappings' - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series 'Batch hugetlb vmemmap modification operations' - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series 'Finish the create_empty_buffers() transition' - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series 'mm: PCP high auto-tuning' - Roman Gushchin has contributed the patchset 'mm: improve performance of accounted kernel memory allocations' which improves their performance by ~30% as measured by a micro-benchmark - folio conversions from Kefeng Wang in the series 'mm: convert page cpupid functions to folios' - Some kmemleak fixups in Liu Shixin's series 'Some bugfix about kmemleak' - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series 'handle memoryless nodes more appropriately' - khugepaged conversions from Vishal Moola in the series 'Some khugepaged folio conversions'" [ bcachefs conflicts with the dynamically allocated shrinkers have been resolved as per Stephen Rothwell in https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/ with help from Qi Zheng. The clone3 test filtering conflict was half-arsed by yours truly ] * tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits) mm/damon/sysfs: update monitoring target regions for online input commit mm/damon/sysfs: remove requested targets when online-commit inputs selftests: add a sanity check for zswap Documentation: maple_tree: fix word spelling error mm/vmalloc: fix the unchecked dereference warning in vread_iter() zswap: export compression failure stats Documentation: ubsan: drop "the" from article title mempolicy: migration attempt to match interleave nodes mempolicy: mmap_lock is not needed while migrating folios mempolicy: alloc_pages_mpol() for NUMA policy without vma mm: add page_rmappable_folio() wrapper mempolicy: remove confusing MPOL_MF_LAZY dead code mempolicy: mpol_shared_policy_init() without pseudo-vma mempolicy trivia: use pgoff_t in shared mempolicy tree mempolicy trivia: slightly more consistent naming mempolicy trivia: delete those ancient pr_debug()s mempolicy: fix migrate_pages(2) syscall return nr_failed kernfs: drop shared NUMA mempolicy hooks hugetlbfs: drop shared NUMA mempolicy pretence mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets() ...
Diffstat (limited to 'include/linux/mm.h')
-rw-r--r--include/linux/mm.h176
1 files changed, 130 insertions, 46 deletions
diff --git a/include/linux/mm.h b/include/linux/mm.h
index ba896e946651..418d26608ece 100644
--- a/include/linux/mm.h
+++ b/include/linux/mm.h
@@ -617,7 +617,7 @@ struct vm_operations_struct {
* policy.
*/
struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
- unsigned long addr);
+ unsigned long addr, pgoff_t *ilx);
#endif
/*
* Called by vm_normal_page() for special PTEs to find the
@@ -935,6 +935,17 @@ static inline bool vma_is_accessible(struct vm_area_struct *vma)
return vma->vm_flags & VM_ACCESS_FLAGS;
}
+static inline bool is_shared_maywrite(vm_flags_t vm_flags)
+{
+ return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
+ (VM_SHARED | VM_MAYWRITE);
+}
+
+static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
+{
+ return is_shared_maywrite(vma->vm_flags);
+}
+
static inline
struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
{
@@ -1335,7 +1346,6 @@ void set_pte_range(struct vm_fault *vmf, struct folio *folio,
struct page *page, unsigned int nr, unsigned long addr);
vm_fault_t finish_fault(struct vm_fault *vmf);
-vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
#endif
/*
@@ -1684,26 +1694,26 @@ static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
-static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
+static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
{
- return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
+ return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
}
-static inline int page_cpupid_last(struct page *page)
+static inline int folio_last_cpupid(struct folio *folio)
{
- return page->_last_cpupid;
+ return folio->_last_cpupid;
}
static inline void page_cpupid_reset_last(struct page *page)
{
page->_last_cpupid = -1 & LAST_CPUPID_MASK;
}
#else
-static inline int page_cpupid_last(struct page *page)
+static inline int folio_last_cpupid(struct folio *folio)
{
- return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
+ return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
}
-extern int page_cpupid_xchg_last(struct page *page, int cpupid);
+int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
static inline void page_cpupid_reset_last(struct page *page)
{
@@ -1711,11 +1721,12 @@ static inline void page_cpupid_reset_last(struct page *page)
}
#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
-static inline int xchg_page_access_time(struct page *page, int time)
+static inline int folio_xchg_access_time(struct folio *folio, int time)
{
int last_time;
- last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
+ last_time = folio_xchg_last_cpupid(folio,
+ time >> PAGE_ACCESS_TIME_BUCKETS);
return last_time << PAGE_ACCESS_TIME_BUCKETS;
}
@@ -1729,19 +1740,19 @@ static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
}
}
#else /* !CONFIG_NUMA_BALANCING */
-static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
+static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
{
- return page_to_nid(page); /* XXX */
+ return folio_nid(folio); /* XXX */
}
-static inline int xchg_page_access_time(struct page *page, int time)
+static inline int folio_xchg_access_time(struct folio *folio, int time)
{
return 0;
}
-static inline int page_cpupid_last(struct page *page)
+static inline int folio_last_cpupid(struct folio *folio)
{
- return page_to_nid(page); /* XXX */
+ return folio_nid(folio); /* XXX */
}
static inline int cpupid_to_nid(int cpupid)
@@ -2325,6 +2336,8 @@ struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
pte_t pte);
struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
pte_t pte);
+struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
+ unsigned long addr, pmd_t pmd);
struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t pmd);
@@ -2411,8 +2424,6 @@ extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
void *buf, int len, unsigned int gup_flags);
extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
void *buf, int len, unsigned int gup_flags);
-extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
- void *buf, int len, unsigned int gup_flags);
long get_user_pages_remote(struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
@@ -2423,6 +2434,9 @@ long pin_user_pages_remote(struct mm_struct *mm,
unsigned int gup_flags, struct page **pages,
int *locked);
+/*
+ * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
+ */
static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
unsigned long addr,
int gup_flags,
@@ -2430,12 +2444,15 @@ static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
{
struct page *page;
struct vm_area_struct *vma;
- int got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
+ int got;
+
+ if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
+ return ERR_PTR(-EINVAL);
+
+ got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
if (got < 0)
return ERR_PTR(got);
- if (got == 0)
- return NULL;
vma = vma_lookup(mm, addr);
if (WARN_ON_ONCE(!vma)) {
@@ -2478,7 +2495,7 @@ int get_cmdline(struct task_struct *task, char *buffer, int buflen);
extern unsigned long move_page_tables(struct vm_area_struct *vma,
unsigned long old_addr, struct vm_area_struct *new_vma,
unsigned long new_addr, unsigned long len,
- bool need_rmap_locks);
+ bool need_rmap_locks, bool for_stack);
/*
* Flags used by change_protection(). For now we make it a bitmap so
@@ -2626,14 +2643,6 @@ static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
*maxrss = hiwater_rss;
}
-#if defined(SPLIT_RSS_COUNTING)
-void sync_mm_rss(struct mm_struct *mm);
-#else
-static inline void sync_mm_rss(struct mm_struct *mm)
-{
-}
-#endif
-
#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
static inline int pte_special(pte_t pte)
{
@@ -3055,6 +3064,22 @@ static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
return ptl;
}
+static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
+{
+ struct folio *folio = ptdesc_folio(ptdesc);
+
+ __folio_set_pgtable(folio);
+ lruvec_stat_add_folio(folio, NR_PAGETABLE);
+}
+
+static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
+{
+ struct folio *folio = ptdesc_folio(ptdesc);
+
+ __folio_clear_pgtable(folio);
+ lruvec_stat_sub_folio(folio, NR_PAGETABLE);
+}
+
extern void __init pagecache_init(void);
extern void free_initmem(void);
@@ -3219,22 +3244,73 @@ extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
struct vm_area_struct *next);
extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
unsigned long start, unsigned long end, pgoff_t pgoff);
-extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
- struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
- unsigned long end, unsigned long vm_flags, struct anon_vma *,
- struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
- struct anon_vma_name *);
extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
-extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
- unsigned long addr, int new_below);
-extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
- unsigned long addr, int new_below);
extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
extern void unlink_file_vma(struct vm_area_struct *);
extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
unsigned long addr, unsigned long len, pgoff_t pgoff,
bool *need_rmap_locks);
extern void exit_mmap(struct mm_struct *);
+struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
+ struct vm_area_struct *prev,
+ struct vm_area_struct *vma,
+ unsigned long start, unsigned long end,
+ unsigned long vm_flags,
+ struct mempolicy *policy,
+ struct vm_userfaultfd_ctx uffd_ctx,
+ struct anon_vma_name *anon_name);
+
+/* We are about to modify the VMA's flags. */
+static inline struct vm_area_struct
+*vma_modify_flags(struct vma_iterator *vmi,
+ struct vm_area_struct *prev,
+ struct vm_area_struct *vma,
+ unsigned long start, unsigned long end,
+ unsigned long new_flags)
+{
+ return vma_modify(vmi, prev, vma, start, end, new_flags,
+ vma_policy(vma), vma->vm_userfaultfd_ctx,
+ anon_vma_name(vma));
+}
+
+/* We are about to modify the VMA's flags and/or anon_name. */
+static inline struct vm_area_struct
+*vma_modify_flags_name(struct vma_iterator *vmi,
+ struct vm_area_struct *prev,
+ struct vm_area_struct *vma,
+ unsigned long start,
+ unsigned long end,
+ unsigned long new_flags,
+ struct anon_vma_name *new_name)
+{
+ return vma_modify(vmi, prev, vma, start, end, new_flags,
+ vma_policy(vma), vma->vm_userfaultfd_ctx, new_name);
+}
+
+/* We are about to modify the VMA's memory policy. */
+static inline struct vm_area_struct
+*vma_modify_policy(struct vma_iterator *vmi,
+ struct vm_area_struct *prev,
+ struct vm_area_struct *vma,
+ unsigned long start, unsigned long end,
+ struct mempolicy *new_pol)
+{
+ return vma_modify(vmi, prev, vma, start, end, vma->vm_flags,
+ new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma));
+}
+
+/* We are about to modify the VMA's flags and/or uffd context. */
+static inline struct vm_area_struct
+*vma_modify_flags_uffd(struct vma_iterator *vmi,
+ struct vm_area_struct *prev,
+ struct vm_area_struct *vma,
+ unsigned long start, unsigned long end,
+ unsigned long new_flags,
+ struct vm_userfaultfd_ctx new_ctx)
+{
+ return vma_modify(vmi, prev, vma, start, end, new_flags,
+ vma_policy(vma), new_ctx, anon_vma_name(vma));
+}
static inline int check_data_rlimit(unsigned long rlim,
unsigned long new,
@@ -3997,25 +4073,26 @@ static inline void mem_dump_obj(void *object) {}
#endif
/**
- * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
+ * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
+ * handle them.
* @seals: the seals to check
* @vma: the vma to operate on
*
- * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
- * the vma flags. Return 0 if check pass, or <0 for errors.
+ * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
+ * check/handling on the vma flags. Return 0 if check pass, or <0 for errors.
*/
-static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
+static inline int seal_check_write(int seals, struct vm_area_struct *vma)
{
- if (seals & F_SEAL_FUTURE_WRITE) {
+ if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
/*
* New PROT_WRITE and MAP_SHARED mmaps are not allowed when
- * "future write" seal active.
+ * write seals are active.
*/
if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
return -EPERM;
/*
- * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
+ * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
* MAP_SHARED and read-only, take care to not allow mprotect to
* revert protections on such mappings. Do this only for shared
* mappings. For private mappings, don't need to mask
@@ -4059,4 +4136,11 @@ static inline void accept_memory(phys_addr_t start, phys_addr_t end)
#endif
+static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
+{
+ phys_addr_t paddr = pfn << PAGE_SHIFT;
+
+ return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE);
+}
+
#endif /* _LINUX_MM_H */