summaryrefslogtreecommitdiff
path: root/include/linux
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2024-05-17 18:40:37 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2024-05-17 18:40:37 -0700
commit53683e408013407848bd598da15641b2f0979351 (patch)
tree40db821cd114599fe14a973693939bc77946d85a /include/linux
parent594d28157f2d55c4f17f2e18c778da098446e594 (diff)
parentb9c6820f029abaabbc37646093866aa730ca0928 (diff)
Merge tag 'trace-ringbuffer-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing ring buffer updates from Steven Rostedt: "Add ring_buffer memory mappings. The tracing ring buffer was created based on being mostly used with the splice system call. It is broken up into page ordered sub-buffers and the reader swaps a new sub-buffer with an existing sub-buffer that's part of the write buffer. It then has total access to the swapped out sub-buffer and can do copyless movements of the memory into other mediums (file system, network, etc). The buffer is great for passing around the ring buffer contents in the kernel, but is not so good for when the consumer is the user space task itself. A new interface is added that allows user space to memory map the ring buffer. It will get all the write sub-buffers as well as reader sub-buffer (that is not written to). It can send an ioctl to change which sub-buffer is the new reader sub-buffer. The ring buffer is read only to user space. It only needs to call the ioctl when it is finished with a sub-buffer and needs a new sub-buffer that the writer will not write over. A self test program was also created for testing and can be used as an example for the interface to user space. The libtracefs (external to the kernel) also has code that interacts with this, although it is disabled until the interface is in a official release. It can be enabled by compiling the library with a special flag. This was used for testing applications that perform better with the buffer being mapped. Memory mapped buffers have limitations. The main one is that it can not be used with the snapshot logic. If the buffer is mapped, snapshots will be disabled. If any logic is set to trigger snapshots on a buffer, that buffer will not be allowed to be mapped" * tag 'trace-ringbuffer-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: ring-buffer: Add cast to unsigned long addr passed to virt_to_page() ring-buffer: Have mmapped ring buffer keep track of missed events ring-buffer/selftest: Add ring-buffer mapping test Documentation: tracing: Add ring-buffer mapping tracing: Allow user-space mapping of the ring-buffer ring-buffer: Introducing ring-buffer mapping functions ring-buffer: Allocate sub-buffers with __GFP_COMP
Diffstat (limited to 'include/linux')
-rw-r--r--include/linux/ring_buffer.h6
1 files changed, 6 insertions, 0 deletions
diff --git a/include/linux/ring_buffer.h b/include/linux/ring_buffer.h
index dc5ae4e96aee..96d2140b471e 100644
--- a/include/linux/ring_buffer.h
+++ b/include/linux/ring_buffer.h
@@ -6,6 +6,8 @@
#include <linux/seq_file.h>
#include <linux/poll.h>
+#include <uapi/linux/trace_mmap.h>
+
struct trace_buffer;
struct ring_buffer_iter;
@@ -223,4 +225,8 @@ int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node);
#define trace_rb_cpu_prepare NULL
#endif
+int ring_buffer_map(struct trace_buffer *buffer, int cpu,
+ struct vm_area_struct *vma);
+int ring_buffer_unmap(struct trace_buffer *buffer, int cpu);
+int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu);
#endif /* _LINUX_RING_BUFFER_H */