diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2024-11-19 14:16:06 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2024-11-19 14:16:06 -0800 |
commit | 3f020399e4f1c690ce87b4c472f75b1fc89e07d5 (patch) | |
tree | d6946d266768a5c95b1c82c060ca38af4782ab03 /include | |
parent | f41dac3efb7582cd3f518fadf7764d424f453788 (diff) | |
parent | 771d271b2b908cf660d6789bb4355ed553250edc (diff) |
Merge tag 'sched-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"Core facilities:
- Add the "Lazy preemption" model (CONFIG_PREEMPT_LAZY=y), which
optimizes fair-class preemption by delaying preemption requests to
the tick boundary, while working as full preemption for
RR/FIFO/DEADLINE classes. (Peter Zijlstra)
- x86: Enable Lazy preemption (Peter Zijlstra)
- riscv: Enable Lazy preemption (Jisheng Zhang)
- Initialize idle tasks only once (Thomas Gleixner)
- sched/ext: Remove sched_fork() hack (Thomas Gleixner)
Fair scheduler:
- Optimize the PLACE_LAG when se->vlag is zero (Huang Shijie)
Idle loop:
- Optimize the generic idle loop by removing unnecessary memory
barrier (Zhongqiu Han)
RSEQ:
- Improve cache locality of RSEQ concurrency IDs for intermittent
workloads (Mathieu Desnoyers)
Waitqueues:
- Make wake_up_{bit,var} less fragile (Neil Brown)
PSI:
- Pass enqueue/dequeue flags to psi callbacks directly (Johannes
Weiner)
Preparatory patches for proxy execution:
- Add move_queued_task_locked helper (Connor O'Brien)
- Consolidate pick_*_task to task_is_pushable helper (Connor O'Brien)
- Split out __schedule() deactivate task logic into a helper (John
Stultz)
- Split scheduler and execution contexts (Peter Zijlstra)
- Make mutex::wait_lock irq safe (Juri Lelli)
- Expose __mutex_owner() (Juri Lelli)
- Remove wakeups from under mutex::wait_lock (Peter Zijlstra)
Misc fixes and cleanups:
- Remove unused __HAVE_THREAD_FUNCTIONS hook support (David
Disseldorp)
- Update the comment for TIF_NEED_RESCHED_LAZY (Sebastian Andrzej
Siewior)
- Remove unused bit_wait_io_timeout (Dr. David Alan Gilbert)
- remove the DOUBLE_TICK feature (Huang Shijie)
- fix the comment for PREEMPT_SHORT (Huang Shijie)
- Fix unnused variable warning (Christian Loehle)
- No PREEMPT_RT=y for all{yes,mod}config"
* tag 'sched-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
sched, x86: Update the comment for TIF_NEED_RESCHED_LAZY.
sched: No PREEMPT_RT=y for all{yes,mod}config
riscv: add PREEMPT_LAZY support
sched, x86: Enable Lazy preemption
sched: Enable PREEMPT_DYNAMIC for PREEMPT_RT
sched: Add Lazy preemption model
sched: Add TIF_NEED_RESCHED_LAZY infrastructure
sched/ext: Remove sched_fork() hack
sched: Initialize idle tasks only once
sched: psi: pass enqueue/dequeue flags to psi callbacks directly
sched/uclamp: Fix unnused variable warning
sched: Split scheduler and execution contexts
sched: Split out __schedule() deactivate task logic into a helper
sched: Consolidate pick_*_task to task_is_pushable helper
sched: Add move_queued_task_locked helper
locking/mutex: Expose __mutex_owner()
locking/mutex: Make mutex::wait_lock irq safe
locking/mutex: Remove wakeups from under mutex::wait_lock
sched: Improve cache locality of RSEQ concurrency IDs for intermittent workloads
sched: idle: Optimize the generic idle loop by removing needless memory barrier
...
Diffstat (limited to 'include')
-rw-r--r-- | include/linux/entry-common.h | 3 | ||||
-rw-r--r-- | include/linux/entry-kvm.h | 5 | ||||
-rw-r--r-- | include/linux/mm_types.h | 72 | ||||
-rw-r--r-- | include/linux/preempt.h | 8 | ||||
-rw-r--r-- | include/linux/sched.h | 5 | ||||
-rw-r--r-- | include/linux/sched/ext.h | 1 | ||||
-rw-r--r-- | include/linux/sched/task_stack.h | 2 | ||||
-rw-r--r-- | include/linux/thread_info.h | 21 | ||||
-rw-r--r-- | include/linux/wait_bit.h | 444 |
9 files changed, 458 insertions, 103 deletions
diff --git a/include/linux/entry-common.h b/include/linux/entry-common.h index 1e50cdb83ae5..fc61d0205c97 100644 --- a/include/linux/entry-common.h +++ b/include/linux/entry-common.h @@ -64,7 +64,8 @@ #define EXIT_TO_USER_MODE_WORK \ (_TIF_SIGPENDING | _TIF_NOTIFY_RESUME | _TIF_UPROBE | \ - _TIF_NEED_RESCHED | _TIF_PATCH_PENDING | _TIF_NOTIFY_SIGNAL | \ + _TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY | \ + _TIF_PATCH_PENDING | _TIF_NOTIFY_SIGNAL | \ ARCH_EXIT_TO_USER_MODE_WORK) /** diff --git a/include/linux/entry-kvm.h b/include/linux/entry-kvm.h index 6813171afccb..16149f6625e4 100644 --- a/include/linux/entry-kvm.h +++ b/include/linux/entry-kvm.h @@ -17,8 +17,9 @@ #endif #define XFER_TO_GUEST_MODE_WORK \ - (_TIF_NEED_RESCHED | _TIF_SIGPENDING | _TIF_NOTIFY_SIGNAL | \ - _TIF_NOTIFY_RESUME | ARCH_XFER_TO_GUEST_MODE_WORK) + (_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY | _TIF_SIGPENDING | \ + _TIF_NOTIFY_SIGNAL | _TIF_NOTIFY_RESUME | \ + ARCH_XFER_TO_GUEST_MODE_WORK) struct kvm_vcpu; diff --git a/include/linux/mm_types.h b/include/linux/mm_types.h index 6e3bdf8e38bc..381d22eba088 100644 --- a/include/linux/mm_types.h +++ b/include/linux/mm_types.h @@ -782,6 +782,7 @@ struct vm_area_struct { struct mm_cid { u64 time; int cid; + int recent_cid; }; #endif @@ -852,6 +853,27 @@ struct mm_struct { * When the next mm_cid scan is due (in jiffies). */ unsigned long mm_cid_next_scan; + /** + * @nr_cpus_allowed: Number of CPUs allowed for mm. + * + * Number of CPUs allowed in the union of all mm's + * threads allowed CPUs. + */ + unsigned int nr_cpus_allowed; + /** + * @max_nr_cid: Maximum number of concurrency IDs allocated. + * + * Track the highest number of concurrency IDs allocated for the + * mm. + */ + atomic_t max_nr_cid; + /** + * @cpus_allowed_lock: Lock protecting mm cpus_allowed. + * + * Provide mutual exclusion for mm cpus_allowed and + * mm nr_cpus_allowed updates. + */ + raw_spinlock_t cpus_allowed_lock; #endif #ifdef CONFIG_MMU atomic_long_t pgtables_bytes; /* size of all page tables */ @@ -1170,18 +1192,30 @@ static inline int mm_cid_clear_lazy_put(int cid) return cid & ~MM_CID_LAZY_PUT; } +/* + * mm_cpus_allowed: Union of all mm's threads allowed CPUs. + */ +static inline cpumask_t *mm_cpus_allowed(struct mm_struct *mm) +{ + unsigned long bitmap = (unsigned long)mm; + + bitmap += offsetof(struct mm_struct, cpu_bitmap); + /* Skip cpu_bitmap */ + bitmap += cpumask_size(); + return (struct cpumask *)bitmap; +} + /* Accessor for struct mm_struct's cidmask. */ static inline cpumask_t *mm_cidmask(struct mm_struct *mm) { - unsigned long cid_bitmap = (unsigned long)mm; + unsigned long cid_bitmap = (unsigned long)mm_cpus_allowed(mm); - cid_bitmap += offsetof(struct mm_struct, cpu_bitmap); - /* Skip cpu_bitmap */ + /* Skip mm_cpus_allowed */ cid_bitmap += cpumask_size(); return (struct cpumask *)cid_bitmap; } -static inline void mm_init_cid(struct mm_struct *mm) +static inline void mm_init_cid(struct mm_struct *mm, struct task_struct *p) { int i; @@ -1189,17 +1223,22 @@ static inline void mm_init_cid(struct mm_struct *mm) struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, i); pcpu_cid->cid = MM_CID_UNSET; + pcpu_cid->recent_cid = MM_CID_UNSET; pcpu_cid->time = 0; } + mm->nr_cpus_allowed = p->nr_cpus_allowed; + atomic_set(&mm->max_nr_cid, 0); + raw_spin_lock_init(&mm->cpus_allowed_lock); + cpumask_copy(mm_cpus_allowed(mm), &p->cpus_mask); cpumask_clear(mm_cidmask(mm)); } -static inline int mm_alloc_cid_noprof(struct mm_struct *mm) +static inline int mm_alloc_cid_noprof(struct mm_struct *mm, struct task_struct *p) { mm->pcpu_cid = alloc_percpu_noprof(struct mm_cid); if (!mm->pcpu_cid) return -ENOMEM; - mm_init_cid(mm); + mm_init_cid(mm, p); return 0; } #define mm_alloc_cid(...) alloc_hooks(mm_alloc_cid_noprof(__VA_ARGS__)) @@ -1212,16 +1251,31 @@ static inline void mm_destroy_cid(struct mm_struct *mm) static inline unsigned int mm_cid_size(void) { - return cpumask_size(); + return 2 * cpumask_size(); /* mm_cpus_allowed(), mm_cidmask(). */ +} + +static inline void mm_set_cpus_allowed(struct mm_struct *mm, const struct cpumask *cpumask) +{ + struct cpumask *mm_allowed = mm_cpus_allowed(mm); + + if (!mm) + return; + /* The mm_cpus_allowed is the union of each thread allowed CPUs masks. */ + raw_spin_lock(&mm->cpus_allowed_lock); + cpumask_or(mm_allowed, mm_allowed, cpumask); + WRITE_ONCE(mm->nr_cpus_allowed, cpumask_weight(mm_allowed)); + raw_spin_unlock(&mm->cpus_allowed_lock); } #else /* CONFIG_SCHED_MM_CID */ -static inline void mm_init_cid(struct mm_struct *mm) { } -static inline int mm_alloc_cid(struct mm_struct *mm) { return 0; } +static inline void mm_init_cid(struct mm_struct *mm, struct task_struct *p) { } +static inline int mm_alloc_cid(struct mm_struct *mm, struct task_struct *p) { return 0; } static inline void mm_destroy_cid(struct mm_struct *mm) { } + static inline unsigned int mm_cid_size(void) { return 0; } +static inline void mm_set_cpus_allowed(struct mm_struct *mm, const struct cpumask *cpumask) { } #endif /* CONFIG_SCHED_MM_CID */ struct mmu_gather; diff --git a/include/linux/preempt.h b/include/linux/preempt.h index ce76f1a45722..ca86235ac15c 100644 --- a/include/linux/preempt.h +++ b/include/linux/preempt.h @@ -486,6 +486,7 @@ DEFINE_LOCK_GUARD_0(migrate, migrate_disable(), migrate_enable()) extern bool preempt_model_none(void); extern bool preempt_model_voluntary(void); extern bool preempt_model_full(void); +extern bool preempt_model_lazy(void); #else @@ -502,6 +503,11 @@ static inline bool preempt_model_full(void) return IS_ENABLED(CONFIG_PREEMPT); } +static inline bool preempt_model_lazy(void) +{ + return IS_ENABLED(CONFIG_PREEMPT_LAZY); +} + #endif static inline bool preempt_model_rt(void) @@ -519,7 +525,7 @@ static inline bool preempt_model_rt(void) */ static inline bool preempt_model_preemptible(void) { - return preempt_model_full() || preempt_model_rt(); + return preempt_model_full() || preempt_model_lazy() || preempt_model_rt(); } #endif /* __LINUX_PREEMPT_H */ diff --git a/include/linux/sched.h b/include/linux/sched.h index bb343136ddd0..1d5cc3e50884 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -1898,7 +1898,7 @@ extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; #ifdef CONFIG_THREAD_INFO_IN_TASK # define task_thread_info(task) (&(task)->thread_info) -#elif !defined(__HAVE_THREAD_FUNCTIONS) +#else # define task_thread_info(task) ((struct thread_info *)(task)->stack) #endif @@ -2002,7 +2002,8 @@ static inline void set_tsk_need_resched(struct task_struct *tsk) static inline void clear_tsk_need_resched(struct task_struct *tsk) { - clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); + atomic_long_andnot(_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY, + (atomic_long_t *)&task_thread_info(tsk)->flags); } static inline int test_tsk_need_resched(struct task_struct *tsk) diff --git a/include/linux/sched/ext.h b/include/linux/sched/ext.h index 1ddbde64a31b..2799e7284fff 100644 --- a/include/linux/sched/ext.h +++ b/include/linux/sched/ext.h @@ -199,7 +199,6 @@ struct sched_ext_entity { #ifdef CONFIG_EXT_GROUP_SCHED struct cgroup *cgrp_moving_from; #endif - /* must be the last field, see init_scx_entity() */ struct list_head tasks_node; }; diff --git a/include/linux/sched/task_stack.h b/include/linux/sched/task_stack.h index 6c2fef89a4fd..cffad65bdc6a 100644 --- a/include/linux/sched/task_stack.h +++ b/include/linux/sched/task_stack.h @@ -34,7 +34,7 @@ static __always_inline unsigned long *end_of_stack(const struct task_struct *tas #endif } -#elif !defined(__HAVE_THREAD_FUNCTIONS) +#else #define task_stack_page(task) ((void *)(task)->stack) diff --git a/include/linux/thread_info.h b/include/linux/thread_info.h index 9ea0b28068f4..cf2446c9c30d 100644 --- a/include/linux/thread_info.h +++ b/include/linux/thread_info.h @@ -59,6 +59,14 @@ enum syscall_work_bit { #include <asm/thread_info.h> +#ifndef TIF_NEED_RESCHED_LAZY +#ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY +#error Inconsistent PREEMPT_LAZY +#endif +#define TIF_NEED_RESCHED_LAZY TIF_NEED_RESCHED +#define _TIF_NEED_RESCHED_LAZY _TIF_NEED_RESCHED +#endif + #ifdef __KERNEL__ #ifndef arch_set_restart_data @@ -179,22 +187,27 @@ static __always_inline unsigned long read_ti_thread_flags(struct thread_info *ti #ifdef _ASM_GENERIC_BITOPS_INSTRUMENTED_NON_ATOMIC_H -static __always_inline bool tif_need_resched(void) +static __always_inline bool tif_test_bit(int bit) { - return arch_test_bit(TIF_NEED_RESCHED, + return arch_test_bit(bit, (unsigned long *)(¤t_thread_info()->flags)); } #else -static __always_inline bool tif_need_resched(void) +static __always_inline bool tif_test_bit(int bit) { - return test_bit(TIF_NEED_RESCHED, + return test_bit(bit, (unsigned long *)(¤t_thread_info()->flags)); } #endif /* _ASM_GENERIC_BITOPS_INSTRUMENTED_NON_ATOMIC_H */ +static __always_inline bool tif_need_resched(void) +{ + return tif_test_bit(TIF_NEED_RESCHED); +} + #ifndef CONFIG_HAVE_ARCH_WITHIN_STACK_FRAMES static inline int arch_within_stack_frames(const void * const stack, const void * const stackend, diff --git a/include/linux/wait_bit.h b/include/linux/wait_bit.h index 7725b7579b78..9e29d79fc790 100644 --- a/include/linux/wait_bit.h +++ b/include/linux/wait_bit.h @@ -8,7 +8,7 @@ #include <linux/wait.h> struct wait_bit_key { - void *flags; + unsigned long *flags; int bit_nr; unsigned long timeout; }; @@ -23,14 +23,14 @@ struct wait_bit_queue_entry { typedef int wait_bit_action_f(struct wait_bit_key *key, int mode); -void __wake_up_bit(struct wait_queue_head *wq_head, void *word, int bit); +void __wake_up_bit(struct wait_queue_head *wq_head, unsigned long *word, int bit); int __wait_on_bit(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, wait_bit_action_f *action, unsigned int mode); int __wait_on_bit_lock(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, wait_bit_action_f *action, unsigned int mode); -void wake_up_bit(void *word, int bit); -int out_of_line_wait_on_bit(void *word, int, wait_bit_action_f *action, unsigned int mode); -int out_of_line_wait_on_bit_timeout(void *word, int, wait_bit_action_f *action, unsigned int mode, unsigned long timeout); -int out_of_line_wait_on_bit_lock(void *word, int, wait_bit_action_f *action, unsigned int mode); -struct wait_queue_head *bit_waitqueue(void *word, int bit); +void wake_up_bit(unsigned long *word, int bit); +int out_of_line_wait_on_bit(unsigned long *word, int, wait_bit_action_f *action, unsigned int mode); +int out_of_line_wait_on_bit_timeout(unsigned long *word, int, wait_bit_action_f *action, unsigned int mode, unsigned long timeout); +int out_of_line_wait_on_bit_lock(unsigned long *word, int, wait_bit_action_f *action, unsigned int mode); +struct wait_queue_head *bit_waitqueue(unsigned long *word, int bit); extern void __init wait_bit_init(void); int wake_bit_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key); @@ -49,23 +49,24 @@ int wake_bit_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync extern int bit_wait(struct wait_bit_key *key, int mode); extern int bit_wait_io(struct wait_bit_key *key, int mode); extern int bit_wait_timeout(struct wait_bit_key *key, int mode); -extern int bit_wait_io_timeout(struct wait_bit_key *key, int mode); /** * wait_on_bit - wait for a bit to be cleared - * @word: the word being waited on, a kernel virtual address - * @bit: the bit of the word being waited on + * @word: the address containing the bit being waited on + * @bit: the bit at that address being waited on * @mode: the task state to sleep in * - * There is a standard hashed waitqueue table for generic use. This - * is the part of the hashtable's accessor API that waits on a bit. - * For instance, if one were to have waiters on a bitflag, one would - * call wait_on_bit() in threads waiting for the bit to clear. - * One uses wait_on_bit() where one is waiting for the bit to clear, - * but has no intention of setting it. - * Returned value will be zero if the bit was cleared, or non-zero - * if the process received a signal and the mode permitted wakeup - * on that signal. + * Wait for the given bit in an unsigned long or bitmap (see DECLARE_BITMAP()) + * to be cleared. The clearing of the bit must be signalled with + * wake_up_bit(), often as clear_and_wake_up_bit(). + * + * The process will wait on a waitqueue selected by hash from a shared + * pool. It will only be woken on a wake_up for the target bit, even + * if other processes on the same queue are waiting for other bits. + * + * Returned value will be zero if the bit was cleared in which case the + * call has ACQUIRE semantics, or %-EINTR if the process received a + * signal and the mode permitted wake up on that signal. */ static inline int wait_on_bit(unsigned long *word, int bit, unsigned mode) @@ -80,17 +81,20 @@ wait_on_bit(unsigned long *word, int bit, unsigned mode) /** * wait_on_bit_io - wait for a bit to be cleared - * @word: the word being waited on, a kernel virtual address - * @bit: the bit of the word being waited on + * @word: the address containing the bit being waited on + * @bit: the bit at that address being waited on * @mode: the task state to sleep in * - * Use the standard hashed waitqueue table to wait for a bit - * to be cleared. This is similar to wait_on_bit(), but calls - * io_schedule() instead of schedule() for the actual waiting. + * Wait for the given bit in an unsigned long or bitmap (see DECLARE_BITMAP()) + * to be cleared. The clearing of the bit must be signalled with + * wake_up_bit(), often as clear_and_wake_up_bit(). * - * Returned value will be zero if the bit was cleared, or non-zero - * if the process received a signal and the mode permitted wakeup - * on that signal. + * This is similar to wait_on_bit(), but calls io_schedule() instead of + * schedule() for the actual waiting. + * + * Returned value will be zero if the bit was cleared in which case the + * call has ACQUIRE semantics, or %-EINTR if the process received a + * signal and the mode permitted wake up on that signal. */ static inline int wait_on_bit_io(unsigned long *word, int bit, unsigned mode) @@ -104,19 +108,24 @@ wait_on_bit_io(unsigned long *word, int bit, unsigned mode) } /** - * wait_on_bit_timeout - wait for a bit to be cleared or a timeout elapses - * @word: the word being waited on, a kernel virtual address - * @bit: the bit of the word being waited on + * wait_on_bit_timeout - wait for a bit to be cleared or a timeout to elapse + * @word: the address containing the bit being waited on + * @bit: the bit at that address being waited on * @mode: the task state to sleep in * @timeout: timeout, in jiffies * - * Use the standard hashed waitqueue table to wait for a bit - * to be cleared. This is similar to wait_on_bit(), except also takes a - * timeout parameter. + * Wait for the given bit in an unsigned long or bitmap (see + * DECLARE_BITMAP()) to be cleared, or for a timeout to expire. The + * clearing of the bit must be signalled with wake_up_bit(), often as + * clear_and_wake_up_bit(). + * + * This is similar to wait_on_bit(), except it also takes a timeout + * parameter. * - * Returned value will be zero if the bit was cleared before the - * @timeout elapsed, or non-zero if the @timeout elapsed or process - * received a signal and the mode permitted wakeup on that signal. + * Returned value will be zero if the bit was cleared in which case the + * call has ACQUIRE semantics, or %-EINTR if the process received a + * signal and the mode permitted wake up on that signal, or %-EAGAIN if the + * timeout elapsed. */ static inline int wait_on_bit_timeout(unsigned long *word, int bit, unsigned mode, @@ -132,19 +141,21 @@ wait_on_bit_timeout(unsigned long *word, int bit, unsigned mode, /** * wait_on_bit_action - wait for a bit to be cleared - * @word: the word being waited on, a kernel virtual address - * @bit: the bit of the word being waited on + * @word: the address containing the bit waited on + * @bit: the bit at that address being waited on * @action: the function used to sleep, which may take special actions * @mode: the task state to sleep in * - * Use the standard hashed waitqueue table to wait for a bit - * to be cleared, and allow the waiting action to be specified. - * This is like wait_on_bit() but allows fine control of how the waiting - * is done. + * Wait for the given bit in an unsigned long or bitmap (see DECLARE_BITMAP()) + * to be cleared. The clearing of the bit must be signalled with + * wake_up_bit(), often as clear_and_wake_up_bit(). + * + * This is similar to wait_on_bit(), but calls @action() instead of + * schedule() for the actual waiting. * - * Returned value will be zero if the bit was cleared, or non-zero - * if the process received a signal and the mode permitted wakeup - * on that signal. + * Returned value will be zero if the bit was cleared in which case the + * call has ACQUIRE semantics, or the error code returned by @action if + * that call returned non-zero. */ static inline int wait_on_bit_action(unsigned long *word, int bit, wait_bit_action_f *action, @@ -157,23 +168,22 @@ wait_on_bit_action(unsigned long *word, int bit, wait_bit_action_f *action, } /** - * wait_on_bit_lock - wait for a bit to be cleared, when wanting to set it - * @word: the word being waited on, a kernel virtual address - * @bit: the bit of the word being waited on + * wait_on_bit_lock - wait for a bit to be cleared, then set it + * @word: the address containing the bit being waited on + * @bit: the bit of the word being waited on and set * @mode: the task state to sleep in * - * There is a standard hashed waitqueue table for generic use. This - * is the part of the hashtable's accessor API that waits on a bit - * when one intends to set it, for instance, trying to lock bitflags. - * For instance, if one were to have waiters trying to set bitflag - * and waiting for it to clear before setting it, one would call - * wait_on_bit() in threads waiting to be able to set the bit. - * One uses wait_on_bit_lock() where one is waiting for the bit to - * clear with the intention of setting it, and when done, clearing it. + * Wait for the given bit in an unsigned long or bitmap (see + * DECLARE_BITMAP()) to be cleared. The clearing of the bit must be + * signalled with wake_up_bit(), often as clear_and_wake_up_bit(). As + * soon as it is clear, atomically set it and return. * - * Returns zero if the bit was (eventually) found to be clear and was - * set. Returns non-zero if a signal was delivered to the process and - * the @mode allows that signal to wake the process. + * This is similar to wait_on_bit(), but sets the bit before returning. + * + * Returned value will be zero if the bit was successfully set in which + * case the call has the same memory sequencing semantics as + * test_and_clear_bit(), or %-EINTR if the process received a signal and + * the mode permitted wake up on that signal. */ static inline int wait_on_bit_lock(unsigned long *word, int bit, unsigned mode) @@ -185,15 +195,18 @@ wait_on_bit_lock(unsigned long *word, int bit, unsigned mode) } /** - * wait_on_bit_lock_io - wait for a bit to be cleared, when wanting to set it - * @word: the word being waited on, a kernel virtual address - * @bit: the bit of the word being waited on + * wait_on_bit_lock_io - wait for a bit to be cleared, then set it + * @word: the address containing the bit being waited on + * @bit: the bit of the word being waited on and set * @mode: the task state to sleep in * - * Use the standard hashed waitqueue table to wait for a bit - * to be cleared and then to atomically set it. This is similar - * to wait_on_bit(), but calls io_schedule() instead of schedule() - * for the actual waiting. + * Wait for the given bit in an unsigned long or bitmap (see + * DECLARE_BITMAP()) to be cleared. The clearing of the bit must be + * signalled with wake_up_bit(), often as clear_and_wake_up_bit(). As + * soon as it is clear, atomically set it and return. + * + * This is similar to wait_on_bit_lock(), but calls io_schedule() instead + * of schedule(). * * Returns zero if the bit was (eventually) found to be clear and was * set. Returns non-zero if a signal was delivered to the process and @@ -209,21 +222,19 @@ wait_on_bit_lock_io(unsigned long *word, int bit, unsigned mode) } /** - * wait_on_bit_lock_action - wait for a bit to be cleared, when wanting to set it - * @word: the word being waited on, a kernel virtual address - * @bit: the bit of the word being waited on + * wait_on_bit_lock_action - wait for a bit to be cleared, then set it + * @word: the address containing the bit being waited on + * @bit: the bit of the word being waited on and set * @action: the function used to sleep, which may take special actions * @mode: the task state to sleep in * - * Use the standard hashed waitqueue table to wait for a bit - * to be cleared and then to set it, and allow the waiting action - * to be specified. - * This is like wait_on_bit() but allows fine control of how the waiting - * is done. + * This is similar to wait_on_bit_lock(), but calls @action() instead of + * schedule() for the actual waiting. * - * Returns zero if the bit was (eventually) found to be clear and was - * set. Returns non-zero if a signal was delivered to the process and - * the @mode allows that signal to wake the process. + * Returned value will be zero if the bit was successfully set in which + * case the call has the same memory sequencing semantics as + * test_and_clear_bit(), or the error code returned by @action if that + * call returned non-zero. */ static inline int wait_on_bit_lock_action(unsigned long *word, int bit, wait_bit_action_f *action, @@ -269,7 +280,26 @@ __out: __ret; \ #define __wait_var_event(var, condition) \ ___wait_var_event(var, condition, TASK_UNINTERRUPTIBLE, 0, 0, \ schedule()) +#define __wait_var_event_io(var, condition) \ + ___wait_var_event(var, condition, TASK_UNINTERRUPTIBLE, 0, 0, \ + io_schedule()) +/** + * wait_var_event - wait for a variable to be updated and notified + * @var: the address of variable being waited on + * @condition: the condition to wait for + * + * Wait for a @condition to be true, only re-checking when a wake up is + * received for the given @var (an arbitrary kernel address which need + * not be directly related to the given condition, but usually is). + * + * The process will wait on a waitqueue selected by hash from a shared + * pool. It will only be woken on a wake_up for the given address. + * + * The condition should normally use smp_load_acquire() or a similarly + * ordered access to ensure that any changes to memory made before the + * condition became true will be visible after the wait completes. + */ #define wait_var_event(var, condition) \ do { \ might_sleep(); \ @@ -278,10 +308,56 @@ do { \ __wait_var_event(var, condition); \ } while (0) +/** + * wait_var_event_io - wait for a variable to be updated and notified + * @var: the address of variable being waited on + * @condition: the condition to wait for + * + * Wait for an IO related @condition to be true, only re-checking when a + * wake up is received for the given @var (an arbitrary kernel address + * which need not be directly related to the given condition, but + * usually is). + * + * The process will wait on a waitqueue selected by hash from a shared + * pool. It will only be woken on a wake_up for the given address. + * + * This is similar to wait_var_event(), but calls io_schedule() instead + * of schedule(). + * + * The condition should normally use smp_load_acquire() or a similarly + * ordered access to ensure that any changes to memory made before the + * condition became true will be visible after the wait completes. + */ +#define wait_var_event_io(var, condition) \ +do { \ + might_sleep(); \ + if (condition) \ + break; \ + __wait_var_event_io(var, condition); \ +} while (0) + #define __wait_var_event_killable(var, condition) \ ___wait_var_event(var, condition, TASK_KILLABLE, 0, 0, \ schedule()) +/** + * wait_var_event_killable - wait for a variable to be updated and notified + * @var: the address of variable being waited on + * @condition: the condition to wait for + * + * Wait for a @condition to be true or a fatal signal to be received, + * only re-checking the condition when a wake up is received for the given + * @var (an arbitrary kernel address which need not be directly related + * to the given condition, but usually is). + * + * This is similar to wait_var_event() but returns a value which is + * 0 if the condition became true, or %-ERESTARTSYS if a fatal signal + * was received. + * + * The condition should normally use smp_load_acquire() or a similarly + * ordered access to ensure that any changes to memory made before the + * condition became true will be visible after the wait completes. + */ #define wait_var_event_killable(var, condition) \ ({ \ int __ret = 0; \ @@ -296,6 +372,26 @@ do { \ TASK_UNINTERRUPTIBLE, 0, timeout, \ __ret = schedule_timeout(__ret)) +/** + * wait_var_event_timeout - wait for a variable to be updated or a timeout to expire + * @var: the address of variable being waited on + * @condition: the condition to wait for + * @timeout: maximum time to wait in jiffies + * + * Wait for a @condition to be true or a timeout to expire, only + * re-checking the condition when a wake up is received for the given + * @var (an arbitrary kernel address which need not be directly related + * to the given condition, but usually is). + * + * This is similar to wait_var_event() but returns a value which is 0 if + * the timeout expired and the condition was still false, or the + * remaining time left in the timeout (but at least 1) if the condition + * was found to be true. + * + * The condition should normally use smp_load_acquire() or a similarly + * ordered access to ensure that any changes to memory made before the + * condition became true will be visible after the wait completes. + */ #define wait_var_event_timeout(var, condition, timeout) \ ({ \ long __ret = timeout; \ @@ -309,6 +405,23 @@ do { \ ___wait_var_event(var, condition, TASK_INTERRUPTIBLE, 0, 0, \ schedule()) +/** + * wait_var_event_killable - wait for a variable to be updated and notified + * @var: the address of variable being waited on + * @condition: the condition to wait for + * + * Wait for a @condition to be true or a signal to be received, only + * re-checking the condition when a wake up is received for the given + * @var (an arbitrary kernel address which need not be directly related + * to the given condition, but usually is). + * + * This is similar to wait_var_event() but returns a value which is 0 if + * the condition became true, or %-ERESTARTSYS if a signal was received. + * + * The condition should normally use smp_load_acquire() or a similarly + * ordered access to ensure that any changes to memory made before the + * condition became true will be visible after the wait completes. + */ #define wait_var_event_interruptible(var, condition) \ ({ \ int __ret = 0; \ @@ -319,15 +432,122 @@ do { \ }) /** - * clear_and_wake_up_bit - clear a bit and wake up anyone waiting on that bit + * wait_var_event_any_lock - wait for a variable to be updated under a lock + * @var: the address of the variable being waited on + * @condition: condition to wait for + * @lock: the object that is locked to protect updates to the variable + * @type: prefix on lock and unlock operations + * @state: waiting state, %TASK_UNINTERRUPTIBLE etc. + * + * Wait for a condition which can only be reliably tested while holding + * a lock. The variables assessed in the condition will normal be updated + * under the same lock, and the wake up should be signalled with + * wake_up_var_locked() under the same lock. + * + * This is similar to wait_var_event(), but assumes a lock is held + * while calling this function and while updating the variable. * + * This must be called while the given lock is held and the lock will be + * dropped when schedule() is called to wait for a wake up, and will be + * reclaimed before testing the condition again. The functions used to + * unlock and lock the object are constructed by appending _unlock and _lock + * to @type. + * + * Return %-ERESTARTSYS if a signal arrives which is allowed to interrupt + * the wait according to @state. + */ +#define wait_var_event_any_lock(var, condition, lock, type, state) \ +({ \ + int __ret = 0; \ + if (!(condition)) \ + __ret = ___wait_var_event(var, condition, state, 0, 0, \ + type ## _unlock(lock); \ + schedule(); \ + type ## _lock(lock)); \ + __ret; \ +}) + +/** + * wait_var_event_spinlock - wait for a variable to be updated under a spinlock + * @var: the address of the variable being waited on + * @condition: condition to wait for + * @lock: the spinlock which protects updates to the variable + * + * Wait for a condition which can only be reliably tested while holding + * a spinlock. The variables assessed in the condition will normal be updated + * under the same spinlock, and the wake up should be signalled with + * wake_up_var_locked() under the same spinlock. + * + * This is similar to wait_var_event(), but assumes a spinlock is held + * while calling this function and while updating the variable. + * + * This must be called while the given lock is held and the lock will be + * dropped when schedule() is called to wait for a wake up, and will be + * reclaimed before testing the condition again. + */ +#define wait_var_event_spinlock(var, condition, lock) \ + wait_var_event_any_lock(var, condition, lock, spin, TASK_UNINTERRUPTIBLE) + +/** + * wait_var_event_mutex - wait for a variable to be updated under a mutex + * @var: the address of the variable being waited on + * @condition: condition to wait for + * @mutex: the mutex which protects updates to the variable + * + * Wait for a condition which can only be reliably tested while holding + * a mutex. The variables assessed in the condition will normal be + * updated under the same mutex, and the wake up should be signalled + * with wake_up_var_locked() under the same mutex. + * + * This is similar to wait_var_event(), but assumes a mutex is held + * while calling this function and while updating the variable. + * + * This must be called while the given mutex is held and the mutex will be + * dropped when schedule() is called to wait for a wake up, and will be + * reclaimed before testing the condition again. + */ +#define wait_var_event_mutex(var, condition, lock) \ + wait_var_event_any_lock(var, condition, lock, mutex, TASK_UNINTERRUPTIBLE) + +/** + * wake_up_var_protected - wake up waiters for a variable asserting that it is safe + * @var: the address of the variable being waited on + * @cond: the condition which afirms this is safe + * + * When waking waiters which use wait_var_event_any_lock() the waker must be + * holding the reelvant lock to avoid races. This version of wake_up_var() + * asserts that the relevant lock is held and so no barrier is needed. + * The @cond is only tested when CONFIG_LOCKDEP is enabled. + */ +#define wake_up_var_protected(var, cond) \ +do { \ + lockdep_assert(cond); \ + wake_up_var(var); \ +} while (0) + +/** + * wake_up_var_locked - wake up waiters for a variable while holding a spinlock or mutex + * @var: the address of the variable being waited on + * @lock: The spinlock or mutex what protects the variable + * + * Send a wake up for the given variable which should be waited for with + * wait_var_event_spinlock() or wait_var_event_mutex(). Unlike wake_up_var(), + * no extra barriers are needed as the locking provides sufficient sequencing. + */ +#define wake_up_var_locked(var, lock) \ + wake_up_var_protected(var, lockdep_is_held(lock)) + +/** + * clear_and_wake_up_bit - clear a bit and wake up anyone waiting on that bit * @bit: the bit of the word being waited on - * @word: the word being waited on, a kernel virtual address + * @word: the address containing the bit being waited on * - * You can use this helper if bitflags are manipulated atomically rather than - * non-atomically under a lock. + * The designated bit is cleared and any tasks waiting in wait_on_bit() + * or similar will be woken. This call has RELEASE semantics so that + * any changes to memory made before this call are guaranteed to be visible + * after the corresponding wait_on_bit() completes. */ -static inline void clear_and_wake_up_bit(int bit, void *word) +static inline void clear_and_wake_up_bit(int bit, unsigned long *word) { clear_bit_unlock(bit, word); /* See wake_up_bit() for which memory barrier you need to use. */ @@ -335,4 +555,64 @@ static inline void clear_and_wake_up_bit(int bit, void *word) wake_up_bit(word, bit); } +/** + * test_and_clear_wake_up_bit - clear a bit if it was set: wake up anyone waiting on that bit + * @bit: the bit of the word being waited on + * @word: the address of memory containing that bit + * + * If the bit is set and can be atomically cleared, any tasks waiting in + * wait_on_bit() or similar will be woken. This call has the same + * complete ordering semantics as test_and_clear_bit(). Any changes to + * memory made before this call are guaranteed to be visible after the + * corresponding wait_on_bit() completes. + * + * Returns %true if the bit was successfully set and the wake up was sent. + */ +static inline bool test_and_clear_wake_up_bit(int bit, unsigned long *word) +{ + if (!test_and_clear_bit(bit, word)) + return false; + /* no extra barrier required */ + wake_up_bit(word, bit); + return true; +} + +/** + * atomic_dec_and_wake_up - decrement an atomic_t and if zero, wake up waiters + * @var: the variable to dec and test + * + * Decrements the atomic variable and if it reaches zero, send a wake_up to any + * processes waiting on the variable. + * + * This function has the same complete ordering semantics as atomic_dec_and_test. + * + * Returns %true is the variable reaches zero and the wake up was sent. + */ + +static inline bool atomic_dec_and_wake_up(atomic_t *var) +{ + if (!atomic_dec_and_test(var)) + return false; + /* No extra barrier required */ + wake_up_var(var); + return true; +} + +/** + * store_release_wake_up - update a variable and send a wake_up + * @var: the address of the variable to be updated and woken + * @val: the value to store in the variable. + * + * Store the given value in the variable send a wake up to any tasks + * waiting on the variable. All necessary barriers are included to ensure + * the task calling wait_var_event() sees the new value and all values + * written to memory before this call. + */ +#define store_release_wake_up(var, val) \ +do { \ + smp_store_release(var, val); \ + smp_mb(); \ + wake_up_var(var); \ +} while (0) + #endif /* _LINUX_WAIT_BIT_H */ |