diff options
-rw-r--r-- | include/linux/workqueue.h | 2 | ||||
-rw-r--r-- | kernel/workqueue.c | 84 |
2 files changed, 86 insertions, 0 deletions
diff --git a/include/linux/workqueue.h b/include/linux/workqueue.h index 60d673e15632..1f50c1e586e7 100644 --- a/include/linux/workqueue.h +++ b/include/linux/workqueue.h @@ -463,6 +463,8 @@ int workqueue_set_unbound_cpumask(cpumask_var_t cpumask); extern bool queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work); +extern bool queue_work_node(int node, struct workqueue_struct *wq, + struct work_struct *work); extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *work, unsigned long delay); extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, diff --git a/kernel/workqueue.c b/kernel/workqueue.c index 392be4b252f6..d5a26e456f7a 100644 --- a/kernel/workqueue.c +++ b/kernel/workqueue.c @@ -1492,6 +1492,90 @@ bool queue_work_on(int cpu, struct workqueue_struct *wq, } EXPORT_SYMBOL(queue_work_on); +/** + * workqueue_select_cpu_near - Select a CPU based on NUMA node + * @node: NUMA node ID that we want to select a CPU from + * + * This function will attempt to find a "random" cpu available on a given + * node. If there are no CPUs available on the given node it will return + * WORK_CPU_UNBOUND indicating that we should just schedule to any + * available CPU if we need to schedule this work. + */ +static int workqueue_select_cpu_near(int node) +{ + int cpu; + + /* No point in doing this if NUMA isn't enabled for workqueues */ + if (!wq_numa_enabled) + return WORK_CPU_UNBOUND; + + /* Delay binding to CPU if node is not valid or online */ + if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) + return WORK_CPU_UNBOUND; + + /* Use local node/cpu if we are already there */ + cpu = raw_smp_processor_id(); + if (node == cpu_to_node(cpu)) + return cpu; + + /* Use "random" otherwise know as "first" online CPU of node */ + cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); + + /* If CPU is valid return that, otherwise just defer */ + return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; +} + +/** + * queue_work_node - queue work on a "random" cpu for a given NUMA node + * @node: NUMA node that we are targeting the work for + * @wq: workqueue to use + * @work: work to queue + * + * We queue the work to a "random" CPU within a given NUMA node. The basic + * idea here is to provide a way to somehow associate work with a given + * NUMA node. + * + * This function will only make a best effort attempt at getting this onto + * the right NUMA node. If no node is requested or the requested node is + * offline then we just fall back to standard queue_work behavior. + * + * Currently the "random" CPU ends up being the first available CPU in the + * intersection of cpu_online_mask and the cpumask of the node, unless we + * are running on the node. In that case we just use the current CPU. + * + * Return: %false if @work was already on a queue, %true otherwise. + */ +bool queue_work_node(int node, struct workqueue_struct *wq, + struct work_struct *work) +{ + unsigned long flags; + bool ret = false; + + /* + * This current implementation is specific to unbound workqueues. + * Specifically we only return the first available CPU for a given + * node instead of cycling through individual CPUs within the node. + * + * If this is used with a per-cpu workqueue then the logic in + * workqueue_select_cpu_near would need to be updated to allow for + * some round robin type logic. + */ + WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); + + local_irq_save(flags); + + if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { + int cpu = workqueue_select_cpu_near(node); + + __queue_work(cpu, wq, work); + ret = true; + } + + local_irq_restore(flags); + return ret; +} +EXPORT_SYMBOL_GPL(queue_work_node); + void delayed_work_timer_fn(struct timer_list *t) { struct delayed_work *dwork = from_timer(dwork, t, timer); |