diff options
Diffstat (limited to 'Documentation/core-api/workqueue.rst')
-rw-r--r-- | Documentation/core-api/workqueue.rst | 356 |
1 files changed, 337 insertions, 19 deletions
diff --git a/Documentation/core-api/workqueue.rst b/Documentation/core-api/workqueue.rst index a4c9b9d1905f..5d7b01aed1fe 100644 --- a/Documentation/core-api/workqueue.rst +++ b/Documentation/core-api/workqueue.rst @@ -1,6 +1,6 @@ -==================================== -Concurrency Managed Workqueue (cmwq) -==================================== +========= +Workqueue +========= :Date: September, 2010 :Author: Tejun Heo <tj@kernel.org> @@ -25,8 +25,8 @@ there is no work item left on the workqueue the worker becomes idle. When a new work item gets queued, the worker begins executing again. -Why cmwq? -========= +Why Concurrency Managed Workqueue? +================================== In the original wq implementation, a multi threaded (MT) wq had one worker thread per CPU and a single threaded (ST) wq had one worker @@ -220,17 +220,16 @@ resources, scheduled and executed. ``max_active`` -------------- -``@max_active`` determines the maximum number of execution contexts -per CPU which can be assigned to the work items of a wq. For example, -with ``@max_active`` of 16, at most 16 work items of the wq can be -executing at the same time per CPU. +``@max_active`` determines the maximum number of execution contexts per +CPU which can be assigned to the work items of a wq. For example, with +``@max_active`` of 16, at most 16 work items of the wq can be executing +at the same time per CPU. This is always a per-CPU attribute, even for +unbound workqueues. -Currently, for a bound wq, the maximum limit for ``@max_active`` is -512 and the default value used when 0 is specified is 256. For an -unbound wq, the limit is higher of 512 and 4 * -``num_possible_cpus()``. These values are chosen sufficiently high -such that they are not the limiting factor while providing protection -in runaway cases. +The maximum limit for ``@max_active`` is 512 and the default value used +when 0 is specified is 256. These values are chosen sufficiently high +such that they are not the limiting factor while providing protection in +runaway cases. The number of active work items of a wq is usually regulated by the users of the wq, more specifically, by how many work items the users @@ -348,27 +347,346 @@ Guidelines level of locality in wq operations and work item execution. +Affinity Scopes +=============== + +An unbound workqueue groups CPUs according to its affinity scope to improve +cache locality. For example, if a workqueue is using the default affinity +scope of "cache", it will group CPUs according to last level cache +boundaries. A work item queued on the workqueue will be assigned to a worker +on one of the CPUs which share the last level cache with the issuing CPU. +Once started, the worker may or may not be allowed to move outside the scope +depending on the ``affinity_strict`` setting of the scope. + +Workqueue currently supports the following affinity scopes. + +``default`` + Use the scope in module parameter ``workqueue.default_affinity_scope`` + which is always set to one of the scopes below. + +``cpu`` + CPUs are not grouped. A work item issued on one CPU is processed by a + worker on the same CPU. This makes unbound workqueues behave as per-cpu + workqueues without concurrency management. + +``smt`` + CPUs are grouped according to SMT boundaries. This usually means that the + logical threads of each physical CPU core are grouped together. + +``cache`` + CPUs are grouped according to cache boundaries. Which specific cache + boundary is used is determined by the arch code. L3 is used in a lot of + cases. This is the default affinity scope. + +``numa`` + CPUs are grouped according to NUMA bounaries. + +``system`` + All CPUs are put in the same group. Workqueue makes no effort to process a + work item on a CPU close to the issuing CPU. + +The default affinity scope can be changed with the module parameter +``workqueue.default_affinity_scope`` and a specific workqueue's affinity +scope can be changed using ``apply_workqueue_attrs()``. + +If ``WQ_SYSFS`` is set, the workqueue will have the following affinity scope +related interface files under its ``/sys/devices/virtual/WQ_NAME/`` +directory. + +``affinity_scope`` + Read to see the current affinity scope. Write to change. + + When default is the current scope, reading this file will also show the + current effective scope in parentheses, for example, ``default (cache)``. + +``affinity_strict`` + 0 by default indicating that affinity scopes are not strict. When a work + item starts execution, workqueue makes a best-effort attempt to ensure + that the worker is inside its affinity scope, which is called + repatriation. Once started, the scheduler is free to move the worker + anywhere in the system as it sees fit. This enables benefiting from scope + locality while still being able to utilize other CPUs if necessary and + available. + + If set to 1, all workers of the scope are guaranteed always to be in the + scope. This may be useful when crossing affinity scopes has other + implications, for example, in terms of power consumption or workload + isolation. Strict NUMA scope can also be used to match the workqueue + behavior of older kernels. + + +Affinity Scopes and Performance +=============================== + +It'd be ideal if an unbound workqueue's behavior is optimal for vast +majority of use cases without further tuning. Unfortunately, in the current +kernel, there exists a pronounced trade-off between locality and utilization +necessitating explicit configurations when workqueues are heavily used. + +Higher locality leads to higher efficiency where more work is performed for +the same number of consumed CPU cycles. However, higher locality may also +cause lower overall system utilization if the work items are not spread +enough across the affinity scopes by the issuers. The following performance +testing with dm-crypt clearly illustrates this trade-off. + +The tests are run on a CPU with 12-cores/24-threads split across four L3 +caches (AMD Ryzen 9 3900x). CPU clock boost is turned off for consistency. +``/dev/dm-0`` is a dm-crypt device created on NVME SSD (Samsung 990 PRO) and +opened with ``cryptsetup`` with default settings. + + +Scenario 1: Enough issuers and work spread across the machine +------------------------------------------------------------- + +The command used: :: + + $ fio --filename=/dev/dm-0 --direct=1 --rw=randrw --bs=32k --ioengine=libaio \ + --iodepth=64 --runtime=60 --numjobs=24 --time_based --group_reporting \ + --name=iops-test-job --verify=sha512 + +There are 24 issuers, each issuing 64 IOs concurrently. ``--verify=sha512`` +makes ``fio`` generate and read back the content each time which makes +execution locality matter between the issuer and ``kcryptd``. The followings +are the read bandwidths and CPU utilizations depending on different affinity +scope settings on ``kcryptd`` measured over five runs. Bandwidths are in +MiBps, and CPU util in percents. + +.. list-table:: + :widths: 16 20 20 + :header-rows: 1 + + * - Affinity + - Bandwidth (MiBps) + - CPU util (%) + + * - system + - 1159.40 ±1.34 + - 99.31 ±0.02 + + * - cache + - 1166.40 ±0.89 + - 99.34 ±0.01 + + * - cache (strict) + - 1166.00 ±0.71 + - 99.35 ±0.01 + +With enough issuers spread across the system, there is no downside to +"cache", strict or otherwise. All three configurations saturate the whole +machine but the cache-affine ones outperform by 0.6% thanks to improved +locality. + + +Scenario 2: Fewer issuers, enough work for saturation +----------------------------------------------------- + +The command used: :: + + $ fio --filename=/dev/dm-0 --direct=1 --rw=randrw --bs=32k \ + --ioengine=libaio --iodepth=64 --runtime=60 --numjobs=8 \ + --time_based --group_reporting --name=iops-test-job --verify=sha512 + +The only difference from the previous scenario is ``--numjobs=8``. There are +a third of the issuers but is still enough total work to saturate the +system. + +.. list-table:: + :widths: 16 20 20 + :header-rows: 1 + + * - Affinity + - Bandwidth (MiBps) + - CPU util (%) + + * - system + - 1155.40 ±0.89 + - 97.41 ±0.05 + + * - cache + - 1154.40 ±1.14 + - 96.15 ±0.09 + + * - cache (strict) + - 1112.00 ±4.64 + - 93.26 ±0.35 + +This is more than enough work to saturate the system. Both "system" and +"cache" are nearly saturating the machine but not fully. "cache" is using +less CPU but the better efficiency puts it at the same bandwidth as +"system". + +Eight issuers moving around over four L3 cache scope still allow "cache +(strict)" to mostly saturate the machine but the loss of work conservation +is now starting to hurt with 3.7% bandwidth loss. + + +Scenario 3: Even fewer issuers, not enough work to saturate +----------------------------------------------------------- + +The command used: :: + + $ fio --filename=/dev/dm-0 --direct=1 --rw=randrw --bs=32k \ + --ioengine=libaio --iodepth=64 --runtime=60 --numjobs=4 \ + --time_based --group_reporting --name=iops-test-job --verify=sha512 + +Again, the only difference is ``--numjobs=4``. With the number of issuers +reduced to four, there now isn't enough work to saturate the whole system +and the bandwidth becomes dependent on completion latencies. + +.. list-table:: + :widths: 16 20 20 + :header-rows: 1 + + * - Affinity + - Bandwidth (MiBps) + - CPU util (%) + + * - system + - 993.60 ±1.82 + - 75.49 ±0.06 + + * - cache + - 973.40 ±1.52 + - 74.90 ±0.07 + + * - cache (strict) + - 828.20 ±4.49 + - 66.84 ±0.29 + +Now, the tradeoff between locality and utilization is clearer. "cache" shows +2% bandwidth loss compared to "system" and "cache (struct)" whopping 20%. + + +Conclusion and Recommendations +------------------------------ + +In the above experiments, the efficiency advantage of the "cache" affinity +scope over "system" is, while consistent and noticeable, small. However, the +impact is dependent on the distances between the scopes and may be more +pronounced in processors with more complex topologies. + +While the loss of work-conservation in certain scenarios hurts, it is a lot +better than "cache (strict)" and maximizing workqueue utilization is +unlikely to be the common case anyway. As such, "cache" is the default +affinity scope for unbound pools. + +* As there is no one option which is great for most cases, workqueue usages + that may consume a significant amount of CPU are recommended to configure + the workqueues using ``apply_workqueue_attrs()`` and/or enable + ``WQ_SYSFS``. + +* An unbound workqueue with strict "cpu" affinity scope behaves the same as + ``WQ_CPU_INTENSIVE`` per-cpu workqueue. There is no real advanage to the + latter and an unbound workqueue provides a lot more flexibility. + +* Affinity scopes are introduced in Linux v6.5. To emulate the previous + behavior, use strict "numa" affinity scope. + +* The loss of work-conservation in non-strict affinity scopes is likely + originating from the scheduler. There is no theoretical reason why the + kernel wouldn't be able to do the right thing and maintain + work-conservation in most cases. As such, it is possible that future + scheduler improvements may make most of these tunables unnecessary. + + +Examining Configuration +======================= + +Use tools/workqueue/wq_dump.py to examine unbound CPU affinity +configuration, worker pools and how workqueues map to the pools: :: + + $ tools/workqueue/wq_dump.py + Affinity Scopes + =============== + wq_unbound_cpumask=0000000f + + CPU + nr_pods 4 + pod_cpus [0]=00000001 [1]=00000002 [2]=00000004 [3]=00000008 + pod_node [0]=0 [1]=0 [2]=1 [3]=1 + cpu_pod [0]=0 [1]=1 [2]=2 [3]=3 + + SMT + nr_pods 4 + pod_cpus [0]=00000001 [1]=00000002 [2]=00000004 [3]=00000008 + pod_node [0]=0 [1]=0 [2]=1 [3]=1 + cpu_pod [0]=0 [1]=1 [2]=2 [3]=3 + + CACHE (default) + nr_pods 2 + pod_cpus [0]=00000003 [1]=0000000c + pod_node [0]=0 [1]=1 + cpu_pod [0]=0 [1]=0 [2]=1 [3]=1 + + NUMA + nr_pods 2 + pod_cpus [0]=00000003 [1]=0000000c + pod_node [0]=0 [1]=1 + cpu_pod [0]=0 [1]=0 [2]=1 [3]=1 + + SYSTEM + nr_pods 1 + pod_cpus [0]=0000000f + pod_node [0]=-1 + cpu_pod [0]=0 [1]=0 [2]=0 [3]=0 + + Worker Pools + ============ + pool[00] ref= 1 nice= 0 idle/workers= 4/ 4 cpu= 0 + pool[01] ref= 1 nice=-20 idle/workers= 2/ 2 cpu= 0 + pool[02] ref= 1 nice= 0 idle/workers= 4/ 4 cpu= 1 + pool[03] ref= 1 nice=-20 idle/workers= 2/ 2 cpu= 1 + pool[04] ref= 1 nice= 0 idle/workers= 4/ 4 cpu= 2 + pool[05] ref= 1 nice=-20 idle/workers= 2/ 2 cpu= 2 + pool[06] ref= 1 nice= 0 idle/workers= 3/ 3 cpu= 3 + pool[07] ref= 1 nice=-20 idle/workers= 2/ 2 cpu= 3 + pool[08] ref=42 nice= 0 idle/workers= 6/ 6 cpus=0000000f + pool[09] ref=28 nice= 0 idle/workers= 3/ 3 cpus=00000003 + pool[10] ref=28 nice= 0 idle/workers= 17/ 17 cpus=0000000c + pool[11] ref= 1 nice=-20 idle/workers= 1/ 1 cpus=0000000f + pool[12] ref= 2 nice=-20 idle/workers= 1/ 1 cpus=00000003 + pool[13] ref= 2 nice=-20 idle/workers= 1/ 1 cpus=0000000c + + Workqueue CPU -> pool + ===================== + [ workqueue \ CPU 0 1 2 3 dfl] + events percpu 0 2 4 6 + events_highpri percpu 1 3 5 7 + events_long percpu 0 2 4 6 + events_unbound unbound 9 9 10 10 8 + events_freezable percpu 0 2 4 6 + events_power_efficient percpu 0 2 4 6 + events_freezable_power_ percpu 0 2 4 6 + rcu_gp percpu 0 2 4 6 + rcu_par_gp percpu 0 2 4 6 + slub_flushwq percpu 0 2 4 6 + netns ordered 8 8 8 8 8 + ... + +See the command's help message for more info. + + Monitoring ========== Use tools/workqueue/wq_monitor.py to monitor workqueue operations: :: $ tools/workqueue/wq_monitor.py events - total infl CPUtime CPUhog CMwake mayday rescued + total infl CPUtime CPUhog CMW/RPR mayday rescued events 18545 0 6.1 0 5 - - events_highpri 8 0 0.0 0 0 - - events_long 3 0 0.0 0 0 - - - events_unbound 38306 0 0.1 - - - - + events_unbound 38306 0 0.1 - 7 - - events_freezable 0 0 0.0 0 0 - - events_power_efficient 29598 0 0.2 0 0 - - events_freezable_power_ 10 0 0.0 0 0 - - sock_diag_events 0 0 0.0 0 0 - - - total infl CPUtime CPUhog CMwake mayday rescued + total infl CPUtime CPUhog CMW/RPR mayday rescued events 18548 0 6.1 0 5 - - events_highpri 8 0 0.0 0 0 - - events_long 3 0 0.0 0 0 - - - events_unbound 38322 0 0.1 - - - - + events_unbound 38322 0 0.1 - 7 - - events_freezable 0 0 0.0 0 0 - - events_power_efficient 29603 0 0.2 0 0 - - events_freezable_power_ 10 0 0.0 0 0 - - |