diff options
Diffstat (limited to 'Documentation/riscv')
-rw-r--r-- | Documentation/riscv/hwprobe.rst | 13 | ||||
-rw-r--r-- | Documentation/riscv/index.rst | 1 | ||||
-rw-r--r-- | Documentation/riscv/vector.rst | 132 |
3 files changed, 146 insertions, 0 deletions
diff --git a/Documentation/riscv/hwprobe.rst b/Documentation/riscv/hwprobe.rst index 9f0dd62dcb5d..19165ebd82ba 100644 --- a/Documentation/riscv/hwprobe.rst +++ b/Documentation/riscv/hwprobe.rst @@ -64,6 +64,19 @@ The following keys are defined: * :c:macro:`RISCV_HWPROBE_IMA_C`: The C extension is supported, as defined by version 2.2 of the RISC-V ISA manual. + * :c:macro:`RISCV_HWPROBE_IMA_V`: The V extension is supported, as defined by + version 1.0 of the RISC-V Vector extension manual. + + * :c:macro:`RISCV_HWPROBE_EXT_ZBA`: The Zba address generation extension is + supported, as defined in version 1.0 of the Bit-Manipulation ISA + extensions. + + * :c:macro:`RISCV_HWPROBE_EXT_ZBB`: The Zbb extension is supported, as defined + in version 1.0 of the Bit-Manipulation ISA extensions. + + * :c:macro:`RISCV_HWPROBE_EXT_ZBS`: The Zbs extension is supported, as defined + in version 1.0 of the Bit-Manipulation ISA extensions. + * :c:macro:`RISCV_HWPROBE_KEY_CPUPERF_0`: A bitmask that contains performance information about the selected set of processors. diff --git a/Documentation/riscv/index.rst b/Documentation/riscv/index.rst index 175a91db0200..95cf9c1e1da1 100644 --- a/Documentation/riscv/index.rst +++ b/Documentation/riscv/index.rst @@ -10,6 +10,7 @@ RISC-V architecture hwprobe patch-acceptance uabi + vector features diff --git a/Documentation/riscv/vector.rst b/Documentation/riscv/vector.rst new file mode 100644 index 000000000000..48f189d79e41 --- /dev/null +++ b/Documentation/riscv/vector.rst @@ -0,0 +1,132 @@ +.. SPDX-License-Identifier: GPL-2.0 + +========================================= +Vector Extension Support for RISC-V Linux +========================================= + +This document briefly outlines the interface provided to userspace by Linux in +order to support the use of the RISC-V Vector Extension. + +1. prctl() Interface +--------------------- + +Two new prctl() calls are added to allow programs to manage the enablement +status for the use of Vector in userspace. The intended usage guideline for +these interfaces is to give init systems a way to modify the availability of V +for processes running under its domain. Calling thess interfaces is not +recommended in libraries routines because libraries should not override policies +configured from the parant process. Also, users must noted that these interfaces +are not portable to non-Linux, nor non-RISC-V environments, so it is discourage +to use in a portable code. To get the availability of V in an ELF program, +please read :c:macro:`COMPAT_HWCAP_ISA_V` bit of :c:macro:`ELF_HWCAP` in the +auxiliary vector. + +* prctl(PR_RISCV_V_SET_CONTROL, unsigned long arg) + + Sets the Vector enablement status of the calling thread, where the control + argument consists of two 2-bit enablement statuses and a bit for inheritance + mode. Other threads of the calling process are unaffected. + + Enablement status is a tri-state value each occupying 2-bit of space in + the control argument: + + * :c:macro:`PR_RISCV_V_VSTATE_CTRL_DEFAULT`: Use the system-wide default + enablement status on execve(). The system-wide default setting can be + controlled via sysctl interface (see sysctl section below). + + * :c:macro:`PR_RISCV_V_VSTATE_CTRL_ON`: Allow Vector to be run for the + thread. + + * :c:macro:`PR_RISCV_V_VSTATE_CTRL_OFF`: Disallow Vector. Executing Vector + instructions under such condition will trap and casuse the termination of the thread. + + arg: The control argument is a 5-bit value consisting of 3 parts, and + accessed by 3 masks respectively. + + The 3 masks, PR_RISCV_V_VSTATE_CTRL_CUR_MASK, + PR_RISCV_V_VSTATE_CTRL_NEXT_MASK, and PR_RISCV_V_VSTATE_CTRL_INHERIT + represents bit[1:0], bit[3:2], and bit[4]. bit[1:0] accounts for the + enablement status of current thread, and the setting at bit[3:2] takes place + at next execve(). bit[4] defines the inheritance mode of the setting in + bit[3:2]. + + * :c:macro:`PR_RISCV_V_VSTATE_CTRL_CUR_MASK`: bit[1:0]: Account for the + Vector enablement status for the calling thread. The calling thread is + not able to turn off Vector once it has been enabled. The prctl() call + fails with EPERM if the value in this mask is PR_RISCV_V_VSTATE_CTRL_OFF + but the current enablement status is not off. Setting + PR_RISCV_V_VSTATE_CTRL_DEFAULT here takes no effect but to set back + the original enablement status. + + * :c:macro:`PR_RISCV_V_VSTATE_CTRL_NEXT_MASK`: bit[3:2]: Account for the + Vector enablement setting for the calling thread at the next execve() + system call. If PR_RISCV_V_VSTATE_CTRL_DEFAULT is used in this mask, + then the enablement status will be decided by the system-wide + enablement status when execve() happen. + + * :c:macro:`PR_RISCV_V_VSTATE_CTRL_INHERIT`: bit[4]: the inheritance + mode for the setting at PR_RISCV_V_VSTATE_CTRL_NEXT_MASK. If the bit + is set then the following execve() will not clear the setting in both + PR_RISCV_V_VSTATE_CTRL_NEXT_MASK and PR_RISCV_V_VSTATE_CTRL_INHERIT. + This setting persists across changes in the system-wide default value. + + Return value: + * 0 on success; + * EINVAL: Vector not supported, invalid enablement status for current or + next mask; + * EPERM: Turning off Vector in PR_RISCV_V_VSTATE_CTRL_CUR_MASK if Vector + was enabled for the calling thread. + + On success: + * A valid setting for PR_RISCV_V_VSTATE_CTRL_CUR_MASK takes place + immediately. The enablement status specified in + PR_RISCV_V_VSTATE_CTRL_NEXT_MASK happens at the next execve() call, or + all following execve() calls if PR_RISCV_V_VSTATE_CTRL_INHERIT bit is + set. + * Every successful call overwrites a previous setting for the calling + thread. + +* prctl(PR_RISCV_V_GET_CONTROL) + + Gets the same Vector enablement status for the calling thread. Setting for + next execve() call and the inheritance bit are all OR-ed together. + + Note that ELF programs are able to get the availability of V for itself by + reading :c:macro:`COMPAT_HWCAP_ISA_V` bit of :c:macro:`ELF_HWCAP` in the + auxiliary vector. + + Return value: + * a nonnegative value on success; + * EINVAL: Vector not supported. + +2. System runtime configuration (sysctl) +----------------------------------------- + +To mitigate the ABI impact of expansion of the signal stack, a +policy mechanism is provided to the administrators, distro maintainers, and +developers to control the default Vector enablement status for userspace +processes in form of sysctl knob: + +* /proc/sys/abi/riscv_v_default_allow + + Writing the text representation of 0 or 1 to this file sets the default + system enablement status for new starting userspace programs. Valid values + are: + + * 0: Do not allow Vector code to be executed as the default for new processes. + * 1: Allow Vector code to be executed as the default for new processes. + + Reading this file returns the current system default enablement status. + + At every execve() call, a new enablement status of the new process is set to + the system default, unless: + + * PR_RISCV_V_VSTATE_CTRL_INHERIT is set for the calling process, and the + setting in PR_RISCV_V_VSTATE_CTRL_NEXT_MASK is not + PR_RISCV_V_VSTATE_CTRL_DEFAULT. Or, + + * The setting in PR_RISCV_V_VSTATE_CTRL_NEXT_MASK is not + PR_RISCV_V_VSTATE_CTRL_DEFAULT. + + Modifying the system default enablement status does not affect the enablement + status of any existing process of thread that do not make an execve() call. |