summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/i915/gt/intel_lrc.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/i915/gt/intel_lrc.c')
-rw-r--r--drivers/gpu/drm/i915/gt/intel_lrc.c3614
1 files changed, 3614 insertions, 0 deletions
diff --git a/drivers/gpu/drm/i915/gt/intel_lrc.c b/drivers/gpu/drm/i915/gt/intel_lrc.c
new file mode 100644
index 000000000000..1f7bee0cae0c
--- /dev/null
+++ b/drivers/gpu/drm/i915/gt/intel_lrc.c
@@ -0,0 +1,3614 @@
+/*
+ * Copyright © 2014 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ *
+ * Authors:
+ * Ben Widawsky <ben@bwidawsk.net>
+ * Michel Thierry <michel.thierry@intel.com>
+ * Thomas Daniel <thomas.daniel@intel.com>
+ * Oscar Mateo <oscar.mateo@intel.com>
+ *
+ */
+
+/**
+ * DOC: Logical Rings, Logical Ring Contexts and Execlists
+ *
+ * Motivation:
+ * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
+ * These expanded contexts enable a number of new abilities, especially
+ * "Execlists" (also implemented in this file).
+ *
+ * One of the main differences with the legacy HW contexts is that logical
+ * ring contexts incorporate many more things to the context's state, like
+ * PDPs or ringbuffer control registers:
+ *
+ * The reason why PDPs are included in the context is straightforward: as
+ * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
+ * contained there mean you don't need to do a ppgtt->switch_mm yourself,
+ * instead, the GPU will do it for you on the context switch.
+ *
+ * But, what about the ringbuffer control registers (head, tail, etc..)?
+ * shouldn't we just need a set of those per engine command streamer? This is
+ * where the name "Logical Rings" starts to make sense: by virtualizing the
+ * rings, the engine cs shifts to a new "ring buffer" with every context
+ * switch. When you want to submit a workload to the GPU you: A) choose your
+ * context, B) find its appropriate virtualized ring, C) write commands to it
+ * and then, finally, D) tell the GPU to switch to that context.
+ *
+ * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
+ * to a contexts is via a context execution list, ergo "Execlists".
+ *
+ * LRC implementation:
+ * Regarding the creation of contexts, we have:
+ *
+ * - One global default context.
+ * - One local default context for each opened fd.
+ * - One local extra context for each context create ioctl call.
+ *
+ * Now that ringbuffers belong per-context (and not per-engine, like before)
+ * and that contexts are uniquely tied to a given engine (and not reusable,
+ * like before) we need:
+ *
+ * - One ringbuffer per-engine inside each context.
+ * - One backing object per-engine inside each context.
+ *
+ * The global default context starts its life with these new objects fully
+ * allocated and populated. The local default context for each opened fd is
+ * more complex, because we don't know at creation time which engine is going
+ * to use them. To handle this, we have implemented a deferred creation of LR
+ * contexts:
+ *
+ * The local context starts its life as a hollow or blank holder, that only
+ * gets populated for a given engine once we receive an execbuffer. If later
+ * on we receive another execbuffer ioctl for the same context but a different
+ * engine, we allocate/populate a new ringbuffer and context backing object and
+ * so on.
+ *
+ * Finally, regarding local contexts created using the ioctl call: as they are
+ * only allowed with the render ring, we can allocate & populate them right
+ * away (no need to defer anything, at least for now).
+ *
+ * Execlists implementation:
+ * Execlists are the new method by which, on gen8+ hardware, workloads are
+ * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
+ * This method works as follows:
+ *
+ * When a request is committed, its commands (the BB start and any leading or
+ * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
+ * for the appropriate context. The tail pointer in the hardware context is not
+ * updated at this time, but instead, kept by the driver in the ringbuffer
+ * structure. A structure representing this request is added to a request queue
+ * for the appropriate engine: this structure contains a copy of the context's
+ * tail after the request was written to the ring buffer and a pointer to the
+ * context itself.
+ *
+ * If the engine's request queue was empty before the request was added, the
+ * queue is processed immediately. Otherwise the queue will be processed during
+ * a context switch interrupt. In any case, elements on the queue will get sent
+ * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
+ * globally unique 20-bits submission ID.
+ *
+ * When execution of a request completes, the GPU updates the context status
+ * buffer with a context complete event and generates a context switch interrupt.
+ * During the interrupt handling, the driver examines the events in the buffer:
+ * for each context complete event, if the announced ID matches that on the head
+ * of the request queue, then that request is retired and removed from the queue.
+ *
+ * After processing, if any requests were retired and the queue is not empty
+ * then a new execution list can be submitted. The two requests at the front of
+ * the queue are next to be submitted but since a context may not occur twice in
+ * an execution list, if subsequent requests have the same ID as the first then
+ * the two requests must be combined. This is done simply by discarding requests
+ * at the head of the queue until either only one requests is left (in which case
+ * we use a NULL second context) or the first two requests have unique IDs.
+ *
+ * By always executing the first two requests in the queue the driver ensures
+ * that the GPU is kept as busy as possible. In the case where a single context
+ * completes but a second context is still executing, the request for this second
+ * context will be at the head of the queue when we remove the first one. This
+ * request will then be resubmitted along with a new request for a different context,
+ * which will cause the hardware to continue executing the second request and queue
+ * the new request (the GPU detects the condition of a context getting preempted
+ * with the same context and optimizes the context switch flow by not doing
+ * preemption, but just sampling the new tail pointer).
+ *
+ */
+#include <linux/interrupt.h>
+
+#include "i915_drv.h"
+#include "i915_gem_render_state.h"
+#include "i915_vgpu.h"
+#include "intel_engine_pm.h"
+#include "intel_lrc_reg.h"
+#include "intel_mocs.h"
+#include "intel_reset.h"
+#include "intel_workarounds.h"
+
+#define RING_EXECLIST_QFULL (1 << 0x2)
+#define RING_EXECLIST1_VALID (1 << 0x3)
+#define RING_EXECLIST0_VALID (1 << 0x4)
+#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
+#define RING_EXECLIST1_ACTIVE (1 << 0x11)
+#define RING_EXECLIST0_ACTIVE (1 << 0x12)
+
+#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
+#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
+#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
+#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
+#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
+#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
+
+#define GEN8_CTX_STATUS_COMPLETED_MASK \
+ (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
+
+/* Typical size of the average request (2 pipecontrols and a MI_BB) */
+#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
+#define WA_TAIL_DWORDS 2
+#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
+
+struct virtual_engine {
+ struct intel_engine_cs base;
+ struct intel_context context;
+
+ /*
+ * We allow only a single request through the virtual engine at a time
+ * (each request in the timeline waits for the completion fence of
+ * the previous before being submitted). By restricting ourselves to
+ * only submitting a single request, each request is placed on to a
+ * physical to maximise load spreading (by virtue of the late greedy
+ * scheduling -- each real engine takes the next available request
+ * upon idling).
+ */
+ struct i915_request *request;
+
+ /*
+ * We keep a rbtree of available virtual engines inside each physical
+ * engine, sorted by priority. Here we preallocate the nodes we need
+ * for the virtual engine, indexed by physical_engine->id.
+ */
+ struct ve_node {
+ struct rb_node rb;
+ int prio;
+ } nodes[I915_NUM_ENGINES];
+
+ /*
+ * Keep track of bonded pairs -- restrictions upon on our selection
+ * of physical engines any particular request may be submitted to.
+ * If we receive a submit-fence from a master engine, we will only
+ * use one of sibling_mask physical engines.
+ */
+ struct ve_bond {
+ const struct intel_engine_cs *master;
+ intel_engine_mask_t sibling_mask;
+ } *bonds;
+ unsigned int num_bonds;
+
+ /* And finally, which physical engines this virtual engine maps onto. */
+ unsigned int num_siblings;
+ struct intel_engine_cs *siblings[0];
+};
+
+static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
+{
+ GEM_BUG_ON(!intel_engine_is_virtual(engine));
+ return container_of(engine, struct virtual_engine, base);
+}
+
+static int execlists_context_deferred_alloc(struct intel_context *ce,
+ struct intel_engine_cs *engine);
+static void execlists_init_reg_state(u32 *reg_state,
+ struct intel_context *ce,
+ struct intel_engine_cs *engine,
+ struct intel_ring *ring);
+
+static inline struct i915_priolist *to_priolist(struct rb_node *rb)
+{
+ return rb_entry(rb, struct i915_priolist, node);
+}
+
+static inline int rq_prio(const struct i915_request *rq)
+{
+ return rq->sched.attr.priority;
+}
+
+static int effective_prio(const struct i915_request *rq)
+{
+ int prio = rq_prio(rq);
+
+ /*
+ * On unwinding the active request, we give it a priority bump
+ * if it has completed waiting on any semaphore. If we know that
+ * the request has already started, we can prevent an unwanted
+ * preempt-to-idle cycle by taking that into account now.
+ */
+ if (__i915_request_has_started(rq))
+ prio |= I915_PRIORITY_NOSEMAPHORE;
+
+ /* Restrict mere WAIT boosts from triggering preemption */
+ return prio | __NO_PREEMPTION;
+}
+
+static int queue_prio(const struct intel_engine_execlists *execlists)
+{
+ struct i915_priolist *p;
+ struct rb_node *rb;
+
+ rb = rb_first_cached(&execlists->queue);
+ if (!rb)
+ return INT_MIN;
+
+ /*
+ * As the priolist[] are inverted, with the highest priority in [0],
+ * we have to flip the index value to become priority.
+ */
+ p = to_priolist(rb);
+ return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
+}
+
+static inline bool need_preempt(const struct intel_engine_cs *engine,
+ const struct i915_request *rq,
+ struct rb_node *rb)
+{
+ int last_prio;
+
+ if (!engine->preempt_context)
+ return false;
+
+ if (i915_request_completed(rq))
+ return false;
+
+ /*
+ * Check if the current priority hint merits a preemption attempt.
+ *
+ * We record the highest value priority we saw during rescheduling
+ * prior to this dequeue, therefore we know that if it is strictly
+ * less than the current tail of ESLP[0], we do not need to force
+ * a preempt-to-idle cycle.
+ *
+ * However, the priority hint is a mere hint that we may need to
+ * preempt. If that hint is stale or we may be trying to preempt
+ * ourselves, ignore the request.
+ */
+ last_prio = effective_prio(rq);
+ if (!i915_scheduler_need_preempt(engine->execlists.queue_priority_hint,
+ last_prio))
+ return false;
+
+ /*
+ * Check against the first request in ELSP[1], it will, thanks to the
+ * power of PI, be the highest priority of that context.
+ */
+ if (!list_is_last(&rq->link, &engine->timeline.requests) &&
+ rq_prio(list_next_entry(rq, link)) > last_prio)
+ return true;
+
+ if (rb) {
+ struct virtual_engine *ve =
+ rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
+ bool preempt = false;
+
+ if (engine == ve->siblings[0]) { /* only preempt one sibling */
+ struct i915_request *next;
+
+ rcu_read_lock();
+ next = READ_ONCE(ve->request);
+ if (next)
+ preempt = rq_prio(next) > last_prio;
+ rcu_read_unlock();
+ }
+
+ if (preempt)
+ return preempt;
+ }
+
+ /*
+ * If the inflight context did not trigger the preemption, then maybe
+ * it was the set of queued requests? Pick the highest priority in
+ * the queue (the first active priolist) and see if it deserves to be
+ * running instead of ELSP[0].
+ *
+ * The highest priority request in the queue can not be either
+ * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
+ * context, it's priority would not exceed ELSP[0] aka last_prio.
+ */
+ return queue_prio(&engine->execlists) > last_prio;
+}
+
+__maybe_unused static inline bool
+assert_priority_queue(const struct i915_request *prev,
+ const struct i915_request *next)
+{
+ const struct intel_engine_execlists *execlists =
+ &prev->engine->execlists;
+
+ /*
+ * Without preemption, the prev may refer to the still active element
+ * which we refuse to let go.
+ *
+ * Even with preemption, there are times when we think it is better not
+ * to preempt and leave an ostensibly lower priority request in flight.
+ */
+ if (port_request(execlists->port) == prev)
+ return true;
+
+ return rq_prio(prev) >= rq_prio(next);
+}
+
+/*
+ * The context descriptor encodes various attributes of a context,
+ * including its GTT address and some flags. Because it's fairly
+ * expensive to calculate, we'll just do it once and cache the result,
+ * which remains valid until the context is unpinned.
+ *
+ * This is what a descriptor looks like, from LSB to MSB::
+ *
+ * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
+ * bits 12-31: LRCA, GTT address of (the HWSP of) this context
+ * bits 32-52: ctx ID, a globally unique tag (highest bit used by GuC)
+ * bits 53-54: mbz, reserved for use by hardware
+ * bits 55-63: group ID, currently unused and set to 0
+ *
+ * Starting from Gen11, the upper dword of the descriptor has a new format:
+ *
+ * bits 32-36: reserved
+ * bits 37-47: SW context ID
+ * bits 48:53: engine instance
+ * bit 54: mbz, reserved for use by hardware
+ * bits 55-60: SW counter
+ * bits 61-63: engine class
+ *
+ * engine info, SW context ID and SW counter need to form a unique number
+ * (Context ID) per lrc.
+ */
+static u64
+lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
+{
+ struct i915_gem_context *ctx = ce->gem_context;
+ u64 desc;
+
+ BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
+ BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
+
+ desc = ctx->desc_template; /* bits 0-11 */
+ GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
+
+ desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
+ /* bits 12-31 */
+ GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
+
+ /*
+ * The following 32bits are copied into the OA reports (dword 2).
+ * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
+ * anything below.
+ */
+ if (INTEL_GEN(engine->i915) >= 11) {
+ GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
+ desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
+ /* bits 37-47 */
+
+ desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
+ /* bits 48-53 */
+
+ /* TODO: decide what to do with SW counter (bits 55-60) */
+
+ desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
+ /* bits 61-63 */
+ } else {
+ GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
+ desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
+ }
+
+ return desc;
+}
+
+static void unwind_wa_tail(struct i915_request *rq)
+{
+ rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
+ assert_ring_tail_valid(rq->ring, rq->tail);
+}
+
+static struct i915_request *
+__unwind_incomplete_requests(struct intel_engine_cs *engine)
+{
+ struct i915_request *rq, *rn, *active = NULL;
+ struct list_head *uninitialized_var(pl);
+ int prio = I915_PRIORITY_INVALID;
+
+ lockdep_assert_held(&engine->timeline.lock);
+
+ list_for_each_entry_safe_reverse(rq, rn,
+ &engine->timeline.requests,
+ link) {
+ struct intel_engine_cs *owner;
+
+ if (i915_request_completed(rq))
+ break;
+
+ __i915_request_unsubmit(rq);
+ unwind_wa_tail(rq);
+
+ GEM_BUG_ON(rq->hw_context->active);
+
+ /*
+ * Push the request back into the queue for later resubmission.
+ * If this request is not native to this physical engine (i.e.
+ * it came from a virtual source), push it back onto the virtual
+ * engine so that it can be moved across onto another physical
+ * engine as load dictates.
+ */
+ owner = rq->hw_context->engine;
+ if (likely(owner == engine)) {
+ GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
+ if (rq_prio(rq) != prio) {
+ prio = rq_prio(rq);
+ pl = i915_sched_lookup_priolist(engine, prio);
+ }
+ GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
+
+ list_add(&rq->sched.link, pl);
+ active = rq;
+ } else {
+ rq->engine = owner;
+ owner->submit_request(rq);
+ active = NULL;
+ }
+ }
+
+ return active;
+}
+
+struct i915_request *
+execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
+{
+ struct intel_engine_cs *engine =
+ container_of(execlists, typeof(*engine), execlists);
+
+ return __unwind_incomplete_requests(engine);
+}
+
+static inline void
+execlists_context_status_change(struct i915_request *rq, unsigned long status)
+{
+ /*
+ * Only used when GVT-g is enabled now. When GVT-g is disabled,
+ * The compiler should eliminate this function as dead-code.
+ */
+ if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
+ return;
+
+ atomic_notifier_call_chain(&rq->engine->context_status_notifier,
+ status, rq);
+}
+
+inline void
+execlists_user_begin(struct intel_engine_execlists *execlists,
+ const struct execlist_port *port)
+{
+ execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
+}
+
+inline void
+execlists_user_end(struct intel_engine_execlists *execlists)
+{
+ execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
+}
+
+static inline void
+execlists_context_schedule_in(struct i915_request *rq)
+{
+ GEM_BUG_ON(rq->hw_context->active);
+
+ execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
+ intel_engine_context_in(rq->engine);
+ rq->hw_context->active = rq->engine;
+}
+
+static void kick_siblings(struct i915_request *rq)
+{
+ struct virtual_engine *ve = to_virtual_engine(rq->hw_context->engine);
+ struct i915_request *next = READ_ONCE(ve->request);
+
+ if (next && next->execution_mask & ~rq->execution_mask)
+ tasklet_schedule(&ve->base.execlists.tasklet);
+}
+
+static inline void
+execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
+{
+ rq->hw_context->active = NULL;
+ intel_engine_context_out(rq->engine);
+ execlists_context_status_change(rq, status);
+ trace_i915_request_out(rq);
+
+ /*
+ * If this is part of a virtual engine, its next request may have
+ * been blocked waiting for access to the active context. We have
+ * to kick all the siblings again in case we need to switch (e.g.
+ * the next request is not runnable on this engine). Hopefully,
+ * we will already have submitted the next request before the
+ * tasklet runs and do not need to rebuild each virtual tree
+ * and kick everyone again.
+ */
+ if (rq->engine != rq->hw_context->engine)
+ kick_siblings(rq);
+}
+
+static u64 execlists_update_context(struct i915_request *rq)
+{
+ struct intel_context *ce = rq->hw_context;
+
+ ce->lrc_reg_state[CTX_RING_TAIL + 1] =
+ intel_ring_set_tail(rq->ring, rq->tail);
+
+ /*
+ * Make sure the context image is complete before we submit it to HW.
+ *
+ * Ostensibly, writes (including the WCB) should be flushed prior to
+ * an uncached write such as our mmio register access, the empirical
+ * evidence (esp. on Braswell) suggests that the WC write into memory
+ * may not be visible to the HW prior to the completion of the UC
+ * register write and that we may begin execution from the context
+ * before its image is complete leading to invalid PD chasing.
+ *
+ * Furthermore, Braswell, at least, wants a full mb to be sure that
+ * the writes are coherent in memory (visible to the GPU) prior to
+ * execution, and not just visible to other CPUs (as is the result of
+ * wmb).
+ */
+ mb();
+ return ce->lrc_desc;
+}
+
+static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
+{
+ if (execlists->ctrl_reg) {
+ writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
+ writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
+ } else {
+ writel(upper_32_bits(desc), execlists->submit_reg);
+ writel(lower_32_bits(desc), execlists->submit_reg);
+ }
+}
+
+static void execlists_submit_ports(struct intel_engine_cs *engine)
+{
+ struct intel_engine_execlists *execlists = &engine->execlists;
+ struct execlist_port *port = execlists->port;
+ unsigned int n;
+
+ /*
+ * We can skip acquiring intel_runtime_pm_get() here as it was taken
+ * on our behalf by the request (see i915_gem_mark_busy()) and it will
+ * not be relinquished until the device is idle (see
+ * i915_gem_idle_work_handler()). As a precaution, we make sure
+ * that all ELSP are drained i.e. we have processed the CSB,
+ * before allowing ourselves to idle and calling intel_runtime_pm_put().
+ */
+ GEM_BUG_ON(!intel_wakeref_active(&engine->wakeref));
+
+ /*
+ * ELSQ note: the submit queue is not cleared after being submitted
+ * to the HW so we need to make sure we always clean it up. This is
+ * currently ensured by the fact that we always write the same number
+ * of elsq entries, keep this in mind before changing the loop below.
+ */
+ for (n = execlists_num_ports(execlists); n--; ) {
+ struct i915_request *rq;
+ unsigned int count;
+ u64 desc;
+
+ rq = port_unpack(&port[n], &count);
+ if (rq) {
+ GEM_BUG_ON(count > !n);
+ if (!count++)
+ execlists_context_schedule_in(rq);
+ port_set(&port[n], port_pack(rq, count));
+ desc = execlists_update_context(rq);
+ GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
+
+ GEM_TRACE("%s in[%d]: ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
+ engine->name, n,
+ port[n].context_id, count,
+ rq->fence.context, rq->fence.seqno,
+ hwsp_seqno(rq),
+ rq_prio(rq));
+ } else {
+ GEM_BUG_ON(!n);
+ desc = 0;
+ }
+
+ write_desc(execlists, desc, n);
+ }
+
+ /* we need to manually load the submit queue */
+ if (execlists->ctrl_reg)
+ writel(EL_CTRL_LOAD, execlists->ctrl_reg);
+
+ execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
+}
+
+static bool ctx_single_port_submission(const struct intel_context *ce)
+{
+ return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
+ i915_gem_context_force_single_submission(ce->gem_context));
+}
+
+static bool can_merge_ctx(const struct intel_context *prev,
+ const struct intel_context *next)
+{
+ if (prev != next)
+ return false;
+
+ if (ctx_single_port_submission(prev))
+ return false;
+
+ return true;
+}
+
+static bool can_merge_rq(const struct i915_request *prev,
+ const struct i915_request *next)
+{
+ GEM_BUG_ON(!assert_priority_queue(prev, next));
+
+ if (!can_merge_ctx(prev->hw_context, next->hw_context))
+ return false;
+
+ return true;
+}
+
+static void port_assign(struct execlist_port *port, struct i915_request *rq)
+{
+ GEM_BUG_ON(rq == port_request(port));
+
+ if (port_isset(port))
+ i915_request_put(port_request(port));
+
+ port_set(port, port_pack(i915_request_get(rq), port_count(port)));
+}
+
+static void inject_preempt_context(struct intel_engine_cs *engine)
+{
+ struct intel_engine_execlists *execlists = &engine->execlists;
+ struct intel_context *ce = engine->preempt_context;
+ unsigned int n;
+
+ GEM_BUG_ON(execlists->preempt_complete_status !=
+ upper_32_bits(ce->lrc_desc));
+
+ /*
+ * Switch to our empty preempt context so
+ * the state of the GPU is known (idle).
+ */
+ GEM_TRACE("%s\n", engine->name);
+ for (n = execlists_num_ports(execlists); --n; )
+ write_desc(execlists, 0, n);
+
+ write_desc(execlists, ce->lrc_desc, n);
+
+ /* we need to manually load the submit queue */
+ if (execlists->ctrl_reg)
+ writel(EL_CTRL_LOAD, execlists->ctrl_reg);
+
+ execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
+ execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
+
+ (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
+}
+
+static void complete_preempt_context(struct intel_engine_execlists *execlists)
+{
+ GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
+
+ if (inject_preempt_hang(execlists))
+ return;
+
+ execlists_cancel_port_requests(execlists);
+ __unwind_incomplete_requests(container_of(execlists,
+ struct intel_engine_cs,
+ execlists));
+}
+
+static void virtual_update_register_offsets(u32 *regs,
+ struct intel_engine_cs *engine)
+{
+ u32 base = engine->mmio_base;
+
+ /* Must match execlists_init_reg_state()! */
+
+ regs[CTX_CONTEXT_CONTROL] =
+ i915_mmio_reg_offset(RING_CONTEXT_CONTROL(base));
+ regs[CTX_RING_HEAD] = i915_mmio_reg_offset(RING_HEAD(base));
+ regs[CTX_RING_TAIL] = i915_mmio_reg_offset(RING_TAIL(base));
+ regs[CTX_RING_BUFFER_START] = i915_mmio_reg_offset(RING_START(base));
+ regs[CTX_RING_BUFFER_CONTROL] = i915_mmio_reg_offset(RING_CTL(base));
+
+ regs[CTX_BB_HEAD_U] = i915_mmio_reg_offset(RING_BBADDR_UDW(base));
+ regs[CTX_BB_HEAD_L] = i915_mmio_reg_offset(RING_BBADDR(base));
+ regs[CTX_BB_STATE] = i915_mmio_reg_offset(RING_BBSTATE(base));
+ regs[CTX_SECOND_BB_HEAD_U] =
+ i915_mmio_reg_offset(RING_SBBADDR_UDW(base));
+ regs[CTX_SECOND_BB_HEAD_L] = i915_mmio_reg_offset(RING_SBBADDR(base));
+ regs[CTX_SECOND_BB_STATE] = i915_mmio_reg_offset(RING_SBBSTATE(base));
+
+ regs[CTX_CTX_TIMESTAMP] =
+ i915_mmio_reg_offset(RING_CTX_TIMESTAMP(base));
+ regs[CTX_PDP3_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 3));
+ regs[CTX_PDP3_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 3));
+ regs[CTX_PDP2_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 2));
+ regs[CTX_PDP2_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 2));
+ regs[CTX_PDP1_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 1));
+ regs[CTX_PDP1_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 1));
+ regs[CTX_PDP0_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
+ regs[CTX_PDP0_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));
+
+ if (engine->class == RENDER_CLASS) {
+ regs[CTX_RCS_INDIRECT_CTX] =
+ i915_mmio_reg_offset(RING_INDIRECT_CTX(base));
+ regs[CTX_RCS_INDIRECT_CTX_OFFSET] =
+ i915_mmio_reg_offset(RING_INDIRECT_CTX_OFFSET(base));
+ regs[CTX_BB_PER_CTX_PTR] =
+ i915_mmio_reg_offset(RING_BB_PER_CTX_PTR(base));
+
+ regs[CTX_R_PWR_CLK_STATE] =
+ i915_mmio_reg_offset(GEN8_R_PWR_CLK_STATE);
+ }
+}
+
+static bool virtual_matches(const struct virtual_engine *ve,
+ const struct i915_request *rq,
+ const struct intel_engine_cs *engine)
+{
+ const struct intel_engine_cs *active;
+
+ if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
+ return false;
+
+ /*
+ * We track when the HW has completed saving the context image
+ * (i.e. when we have seen the final CS event switching out of
+ * the context) and must not overwrite the context image before
+ * then. This restricts us to only using the active engine
+ * while the previous virtualized request is inflight (so
+ * we reuse the register offsets). This is a very small
+ * hystersis on the greedy seelction algorithm.
+ */
+ active = READ_ONCE(ve->context.active);
+ if (active && active != engine)
+ return false;
+
+ return true;
+}
+
+static void virtual_xfer_breadcrumbs(struct virtual_engine *ve,
+ struct intel_engine_cs *engine)
+{
+ struct intel_engine_cs *old = ve->siblings[0];
+
+ /* All unattached (rq->engine == old) must already be completed */
+
+ spin_lock(&old->breadcrumbs.irq_lock);
+ if (!list_empty(&ve->context.signal_link)) {
+ list_move_tail(&ve->context.signal_link,
+ &engine->breadcrumbs.signalers);
+ intel_engine_queue_breadcrumbs(engine);
+ }
+ spin_unlock(&old->breadcrumbs.irq_lock);
+}
+
+static void execlists_dequeue(struct intel_engine_cs *engine)
+{
+ struct intel_engine_execlists * const execlists = &engine->execlists;
+ struct execlist_port *port = execlists->port;
+ const struct execlist_port * const last_port =
+ &execlists->port[execlists->port_mask];
+ struct i915_request *last = port_request(port);
+ struct rb_node *rb;
+ bool submit = false;
+
+ /*
+ * Hardware submission is through 2 ports. Conceptually each port
+ * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
+ * static for a context, and unique to each, so we only execute
+ * requests belonging to a single context from each ring. RING_HEAD
+ * is maintained by the CS in the context image, it marks the place
+ * where it got up to last time, and through RING_TAIL we tell the CS
+ * where we want to execute up to this time.
+ *
+ * In this list the requests are in order of execution. Consecutive
+ * requests from the same context are adjacent in the ringbuffer. We
+ * can combine these requests into a single RING_TAIL update:
+ *
+ * RING_HEAD...req1...req2
+ * ^- RING_TAIL
+ * since to execute req2 the CS must first execute req1.
+ *
+ * Our goal then is to point each port to the end of a consecutive
+ * sequence of requests as being the most optimal (fewest wake ups
+ * and context switches) submission.
+ */
+
+ for (rb = rb_first_cached(&execlists->virtual); rb; ) {
+ struct virtual_engine *ve =
+ rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
+ struct i915_request *rq = READ_ONCE(ve->request);
+
+ if (!rq) { /* lazily cleanup after another engine handled rq */
+ rb_erase_cached(rb, &execlists->virtual);
+ RB_CLEAR_NODE(rb);
+ rb = rb_first_cached(&execlists->virtual);
+ continue;
+ }
+
+ if (!virtual_matches(ve, rq, engine)) {
+ rb = rb_next(rb);
+ continue;
+ }
+
+ break;
+ }
+
+ if (last) {
+ /*
+ * Don't resubmit or switch until all outstanding
+ * preemptions (lite-restore) are seen. Then we
+ * know the next preemption status we see corresponds
+ * to this ELSP update.
+ */
+ GEM_BUG_ON(!execlists_is_active(execlists,
+ EXECLISTS_ACTIVE_USER));
+ GEM_BUG_ON(!port_count(&port[0]));
+
+ /*
+ * If we write to ELSP a second time before the HW has had
+ * a chance to respond to the previous write, we can confuse
+ * the HW and hit "undefined behaviour". After writing to ELSP,
+ * we must then wait until we see a context-switch event from
+ * the HW to indicate that it has had a chance to respond.
+ */
+ if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
+ return;
+
+ if (need_preempt(engine, last, rb)) {
+ inject_preempt_context(engine);
+ return;
+ }
+
+ /*
+ * In theory, we could coalesce more requests onto
+ * the second port (the first port is active, with
+ * no preemptions pending). However, that means we
+ * then have to deal with the possible lite-restore
+ * of the second port (as we submit the ELSP, there
+ * may be a context-switch) but also we may complete
+ * the resubmission before the context-switch. Ergo,
+ * coalescing onto the second port will cause a
+ * preemption event, but we cannot predict whether
+ * that will affect port[0] or port[1].
+ *
+ * If the second port is already active, we can wait
+ * until the next context-switch before contemplating
+ * new requests. The GPU will be busy and we should be
+ * able to resubmit the new ELSP before it idles,
+ * avoiding pipeline bubbles (momentary pauses where
+ * the driver is unable to keep up the supply of new
+ * work). However, we have to double check that the
+ * priorities of the ports haven't been switch.
+ */
+ if (port_count(&port[1]))
+ return;
+
+ /*
+ * WaIdleLiteRestore:bdw,skl
+ * Apply the wa NOOPs to prevent
+ * ring:HEAD == rq:TAIL as we resubmit the
+ * request. See gen8_emit_fini_breadcrumb() for
+ * where we prepare the padding after the
+ * end of the request.
+ */
+ last->tail = last->wa_tail;
+ }
+
+ while (rb) { /* XXX virtual is always taking precedence */
+ struct virtual_engine *ve =
+ rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
+ struct i915_request *rq;
+
+ spin_lock(&ve->base.timeline.lock);
+
+ rq = ve->request;
+ if (unlikely(!rq)) { /* lost the race to a sibling */
+ spin_unlock(&ve->base.timeline.lock);
+ rb_erase_cached(rb, &execlists->virtual);
+ RB_CLEAR_NODE(rb);
+ rb = rb_first_cached(&execlists->virtual);
+ continue;
+ }
+
+ GEM_BUG_ON(rq != ve->request);
+ GEM_BUG_ON(rq->engine != &ve->base);
+ GEM_BUG_ON(rq->hw_context != &ve->context);
+
+ if (rq_prio(rq) >= queue_prio(execlists)) {
+ if (!virtual_matches(ve, rq, engine)) {
+ spin_unlock(&ve->base.timeline.lock);
+ rb = rb_next(rb);
+ continue;
+ }
+
+ if (last && !can_merge_rq(last, rq)) {
+ spin_unlock(&ve->base.timeline.lock);
+ return; /* leave this rq for another engine */
+ }
+
+ GEM_TRACE("%s: virtual rq=%llx:%lld%s, new engine? %s\n",
+ engine->name,
+ rq->fence.context,
+ rq->fence.seqno,
+ i915_request_completed(rq) ? "!" :
+ i915_request_started(rq) ? "*" :
+ "",
+ yesno(engine != ve->siblings[0]));
+
+ ve->request = NULL;
+ ve->base.execlists.queue_priority_hint = INT_MIN;
+ rb_erase_cached(rb, &execlists->virtual);
+ RB_CLEAR_NODE(rb);
+
+ GEM_BUG_ON(!(rq->execution_mask & engine->mask));
+ rq->engine = engine;
+
+ if (engine != ve->siblings[0]) {
+ u32 *regs = ve->context.lrc_reg_state;
+ unsigned int n;
+
+ GEM_BUG_ON(READ_ONCE(ve->context.active));
+ virtual_update_register_offsets(regs, engine);
+
+ if (!list_empty(&ve->context.signals))
+ virtual_xfer_breadcrumbs(ve, engine);
+
+ /*
+ * Move the bound engine to the top of the list
+ * for future execution. We then kick this
+ * tasklet first before checking others, so that
+ * we preferentially reuse this set of bound
+ * registers.
+ */
+ for (n = 1; n < ve->num_siblings; n++) {
+ if (ve->siblings[n] == engine) {
+ swap(ve->siblings[n],
+ ve->siblings[0]);
+ break;
+ }
+ }
+
+ GEM_BUG_ON(ve->siblings[0] != engine);
+ }
+
+ __i915_request_submit(rq);
+ trace_i915_request_in(rq, port_index(port, execlists));
+ submit = true;
+ last = rq;
+ }
+
+ spin_unlock(&ve->base.timeline.lock);
+ break;
+ }
+
+ while ((rb = rb_first_cached(&execlists->queue))) {
+ struct i915_priolist *p = to_priolist(rb);
+ struct i915_request *rq, *rn;
+ int i;
+
+ priolist_for_each_request_consume(rq, rn, p, i) {
+ /*
+ * Can we combine this request with the current port?
+ * It has to be the same context/ringbuffer and not
+ * have any exceptions (e.g. GVT saying never to
+ * combine contexts).
+ *
+ * If we can combine the requests, we can execute both
+ * by updating the RING_TAIL to point to the end of the
+ * second request, and so we never need to tell the
+ * hardware about the first.
+ */
+ if (last && !can_merge_rq(last, rq)) {
+ /*
+ * If we are on the second port and cannot
+ * combine this request with the last, then we
+ * are done.
+ */
+ if (port == last_port)
+ goto done;
+
+ /*
+ * We must not populate both ELSP[] with the
+ * same LRCA, i.e. we must submit 2 different
+ * contexts if we submit 2 ELSP.
+ */
+ if (last->hw_context == rq->hw_context)
+ goto done;
+
+ /*
+ * If GVT overrides us we only ever submit
+ * port[0], leaving port[1] empty. Note that we
+ * also have to be careful that we don't queue
+ * the same context (even though a different
+ * request) to the second port.
+ */
+ if (ctx_single_port_submission(last->hw_context) ||
+ ctx_single_port_submission(rq->hw_context))
+ goto done;
+
+
+ if (submit)
+ port_assign(port, last);
+ port++;
+
+ GEM_BUG_ON(port_isset(port));
+ }
+
+ list_del_init(&rq->sched.link);
+
+ __i915_request_submit(rq);
+ trace_i915_request_in(rq, port_index(port, execlists));
+
+ last = rq;
+ submit = true;
+ }
+
+ rb_erase_cached(&p->node, &execlists->queue);
+ i915_priolist_free(p);
+ }
+
+done:
+ /*
+ * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
+ *
+ * We choose the priority hint such that if we add a request of greater
+ * priority than this, we kick the submission tasklet to decide on
+ * the right order of submitting the requests to hardware. We must
+ * also be prepared to reorder requests as they are in-flight on the
+ * HW. We derive the priority hint then as the first "hole" in
+ * the HW submission ports and if there are no available slots,
+ * the priority of the lowest executing request, i.e. last.
+ *
+ * When we do receive a higher priority request ready to run from the
+ * user, see queue_request(), the priority hint is bumped to that
+ * request triggering preemption on the next dequeue (or subsequent
+ * interrupt for secondary ports).
+ */
+ execlists->queue_priority_hint = queue_prio(execlists);
+
+ if (submit) {
+ port_assign(port, last);
+ execlists_submit_ports(engine);
+ }
+
+ /* We must always keep the beast fed if we have work piled up */
+ GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
+ !port_isset(execlists->port));
+
+ /* Re-evaluate the executing context setup after each preemptive kick */
+ if (last)
+ execlists_user_begin(execlists, execlists->port);
+
+ /* If the engine is now idle, so should be the flag; and vice versa. */
+ GEM_BUG_ON(execlists_is_active(&engine->execlists,
+ EXECLISTS_ACTIVE_USER) ==
+ !port_isset(engine->execlists.port));
+}
+
+void
+execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
+{
+ struct execlist_port *port = execlists->port;
+ unsigned int num_ports = execlists_num_ports(execlists);
+
+ while (num_ports-- && port_isset(port)) {
+ struct i915_request *rq = port_request(port);
+
+ GEM_TRACE("%s:port%u fence %llx:%lld, (current %d)\n",
+ rq->engine->name,
+ (unsigned int)(port - execlists->port),
+ rq->fence.context, rq->fence.seqno,
+ hwsp_seqno(rq));
+
+ GEM_BUG_ON(!execlists->active);
+ execlists_context_schedule_out(rq,
+ i915_request_completed(rq) ?
+ INTEL_CONTEXT_SCHEDULE_OUT :
+ INTEL_CONTEXT_SCHEDULE_PREEMPTED);
+
+ i915_request_put(rq);
+
+ memset(port, 0, sizeof(*port));
+ port++;
+ }
+
+ execlists_clear_all_active(execlists);
+}
+
+static inline void
+invalidate_csb_entries(const u32 *first, const u32 *last)
+{
+ clflush((void *)first);
+ clflush((void *)last);
+}
+
+static inline bool
+reset_in_progress(const struct intel_engine_execlists *execlists)
+{
+ return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
+}
+
+static void process_csb(struct intel_engine_cs *engine)
+{
+ struct intel_engine_execlists * const execlists = &engine->execlists;
+ struct execlist_port *port = execlists->port;
+ const u32 * const buf = execlists->csb_status;
+ const u8 num_entries = execlists->csb_size;
+ u8 head, tail;
+
+ lockdep_assert_held(&engine->timeline.lock);
+
+ /*
+ * Note that csb_write, csb_status may be either in HWSP or mmio.
+ * When reading from the csb_write mmio register, we have to be
+ * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
+ * the low 4bits. As it happens we know the next 4bits are always
+ * zero and so we can simply masked off the low u8 of the register
+ * and treat it identically to reading from the HWSP (without having
+ * to use explicit shifting and masking, and probably bifurcating
+ * the code to handle the legacy mmio read).
+ */
+ head = execlists->csb_head;
+ tail = READ_ONCE(*execlists->csb_write);
+ GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
+ if (unlikely(head == tail))
+ return;
+
+ /*
+ * Hopefully paired with a wmb() in HW!
+ *
+ * We must complete the read of the write pointer before any reads
+ * from the CSB, so that we do not see stale values. Without an rmb
+ * (lfence) the HW may speculatively perform the CSB[] reads *before*
+ * we perform the READ_ONCE(*csb_write).
+ */
+ rmb();
+
+ do {
+ struct i915_request *rq;
+ unsigned int status;
+ unsigned int count;
+
+ if (++head == num_entries)
+ head = 0;
+
+ /*
+ * We are flying near dragons again.
+ *
+ * We hold a reference to the request in execlist_port[]
+ * but no more than that. We are operating in softirq
+ * context and so cannot hold any mutex or sleep. That
+ * prevents us stopping the requests we are processing
+ * in port[] from being retired simultaneously (the
+ * breadcrumb will be complete before we see the
+ * context-switch). As we only hold the reference to the
+ * request, any pointer chasing underneath the request
+ * is subject to a potential use-after-free. Thus we
+ * store all of the bookkeeping within port[] as
+ * required, and avoid using unguarded pointers beneath
+ * request itself. The same applies to the atomic
+ * status notifier.
+ */
+
+ GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
+ engine->name, head,
+ buf[2 * head + 0], buf[2 * head + 1],
+ execlists->active);
+
+ status = buf[2 * head];
+ if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
+ GEN8_CTX_STATUS_PREEMPTED))
+ execlists_set_active(execlists,
+ EXECLISTS_ACTIVE_HWACK);
+ if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
+ execlists_clear_active(execlists,
+ EXECLISTS_ACTIVE_HWACK);
+
+ if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
+ continue;
+
+ /* We should never get a COMPLETED | IDLE_ACTIVE! */
+ GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
+
+ if (status & GEN8_CTX_STATUS_COMPLETE &&
+ buf[2*head + 1] == execlists->preempt_complete_status) {
+ GEM_TRACE("%s preempt-idle\n", engine->name);
+ complete_preempt_context(execlists);
+ continue;
+ }
+
+ if (status & GEN8_CTX_STATUS_PREEMPTED &&
+ execlists_is_active(execlists,
+ EXECLISTS_ACTIVE_PREEMPT))
+ continue;
+
+ GEM_BUG_ON(!execlists_is_active(execlists,
+ EXECLISTS_ACTIVE_USER));
+
+ rq = port_unpack(port, &count);
+ GEM_TRACE("%s out[0]: ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
+ engine->name,
+ port->context_id, count,
+ rq ? rq->fence.context : 0,
+ rq ? rq->fence.seqno : 0,
+ rq ? hwsp_seqno(rq) : 0,
+ rq ? rq_prio(rq) : 0);
+
+ /* Check the context/desc id for this event matches */
+ GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
+
+ GEM_BUG_ON(count == 0);
+ if (--count == 0) {
+ /*
+ * On the final event corresponding to the
+ * submission of this context, we expect either
+ * an element-switch event or a completion
+ * event (and on completion, the active-idle
+ * marker). No more preemptions, lite-restore
+ * or otherwise.
+ */
+ GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
+ GEM_BUG_ON(port_isset(&port[1]) &&
+ !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
+ GEM_BUG_ON(!port_isset(&port[1]) &&
+ !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
+
+ /*
+ * We rely on the hardware being strongly
+ * ordered, that the breadcrumb write is
+ * coherent (visible from the CPU) before the
+ * user interrupt and CSB is processed.
+ */
+ GEM_BUG_ON(!i915_request_completed(rq));
+
+ execlists_context_schedule_out(rq,
+ INTEL_CONTEXT_SCHEDULE_OUT);
+ i915_request_put(rq);
+
+ GEM_TRACE("%s completed ctx=%d\n",
+ engine->name, port->context_id);
+
+ port = execlists_port_complete(execlists, port);
+ if (port_isset(port))
+ execlists_user_begin(execlists, port);
+ else
+ execlists_user_end(execlists);
+ } else {
+ port_set(port, port_pack(rq, count));
+ }
+ } while (head != tail);
+
+ execlists->csb_head = head;
+
+ /*
+ * Gen11 has proven to fail wrt global observation point between
+ * entry and tail update, failing on the ordering and thus
+ * we see an old entry in the context status buffer.
+ *
+ * Forcibly evict out entries for the next gpu csb update,
+ * to increase the odds that we get a fresh entries with non
+ * working hardware. The cost for doing so comes out mostly with
+ * the wash as hardware, working or not, will need to do the
+ * invalidation before.
+ */
+ invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
+}
+
+static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
+{
+ lockdep_assert_held(&engine->timeline.lock);
+
+ process_csb(engine);
+ if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
+ execlists_dequeue(engine);
+}
+
+/*
+ * Check the unread Context Status Buffers and manage the submission of new
+ * contexts to the ELSP accordingly.
+ */
+static void execlists_submission_tasklet(unsigned long data)
+{
+ struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
+ unsigned long flags;
+
+ GEM_TRACE("%s awake?=%d, active=%x\n",
+ engine->name,
+ !!intel_wakeref_active(&engine->wakeref),
+ engine->execlists.active);
+
+ spin_lock_irqsave(&engine->timeline.lock, flags);
+ __execlists_submission_tasklet(engine);
+ spin_unlock_irqrestore(&engine->timeline.lock, flags);
+}
+
+static void queue_request(struct intel_engine_cs *engine,
+ struct i915_sched_node *node,
+ int prio)
+{
+ list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
+}
+
+static void __submit_queue_imm(struct intel_engine_cs *engine)
+{
+ struct intel_engine_execlists * const execlists = &engine->execlists;
+
+ if (reset_in_progress(execlists))
+ return; /* defer until we restart the engine following reset */
+
+ if (execlists->tasklet.func == execlists_submission_tasklet)
+ __execlists_submission_tasklet(engine);
+ else
+ tasklet_hi_schedule(&execlists->tasklet);
+}
+
+static void submit_queue(struct intel_engine_cs *engine, int prio)
+{
+ if (prio > engine->execlists.queue_priority_hint) {
+ engine->execlists.queue_priority_hint = prio;
+ __submit_queue_imm(engine);
+ }
+}
+
+static void execlists_submit_request(struct i915_request *request)
+{
+ struct intel_engine_cs *engine = request->engine;
+ unsigned long flags;
+
+ /* Will be called from irq-context when using foreign fences. */
+ spin_lock_irqsave(&engine->timeline.lock, flags);
+
+ queue_request(engine, &request->sched, rq_prio(request));
+
+ GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
+ GEM_BUG_ON(list_empty(&request->sched.link));
+
+ submit_queue(engine, rq_prio(request));
+
+ spin_unlock_irqrestore(&engine->timeline.lock, flags);
+}
+
+static void __execlists_context_fini(struct intel_context *ce)
+{
+ intel_ring_put(ce->ring);
+
+ GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
+ i915_gem_object_put(ce->state->obj);
+}
+
+static void execlists_context_destroy(struct kref *kref)
+{
+ struct intel_context *ce = container_of(kref, typeof(*ce), ref);
+
+ GEM_BUG_ON(intel_context_is_pinned(ce));
+
+ if (ce->state)
+ __execlists_context_fini(ce);
+
+ intel_context_free(ce);
+}
+
+static int __context_pin(struct i915_vma *vma)
+{
+ unsigned int flags;
+ int err;
+
+ flags = PIN_GLOBAL | PIN_HIGH;
+ flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
+
+ err = i915_vma_pin(vma, 0, 0, flags);
+ if (err)
+ return err;
+
+ vma->obj->pin_global++;
+ vma->obj->mm.dirty = true;
+
+ return 0;
+}
+
+static void __context_unpin(struct i915_vma *vma)
+{
+ vma->obj->pin_global--;
+ __i915_vma_unpin(vma);
+}
+
+static void execlists_context_unpin(struct intel_context *ce)
+{
+ struct intel_engine_cs *engine;
+
+ /*
+ * The tasklet may still be using a pointer to our state, via an
+ * old request. However, since we know we only unpin the context
+ * on retirement of the following request, we know that the last
+ * request referencing us will have had a completion CS interrupt.
+ * If we see that it is still active, it means that the tasklet hasn't
+ * had the chance to run yet; let it run before we teardown the
+ * reference it may use.
+ */
+ engine = READ_ONCE(ce->active);
+ if (unlikely(engine)) {
+ unsigned long flags;
+
+ spin_lock_irqsave(&engine->timeline.lock, flags);
+ process_csb(engine);
+ spin_unlock_irqrestore(&engine->timeline.lock, flags);
+
+ GEM_BUG_ON(READ_ONCE(ce->active));
+ }
+
+ i915_gem_context_unpin_hw_id(ce->gem_context);
+
+ intel_ring_unpin(ce->ring);
+
+ i915_gem_object_unpin_map(ce->state->obj);
+ __context_unpin(ce->state);
+}
+
+static void
+__execlists_update_reg_state(struct intel_context *ce,
+ struct intel_engine_cs *engine)
+{
+ struct intel_ring *ring = ce->ring;
+ u32 *regs = ce->lrc_reg_state;
+
+ GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
+ GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
+
+ regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma);
+ regs[CTX_RING_HEAD + 1] = ring->head;
+ regs[CTX_RING_TAIL + 1] = ring->tail;
+
+ /* RPCS */
+ if (engine->class == RENDER_CLASS)
+ regs[CTX_R_PWR_CLK_STATE + 1] =
+ intel_sseu_make_rpcs(engine->i915, &ce->sseu);
+}
+
+static int
+__execlists_context_pin(struct intel_context *ce,
+ struct intel_engine_cs *engine)
+{
+ void *vaddr;
+ int ret;
+
+ GEM_BUG_ON(!ce->gem_context->ppgtt);
+
+ ret = execlists_context_deferred_alloc(ce, engine);
+ if (ret)
+ goto err;
+ GEM_BUG_ON(!ce->state);
+
+ ret = __context_pin(ce->state);
+ if (ret)
+ goto err;
+
+ vaddr = i915_gem_object_pin_map(ce->state->obj,
+ i915_coherent_map_type(engine->i915) |
+ I915_MAP_OVERRIDE);
+ if (IS_ERR(vaddr)) {
+ ret = PTR_ERR(vaddr);
+ goto unpin_vma;
+ }
+
+ ret = intel_ring_pin(ce->ring);
+ if (ret)
+ goto unpin_map;
+
+ ret = i915_gem_context_pin_hw_id(ce->gem_context);
+ if (ret)
+ goto unpin_ring;
+
+ ce->lrc_desc = lrc_descriptor(ce, engine);
+ ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
+ __execlists_update_reg_state(ce, engine);
+
+ return 0;
+
+unpin_ring:
+ intel_ring_unpin(ce->ring);
+unpin_map:
+ i915_gem_object_unpin_map(ce->state->obj);
+unpin_vma:
+ __context_unpin(ce->state);
+err:
+ return ret;
+}
+
+static int execlists_context_pin(struct intel_context *ce)
+{
+ return __execlists_context_pin(ce, ce->engine);
+}
+
+static void execlists_context_reset(struct intel_context *ce)
+{
+ /*
+ * Because we emit WA_TAIL_DWORDS there may be a disparity
+ * between our bookkeeping in ce->ring->head and ce->ring->tail and
+ * that stored in context. As we only write new commands from
+ * ce->ring->tail onwards, everything before that is junk. If the GPU
+ * starts reading from its RING_HEAD from the context, it may try to
+ * execute that junk and die.
+ *
+ * The contexts that are stilled pinned on resume belong to the
+ * kernel, and are local to each engine. All other contexts will
+ * have their head/tail sanitized upon pinning before use, so they
+ * will never see garbage,
+ *
+ * So to avoid that we reset the context images upon resume. For
+ * simplicity, we just zero everything out.
+ */
+ intel_ring_reset(ce->ring, 0);
+ __execlists_update_reg_state(ce, ce->engine);
+}
+
+static const struct intel_context_ops execlists_context_ops = {
+ .pin = execlists_context_pin,
+ .unpin = execlists_context_unpin,
+
+ .enter = intel_context_enter_engine,
+ .exit = intel_context_exit_engine,
+
+ .reset = execlists_context_reset,
+ .destroy = execlists_context_destroy,
+};
+
+static int gen8_emit_init_breadcrumb(struct i915_request *rq)
+{
+ u32 *cs;
+
+ GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb);
+
+ cs = intel_ring_begin(rq, 6);
+ if (IS_ERR(cs))
+ return PTR_ERR(cs);
+
+ /*
+ * Check if we have been preempted before we even get started.
+ *
+ * After this point i915_request_started() reports true, even if
+ * we get preempted and so are no longer running.
+ */
+ *cs++ = MI_ARB_CHECK;
+ *cs++ = MI_NOOP;
+
+ *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
+ *cs++ = rq->timeline->hwsp_offset;
+ *cs++ = 0;
+ *cs++ = rq->fence.seqno - 1;
+
+ intel_ring_advance(rq, cs);
+
+ /* Record the updated position of the request's payload */
+ rq->infix = intel_ring_offset(rq, cs);
+
+ return 0;
+}
+
+static int emit_pdps(struct i915_request *rq)
+{
+ const struct intel_engine_cs * const engine = rq->engine;
+ struct i915_hw_ppgtt * const ppgtt = rq->gem_context->ppgtt;
+ int err, i;
+ u32 *cs;
+
+ GEM_BUG_ON(intel_vgpu_active(rq->i915));
+
+ /*
+ * Beware ye of the dragons, this sequence is magic!
+ *
+ * Small changes to this sequence can cause anything from
+ * GPU hangs to forcewake errors and machine lockups!
+ */
+
+ /* Flush any residual operations from the context load */
+ err = engine->emit_flush(rq, EMIT_FLUSH);
+ if (err)
+ return err;
+
+ /* Magic required to prevent forcewake errors! */
+ err = engine->emit_flush(rq, EMIT_INVALIDATE);
+ if (err)
+ return err;
+
+ cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
+ if (IS_ERR(cs))
+ return PTR_ERR(cs);
+
+ /* Ensure the LRI have landed before we invalidate & continue */
+ *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
+ for (i = GEN8_3LVL_PDPES; i--; ) {
+ const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
+ u32 base = engine->mmio_base;
+
+ *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
+ *cs++ = upper_32_bits(pd_daddr);
+ *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
+ *cs++ = lower_32_bits(pd_daddr);
+ }
+ *cs++ = MI_NOOP;
+
+ intel_ring_advance(rq, cs);
+
+ /* Be doubly sure the LRI have landed before proceeding */
+ err = engine->emit_flush(rq, EMIT_FLUSH);
+ if (err)
+ return err;
+
+ /* Re-invalidate the TLB for luck */
+ return engine->emit_flush(rq, EMIT_INVALIDATE);
+}
+
+static int execlists_request_alloc(struct i915_request *request)
+{
+ int ret;
+
+ GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
+
+ /*
+ * Flush enough space to reduce the likelihood of waiting after
+ * we start building the request - in which case we will just
+ * have to repeat work.
+ */
+ request->reserved_space += EXECLISTS_REQUEST_SIZE;
+
+ /*
+ * Note that after this point, we have committed to using
+ * this request as it is being used to both track the
+ * state of engine initialisation and liveness of the
+ * golden renderstate above. Think twice before you try
+ * to cancel/unwind this request now.
+ */
+
+ /* Unconditionally invalidate GPU caches and TLBs. */
+ if (i915_vm_is_4lvl(&request->gem_context->ppgtt->vm))
+ ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
+ else
+ ret = emit_pdps(request);
+ if (ret)
+ return ret;
+
+ request->reserved_space -= EXECLISTS_REQUEST_SIZE;
+ return 0;
+}
+
+/*
+ * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
+ * PIPE_CONTROL instruction. This is required for the flush to happen correctly
+ * but there is a slight complication as this is applied in WA batch where the
+ * values are only initialized once so we cannot take register value at the
+ * beginning and reuse it further; hence we save its value to memory, upload a
+ * constant value with bit21 set and then we restore it back with the saved value.
+ * To simplify the WA, a constant value is formed by using the default value
+ * of this register. This shouldn't be a problem because we are only modifying
+ * it for a short period and this batch in non-premptible. We can ofcourse
+ * use additional instructions that read the actual value of the register
+ * at that time and set our bit of interest but it makes the WA complicated.
+ *
+ * This WA is also required for Gen9 so extracting as a function avoids
+ * code duplication.
+ */
+static u32 *
+gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
+{
+ /* NB no one else is allowed to scribble over scratch + 256! */
+ *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
+ *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
+ *batch++ = i915_scratch_offset(engine->i915) + 256;
+ *batch++ = 0;
+
+ *batch++ = MI_LOAD_REGISTER_IMM(1);
+ *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
+ *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
+
+ batch = gen8_emit_pipe_control(batch,
+ PIPE_CONTROL_CS_STALL |
+ PIPE_CONTROL_DC_FLUSH_ENABLE,
+ 0);
+
+ *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
+ *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
+ *batch++ = i915_scratch_offset(engine->i915) + 256;
+ *batch++ = 0;
+
+ return batch;
+}
+
+/*
+ * Typically we only have one indirect_ctx and per_ctx batch buffer which are
+ * initialized at the beginning and shared across all contexts but this field
+ * helps us to have multiple batches at different offsets and select them based
+ * on a criteria. At the moment this batch always start at the beginning of the page
+ * and at this point we don't have multiple wa_ctx batch buffers.
+ *
+ * The number of WA applied are not known at the beginning; we use this field
+ * to return the no of DWORDS written.
+ *
+ * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
+ * so it adds NOOPs as padding to make it cacheline aligned.
+ * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
+ * makes a complete batch buffer.
+ */
+static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
+{
+ /* WaDisableCtxRestoreArbitration:bdw,chv */
+ *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
+
+ /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
+ if (IS_BROADWELL(engine->i915))
+ batch = gen8_emit_flush_coherentl3_wa(engine, batch);
+
+ /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
+ /* Actual scratch location is at 128 bytes offset */
+ batch = gen8_emit_pipe_control(batch,
+ PIPE_CONTROL_FLUSH_L3 |
+ PIPE_CONTROL_GLOBAL_GTT_IVB |
+ PIPE_CONTROL_CS_STALL |
+ PIPE_CONTROL_QW_WRITE,
+ i915_scratch_offset(engine->i915) +
+ 2 * CACHELINE_BYTES);
+
+ *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
+
+ /* Pad to end of cacheline */
+ while ((unsigned long)batch % CACHELINE_BYTES)
+ *batch++ = MI_NOOP;
+
+ /*
+ * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
+ * execution depends on the length specified in terms of cache lines
+ * in the register CTX_RCS_INDIRECT_CTX
+ */
+
+ return batch;
+}
+
+struct lri {
+ i915_reg_t reg;
+ u32 value;
+};
+
+static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
+{
+ GEM_BUG_ON(!count || count > 63);
+
+ *batch++ = MI_LOAD_REGISTER_IMM(count);
+ do {
+ *batch++ = i915_mmio_reg_offset(lri->reg);
+ *batch++ = lri->value;
+ } while (lri++, --count);
+ *batch++ = MI_NOOP;
+
+ return batch;
+}
+
+static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
+{
+ static const struct lri lri[] = {
+ /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
+ {
+ COMMON_SLICE_CHICKEN2,
+ __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
+ 0),
+ },
+
+ /* BSpec: 11391 */
+ {
+ FF_SLICE_CHICKEN,
+ __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
+ FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
+ },
+
+ /* BSpec: 11299 */
+ {
+ _3D_CHICKEN3,
+ __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
+ _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
+ }
+ };
+
+ *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
+
+ /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
+ batch = gen8_emit_flush_coherentl3_wa(engine, batch);
+
+ batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
+
+ /* WaMediaPoolStateCmdInWABB:bxt,glk */
+ if (HAS_POOLED_EU(engine->i915)) {
+ /*
+ * EU pool configuration is setup along with golden context
+ * during context initialization. This value depends on
+ * device type (2x6 or 3x6) and needs to be updated based
+ * on which subslice is disabled especially for 2x6
+ * devices, however it is safe to load default
+ * configuration of 3x6 device instead of masking off
+ * corresponding bits because HW ignores bits of a disabled
+ * subslice and drops down to appropriate config. Please
+ * see render_state_setup() in i915_gem_render_state.c for
+ * possible configurations, to avoid duplication they are
+ * not shown here again.
+ */
+ *batch++ = GEN9_MEDIA_POOL_STATE;
+ *batch++ = GEN9_MEDIA_POOL_ENABLE;
+ *batch++ = 0x00777000;
+ *batch++ = 0;
+ *batch++ = 0;
+ *batch++ = 0;
+ }
+
+ *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
+
+ /* Pad to end of cacheline */
+ while ((unsigned long)batch % CACHELINE_BYTES)
+ *batch++ = MI_NOOP;
+
+ return batch;
+}
+
+static u32 *
+gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
+{
+ int i;
+
+ /*
+ * WaPipeControlBefore3DStateSamplePattern: cnl
+ *
+ * Ensure the engine is idle prior to programming a
+ * 3DSTATE_SAMPLE_PATTERN during a context restore.
+ */
+ batch = gen8_emit_pipe_control(batch,
+ PIPE_CONTROL_CS_STALL,
+ 0);
+ /*
+ * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
+ * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
+ * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
+ * confusing. Since gen8_emit_pipe_control() already advances the
+ * batch by 6 dwords, we advance the other 10 here, completing a
+ * cacheline. It's not clear if the workaround requires this padding
+ * before other commands, or if it's just the regular padding we would
+ * already have for the workaround bb, so leave it here for now.
+ */
+ for (i = 0; i < 10; i++)
+ *batch++ = MI_NOOP;
+
+ /* Pad to end of cacheline */
+ while ((unsigned long)batch % CACHELINE_BYTES)
+ *batch++ = MI_NOOP;
+
+ return batch;
+}
+
+#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
+
+static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
+{
+ struct drm_i915_gem_object *obj;
+ struct i915_vma *vma;
+ int err;
+
+ obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
+ if (IS_ERR(obj))
+ return PTR_ERR(obj);
+
+ vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
+ if (IS_ERR(vma)) {
+ err = PTR_ERR(vma);
+ goto err;
+ }
+
+ err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
+ if (err)
+ goto err;
+
+ engine->wa_ctx.vma = vma;
+ return 0;
+
+err:
+ i915_gem_object_put(obj);
+ return err;
+}
+
+static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
+{
+ i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
+}
+
+typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
+
+static int intel_init_workaround_bb(struct intel_engine_cs *engine)
+{
+ struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
+ struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
+ &wa_ctx->per_ctx };
+ wa_bb_func_t wa_bb_fn[2];
+ struct page *page;
+ void *batch, *batch_ptr;
+ unsigned int i;
+ int ret;
+
+ if (engine->class != RENDER_CLASS)
+ return 0;
+
+ switch (INTEL_GEN(engine->i915)) {
+ case 11:
+ return 0;
+ case 10:
+ wa_bb_fn[0] = gen10_init_indirectctx_bb;
+ wa_bb_fn[1] = NULL;
+ break;
+ case 9:
+ wa_bb_fn[0] = gen9_init_indirectctx_bb;
+ wa_bb_fn[1] = NULL;
+ break;
+ case 8:
+ wa_bb_fn[0] = gen8_init_indirectctx_bb;
+ wa_bb_fn[1] = NULL;
+ break;
+ default:
+ MISSING_CASE(INTEL_GEN(engine->i915));
+ return 0;
+ }
+
+ ret = lrc_setup_wa_ctx(engine);
+ if (ret) {
+ DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
+ return ret;
+ }
+
+ page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
+ batch = batch_ptr = kmap_atomic(page);
+
+ /*
+ * Emit the two workaround batch buffers, recording the offset from the
+ * start of the workaround batch buffer object for each and their
+ * respective sizes.
+ */
+ for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
+ wa_bb[i]->offset = batch_ptr - batch;
+ if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
+ CACHELINE_BYTES))) {
+ ret = -EINVAL;
+ break;
+ }
+ if (wa_bb_fn[i])
+ batch_ptr = wa_bb_fn[i](engine, batch_ptr);
+ wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
+ }
+
+ BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
+
+ kunmap_atomic(batch);
+ if (ret)
+ lrc_destroy_wa_ctx(engine);
+
+ return ret;
+}
+
+static void enable_execlists(struct intel_engine_cs *engine)
+{
+ struct drm_i915_private *dev_priv = engine->i915;
+
+ intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
+
+ if (INTEL_GEN(dev_priv) >= 11)
+ I915_WRITE(RING_MODE_GEN7(engine),
+ _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
+ else
+ I915_WRITE(RING_MODE_GEN7(engine),
+ _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
+
+ I915_WRITE(RING_MI_MODE(engine->mmio_base),
+ _MASKED_BIT_DISABLE(STOP_RING));
+
+ I915_WRITE(RING_HWS_PGA(engine->mmio_base),
+ i915_ggtt_offset(engine->status_page.vma));
+ POSTING_READ(RING_HWS_PGA(engine->mmio_base));
+}
+
+static bool unexpected_starting_state(struct intel_engine_cs *engine)
+{
+ struct drm_i915_private *dev_priv = engine->i915;
+ bool unexpected = false;
+
+ if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) {
+ DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
+ unexpected = true;
+ }
+
+ return unexpected;
+}
+
+static int execlists_resume(struct intel_engine_cs *engine)
+{
+ intel_engine_apply_workarounds(engine);
+ intel_engine_apply_whitelist(engine);
+
+ intel_mocs_init_engine(engine);
+
+ intel_engine_reset_breadcrumbs(engine);
+
+ if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
+ struct drm_printer p = drm_debug_printer(__func__);
+
+ intel_engine_dump(engine, &p, NULL);
+ }
+
+ enable_execlists(engine);
+
+ return 0;
+}
+
+static void execlists_reset_prepare(struct intel_engine_cs *engine)
+{
+ struct intel_engine_execlists * const execlists = &engine->execlists;
+ unsigned long flags;
+
+ GEM_TRACE("%s: depth<-%d\n", engine->name,
+ atomic_read(&execlists->tasklet.count));
+
+ /*
+ * Prevent request submission to the hardware until we have
+ * completed the reset in i915_gem_reset_finish(). If a request
+ * is completed by one engine, it may then queue a request
+ * to a second via its execlists->tasklet *just* as we are
+ * calling engine->resume() and also writing the ELSP.
+ * Turning off the execlists->tasklet until the reset is over
+ * prevents the race.
+ */
+ __tasklet_disable_sync_once(&execlists->tasklet);
+ GEM_BUG_ON(!reset_in_progress(execlists));
+
+ intel_engine_stop_cs(engine);
+
+ /* And flush any current direct submission. */
+ spin_lock_irqsave(&engine->timeline.lock, flags);
+ spin_unlock_irqrestore(&engine->timeline.lock, flags);
+}
+
+static bool lrc_regs_ok(const struct i915_request *rq)
+{
+ const struct intel_ring *ring = rq->ring;
+ const u32 *regs = rq->hw_context->lrc_reg_state;
+
+ /* Quick spot check for the common signs of context corruption */
+
+ if (regs[CTX_RING_BUFFER_CONTROL + 1] !=
+ (RING_CTL_SIZE(ring->size) | RING_VALID))
+ return false;
+
+ if (regs[CTX_RING_BUFFER_START + 1] != i915_ggtt_offset(ring->vma))
+ return false;
+
+ return true;
+}
+
+static void reset_csb_pointers(struct intel_engine_execlists *execlists)
+{
+ const unsigned int reset_value = execlists->csb_size - 1;
+
+ /*
+ * After a reset, the HW starts writing into CSB entry [0]. We
+ * therefore have to set our HEAD pointer back one entry so that
+ * the *first* entry we check is entry 0. To complicate this further,
+ * as we don't wait for the first interrupt after reset, we have to
+ * fake the HW write to point back to the last entry so that our
+ * inline comparison of our cached head position against the last HW
+ * write works even before the first interrupt.
+ */
+ execlists->csb_head = reset_value;
+ WRITE_ONCE(*execlists->csb_write, reset_value);
+ wmb(); /* Make sure this is visible to HW (paranoia?) */
+
+ invalidate_csb_entries(&execlists->csb_status[0],
+ &execlists->csb_status[reset_value]);
+}
+
+static struct i915_request *active_request(struct i915_request *rq)
+{
+ const struct list_head * const list = &rq->engine->timeline.requests;
+ const struct intel_context * const context = rq->hw_context;
+ struct i915_request *active = NULL;
+
+ list_for_each_entry_from_reverse(rq, list, link) {
+ if (i915_request_completed(rq))
+ break;
+
+ if (rq->hw_context != context)
+ break;
+
+ active = rq;
+ }
+
+ return active;
+}
+
+static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
+{
+ struct intel_engine_execlists * const execlists = &engine->execlists;
+ struct intel_context *ce;
+ struct i915_request *rq;
+ u32 *regs;
+
+ process_csb(engine); /* drain preemption events */
+
+ /* Following the reset, we need to reload the CSB read/write pointers */
+ reset_csb_pointers(&engine->execlists);
+
+ /*
+ * Save the currently executing context, even if we completed
+ * its request, it was still running at the time of the
+ * reset and will have been clobbered.
+ */
+ if (!port_isset(execlists->port))
+ goto out_clear;
+
+ rq = port_request(execlists->port);
+ ce = rq->hw_context;
+
+ /*
+ * Catch up with any missed context-switch interrupts.
+ *
+ * Ideally we would just read the remaining CSB entries now that we
+ * know the gpu is idle. However, the CSB registers are sometimes^W
+ * often trashed across a GPU reset! Instead we have to rely on
+ * guessing the missed context-switch events by looking at what
+ * requests were completed.
+ */
+ execlists_cancel_port_requests(execlists);
+
+ rq = active_request(rq);
+ if (!rq)
+ goto out_replay;
+
+ /*
+ * If this request hasn't started yet, e.g. it is waiting on a
+ * semaphore, we need to avoid skipping the request or else we
+ * break the signaling chain. However, if the context is corrupt
+ * the request will not restart and we will be stuck with a wedged
+ * device. It is quite often the case that if we issue a reset
+ * while the GPU is loading the context image, that the context
+ * image becomes corrupt.
+ *
+ * Otherwise, if we have not started yet, the request should replay
+ * perfectly and we do not need to flag the result as being erroneous.
+ */
+ if (!i915_request_started(rq) && lrc_regs_ok(rq))
+ goto out_replay;
+
+ /*
+ * If the request was innocent, we leave the request in the ELSP
+ * and will try to replay it on restarting. The context image may
+ * have been corrupted by the reset, in which case we may have
+ * to service a new GPU hang, but more likely we can continue on
+ * without impact.
+ *
+ * If the request was guilty, we presume the context is corrupt
+ * and have to at least restore the RING register in the context
+ * image back to the expected values to skip over the guilty request.
+ */
+ i915_reset_request(rq, stalled);
+ if (!stalled && lrc_regs_ok(rq))
+ goto out_replay;
+
+ /*
+ * We want a simple context + ring to execute the breadcrumb update.
+ * We cannot rely on the context being intact across the GPU hang,
+ * so clear it and rebuild just what we need for the breadcrumb.
+ * All pending requests for this context will be zapped, and any
+ * future request will be after userspace has had the opportunity
+ * to recreate its own state.
+ */
+ regs = ce->lrc_reg_state;
+ if (engine->pinned_default_state) {
+ memcpy(regs, /* skip restoring the vanilla PPHWSP */
+ engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
+ engine->context_size - PAGE_SIZE);
+ }
+ execlists_init_reg_state(regs, ce, engine, ce->ring);
+
+out_replay:
+ /* Rerun the request; its payload has been neutered (if guilty). */
+ ce->ring->head =
+ rq ? intel_ring_wrap(ce->ring, rq->head) : ce->ring->tail;
+ intel_ring_update_space(ce->ring);
+ __execlists_update_reg_state(ce, engine);
+
+ /* Push back any incomplete requests for replay after the reset. */
+ __unwind_incomplete_requests(engine);
+
+out_clear:
+ execlists_clear_all_active(execlists);
+}
+
+static void execlists_reset(struct intel_engine_cs *engine, bool stalled)
+{
+ unsigned long flags;
+
+ GEM_TRACE("%s\n", engine->name);
+
+ spin_lock_irqsave(&engine->timeline.lock, flags);
+
+ __execlists_reset(engine, stalled);
+
+ spin_unlock_irqrestore(&engine->timeline.lock, flags);
+}
+
+static void nop_submission_tasklet(unsigned long data)
+{
+ /* The driver is wedged; don't process any more events. */
+}
+
+static void execlists_cancel_requests(struct intel_engine_cs *engine)
+{
+ struct intel_engine_execlists * const execlists = &engine->execlists;
+ struct i915_request *rq, *rn;
+ struct rb_node *rb;
+ unsigned long flags;
+
+ GEM_TRACE("%s\n", engine->name);
+
+ /*
+ * Before we call engine->cancel_requests(), we should have exclusive
+ * access to the submission state. This is arranged for us by the
+ * caller disabling the interrupt generation, the tasklet and other
+ * threads that may then access the same state, giving us a free hand
+ * to reset state. However, we still need to let lockdep be aware that
+ * we know this state may be accessed in hardirq context, so we
+ * disable the irq around this manipulation and we want to keep
+ * the spinlock focused on its duties and not accidentally conflate
+ * coverage to the submission's irq state. (Similarly, although we
+ * shouldn't need to disable irq around the manipulation of the
+ * submission's irq state, we also wish to remind ourselves that
+ * it is irq state.)
+ */
+ spin_lock_irqsave(&engine->timeline.lock, flags);
+
+ __execlists_reset(engine, true);
+
+ /* Mark all executing requests as skipped. */
+ list_for_each_entry(rq, &engine->timeline.requests, link) {
+ if (!i915_request_signaled(rq))
+ dma_fence_set_error(&rq->fence, -EIO);
+
+ i915_request_mark_complete(rq);
+ }
+
+ /* Flush the queued requests to the timeline list (for retiring). */
+ while ((rb = rb_first_cached(&execlists->queue))) {
+ struct i915_priolist *p = to_priolist(rb);
+ int i;
+
+ priolist_for_each_request_consume(rq, rn, p, i) {
+ list_del_init(&rq->sched.link);
+ __i915_request_submit(rq);
+ dma_fence_set_error(&rq->fence, -EIO);
+ i915_request_mark_complete(rq);
+ }
+
+ rb_erase_cached(&p->node, &execlists->queue);
+ i915_priolist_free(p);
+ }
+
+ /* Cancel all attached virtual engines */
+ while ((rb = rb_first_cached(&execlists->virtual))) {
+ struct virtual_engine *ve =
+ rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
+
+ rb_erase_cached(rb, &execlists->virtual);
+ RB_CLEAR_NODE(rb);
+
+ spin_lock(&ve->base.timeline.lock);
+ if (ve->request) {
+ ve->request->engine = engine;
+ __i915_request_submit(ve->request);
+ dma_fence_set_error(&ve->request->fence, -EIO);
+ i915_request_mark_complete(ve->request);
+ ve->base.execlists.queue_priority_hint = INT_MIN;
+ ve->request = NULL;
+ }
+ spin_unlock(&ve->base.timeline.lock);
+ }
+
+ /* Remaining _unready_ requests will be nop'ed when submitted */
+
+ execlists->queue_priority_hint = INT_MIN;
+ execlists->queue = RB_ROOT_CACHED;
+ GEM_BUG_ON(port_isset(execlists->port));
+
+ GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
+ execlists->tasklet.func = nop_submission_tasklet;
+
+ spin_unlock_irqrestore(&engine->timeline.lock, flags);
+}
+
+static void execlists_reset_finish(struct intel_engine_cs *engine)
+{
+ struct intel_engine_execlists * const execlists = &engine->execlists;
+
+ /*
+ * After a GPU reset, we may have requests to replay. Do so now while
+ * we still have the forcewake to be sure that the GPU is not allowed
+ * to sleep before we restart and reload a context.
+ */
+ GEM_BUG_ON(!reset_in_progress(execlists));
+ if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
+ execlists->tasklet.func(execlists->tasklet.data);
+
+ if (__tasklet_enable(&execlists->tasklet))
+ /* And kick in case we missed a new request submission. */
+ tasklet_hi_schedule(&execlists->tasklet);
+ GEM_TRACE("%s: depth->%d\n", engine->name,
+ atomic_read(&execlists->tasklet.count));
+}
+
+static int gen8_emit_bb_start(struct i915_request *rq,
+ u64 offset, u32 len,
+ const unsigned int flags)
+{
+ u32 *cs;
+
+ cs = intel_ring_begin(rq, 4);
+ if (IS_ERR(cs))
+ return PTR_ERR(cs);
+
+ /*
+ * WaDisableCtxRestoreArbitration:bdw,chv
+ *
+ * We don't need to perform MI_ARB_ENABLE as often as we do (in
+ * particular all the gen that do not need the w/a at all!), if we
+ * took care to make sure that on every switch into this context
+ * (both ordinary and for preemption) that arbitrartion was enabled
+ * we would be fine. However, for gen8 there is another w/a that
+ * requires us to not preempt inside GPGPU execution, so we keep
+ * arbitration disabled for gen8 batches. Arbitration will be
+ * re-enabled before we close the request
+ * (engine->emit_fini_breadcrumb).
+ */
+ *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
+
+ /* FIXME(BDW+): Address space and security selectors. */
+ *cs++ = MI_BATCH_BUFFER_START_GEN8 |
+ (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
+ *cs++ = lower_32_bits(offset);
+ *cs++ = upper_32_bits(offset);
+
+ intel_ring_advance(rq, cs);
+
+ return 0;
+}
+
+static int gen9_emit_bb_start(struct i915_request *rq,
+ u64 offset, u32 len,
+ const unsigned int flags)
+{
+ u32 *cs;
+
+ cs = intel_ring_begin(rq, 6);
+ if (IS_ERR(cs))
+ return PTR_ERR(cs);
+
+ *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
+
+ *cs++ = MI_BATCH_BUFFER_START_GEN8 |
+ (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
+ *cs++ = lower_32_bits(offset);
+ *cs++ = upper_32_bits(offset);
+
+ *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
+ *cs++ = MI_NOOP;
+
+ intel_ring_advance(rq, cs);
+
+ return 0;
+}
+
+static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
+{
+ ENGINE_WRITE(engine, RING_IMR,
+ ~(engine->irq_enable_mask | engine->irq_keep_mask));
+ ENGINE_POSTING_READ(engine, RING_IMR);
+}
+
+static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
+{
+ ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
+}
+
+static int gen8_emit_flush(struct i915_request *request, u32 mode)
+{
+ u32 cmd, *cs;
+
+ cs = intel_ring_begin(request, 4);
+ if (IS_ERR(cs))
+ return PTR_ERR(cs);
+
+ cmd = MI_FLUSH_DW + 1;
+
+ /* We always require a command barrier so that subsequent
+ * commands, such as breadcrumb interrupts, are strictly ordered
+ * wrt the contents of the write cache being flushed to memory
+ * (and thus being coherent from the CPU).
+ */
+ cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
+
+ if (mode & EMIT_INVALIDATE) {
+ cmd |= MI_INVALIDATE_TLB;
+ if (request->engine->class == VIDEO_DECODE_CLASS)
+ cmd |= MI_INVALIDATE_BSD;
+ }
+
+ *cs++ = cmd;
+ *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
+ *cs++ = 0; /* upper addr */
+ *cs++ = 0; /* value */
+ intel_ring_advance(request, cs);
+
+ return 0;
+}
+
+static int gen8_emit_flush_render(struct i915_request *request,
+ u32 mode)
+{
+ struct intel_engine_cs *engine = request->engine;
+ u32 scratch_addr =
+ i915_scratch_offset(engine->i915) + 2 * CACHELINE_BYTES;
+ bool vf_flush_wa = false, dc_flush_wa = false;
+ u32 *cs, flags = 0;
+ int len;
+
+ flags |= PIPE_CONTROL_CS_STALL;
+
+ if (mode & EMIT_FLUSH) {
+ flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
+ flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
+ flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
+ flags |= PIPE_CONTROL_FLUSH_ENABLE;
+ }
+
+ if (mode & EMIT_INVALIDATE) {
+ flags |= PIPE_CONTROL_TLB_INVALIDATE;
+ flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
+ flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
+ flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
+ flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
+ flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
+ flags |= PIPE_CONTROL_QW_WRITE;
+ flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
+
+ /*
+ * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
+ * pipe control.
+ */
+ if (IS_GEN(request->i915, 9))
+ vf_flush_wa = true;
+
+ /* WaForGAMHang:kbl */
+ if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
+ dc_flush_wa = true;
+ }
+
+ len = 6;
+
+ if (vf_flush_wa)
+ len += 6;
+
+ if (dc_flush_wa)
+ len += 12;
+
+ cs = intel_ring_begin(request, len);
+ if (IS_ERR(cs))
+ return PTR_ERR(cs);
+
+ if (vf_flush_wa)
+ cs = gen8_emit_pipe_control(cs, 0, 0);
+
+ if (dc_flush_wa)
+ cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
+ 0);
+
+ cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
+
+ if (dc_flush_wa)
+ cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
+
+ intel_ring_advance(request, cs);
+
+ return 0;
+}
+
+/*
+ * Reserve space for 2 NOOPs at the end of each request to be
+ * used as a workaround for not being allowed to do lite
+ * restore with HEAD==TAIL (WaIdleLiteRestore).
+ */
+static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
+{
+ /* Ensure there's always at least one preemption point per-request. */
+ *cs++ = MI_ARB_CHECK;
+ *cs++ = MI_NOOP;
+ request->wa_tail = intel_ring_offset(request, cs);
+
+ return cs;
+}
+
+static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
+{
+ cs = gen8_emit_ggtt_write(cs,
+ request->fence.seqno,
+ request->timeline->hwsp_offset,
+ 0);
+
+ *cs++ = MI_USER_INTERRUPT;
+ *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
+
+ request->tail = intel_ring_offset(request, cs);
+ assert_ring_tail_valid(request->ring, request->tail);
+
+ return gen8_emit_wa_tail(request, cs);
+}
+
+static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
+{
+ /* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
+ cs = gen8_emit_ggtt_write_rcs(cs,
+ request->fence.seqno,
+ request->timeline->hwsp_offset,
+ PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
+ PIPE_CONTROL_DEPTH_CACHE_FLUSH |
+ PIPE_CONTROL_DC_FLUSH_ENABLE);
+ cs = gen8_emit_pipe_control(cs,
+ PIPE_CONTROL_FLUSH_ENABLE |
+ PIPE_CONTROL_CS_STALL,
+ 0);
+
+ *cs++ = MI_USER_INTERRUPT;
+ *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
+
+ request->tail = intel_ring_offset(request, cs);
+ assert_ring_tail_valid(request->ring, request->tail);
+
+ return gen8_emit_wa_tail(request, cs);
+}
+
+static int gen8_init_rcs_context(struct i915_request *rq)
+{
+ int ret;
+
+ ret = intel_engine_emit_ctx_wa(rq);
+ if (ret)
+ return ret;
+
+ ret = intel_rcs_context_init_mocs(rq);
+ /*
+ * Failing to program the MOCS is non-fatal.The system will not
+ * run at peak performance. So generate an error and carry on.
+ */
+ if (ret)
+ DRM_ERROR("MOCS failed to program: expect performance issues.\n");
+
+ return i915_gem_render_state_emit(rq);
+}
+
+static void execlists_park(struct intel_engine_cs *engine)
+{
+ intel_engine_park(engine);
+}
+
+void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
+{
+ engine->submit_request = execlists_submit_request;
+ engine->cancel_requests = execlists_cancel_requests;
+ engine->schedule = i915_schedule;
+ engine->execlists.tasklet.func = execlists_submission_tasklet;
+
+ engine->reset.prepare = execlists_reset_prepare;
+ engine->reset.reset = execlists_reset;
+ engine->reset.finish = execlists_reset_finish;
+
+ engine->park = execlists_park;
+ engine->unpark = NULL;
+
+ engine->flags |= I915_ENGINE_SUPPORTS_STATS;
+ if (!intel_vgpu_active(engine->i915))
+ engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
+ if (engine->preempt_context &&
+ HAS_LOGICAL_RING_PREEMPTION(engine->i915))
+ engine->flags |= I915_ENGINE_HAS_PREEMPTION;
+}
+
+static void execlists_destroy(struct intel_engine_cs *engine)
+{
+ intel_engine_cleanup_common(engine);
+ lrc_destroy_wa_ctx(engine);
+ kfree(engine);
+}
+
+static void
+logical_ring_default_vfuncs(struct intel_engine_cs *engine)
+{
+ /* Default vfuncs which can be overriden by each engine. */
+
+ engine->destroy = execlists_destroy;
+ engine->resume = execlists_resume;
+
+ engine->reset.prepare = execlists_reset_prepare;
+ engine->reset.reset = execlists_reset;
+ engine->reset.finish = execlists_reset_finish;
+
+ engine->cops = &execlists_context_ops;
+ engine->request_alloc = execlists_request_alloc;
+
+ engine->emit_flush = gen8_emit_flush;
+ engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
+ engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
+
+ engine->set_default_submission = intel_execlists_set_default_submission;
+
+ if (INTEL_GEN(engine->i915) < 11) {
+ engine->irq_enable = gen8_logical_ring_enable_irq;
+ engine->irq_disable = gen8_logical_ring_disable_irq;
+ } else {
+ /*
+ * TODO: On Gen11 interrupt masks need to be clear
+ * to allow C6 entry. Keep interrupts enabled at
+ * and take the hit of generating extra interrupts
+ * until a more refined solution exists.
+ */
+ }
+ if (IS_GEN(engine->i915, 8))
+ engine->emit_bb_start = gen8_emit_bb_start;
+ else
+ engine->emit_bb_start = gen9_emit_bb_start;
+}
+
+static inline void
+logical_ring_default_irqs(struct intel_engine_cs *engine)
+{
+ unsigned int shift = 0;
+
+ if (INTEL_GEN(engine->i915) < 11) {
+ const u8 irq_shifts[] = {
+ [RCS0] = GEN8_RCS_IRQ_SHIFT,
+ [BCS0] = GEN8_BCS_IRQ_SHIFT,
+ [VCS0] = GEN8_VCS0_IRQ_SHIFT,
+ [VCS1] = GEN8_VCS1_IRQ_SHIFT,
+ [VECS0] = GEN8_VECS_IRQ_SHIFT,
+ };
+
+ shift = irq_shifts[engine->id];
+ }
+
+ engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
+ engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
+}
+
+int intel_execlists_submission_setup(struct intel_engine_cs *engine)
+{
+ /* Intentionally left blank. */
+ engine->buffer = NULL;
+
+ tasklet_init(&engine->execlists.tasklet,
+ execlists_submission_tasklet, (unsigned long)engine);
+
+ logical_ring_default_vfuncs(engine);
+ logical_ring_default_irqs(engine);
+
+ if (engine->class == RENDER_CLASS) {
+ engine->init_context = gen8_init_rcs_context;
+ engine->emit_flush = gen8_emit_flush_render;
+ engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
+ }
+
+ return 0;
+}
+
+int intel_execlists_submission_init(struct intel_engine_cs *engine)
+{
+ struct drm_i915_private *i915 = engine->i915;
+ struct intel_engine_execlists * const execlists = &engine->execlists;
+ u32 base = engine->mmio_base;
+ int ret;
+
+ ret = intel_engine_init_common(engine);
+ if (ret)
+ return ret;
+
+ intel_engine_init_workarounds(engine);
+ intel_engine_init_whitelist(engine);
+
+ if (intel_init_workaround_bb(engine))
+ /*
+ * We continue even if we fail to initialize WA batch
+ * because we only expect rare glitches but nothing
+ * critical to prevent us from using GPU
+ */
+ DRM_ERROR("WA batch buffer initialization failed\n");
+
+ if (HAS_LOGICAL_RING_ELSQ(i915)) {
+ execlists->submit_reg = i915->uncore.regs +
+ i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
+ execlists->ctrl_reg = i915->uncore.regs +
+ i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
+ } else {
+ execlists->submit_reg = i915->uncore.regs +
+ i915_mmio_reg_offset(RING_ELSP(base));
+ }
+
+ execlists->preempt_complete_status = ~0u;
+ if (engine->preempt_context)
+ execlists->preempt_complete_status =
+ upper_32_bits(engine->preempt_context->lrc_desc);
+
+ execlists->csb_status =
+ &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
+
+ execlists->csb_write =
+ &engine->status_page.addr[intel_hws_csb_write_index(i915)];
+
+ if (INTEL_GEN(engine->i915) < 11)
+ execlists->csb_size = GEN8_CSB_ENTRIES;
+ else
+ execlists->csb_size = GEN11_CSB_ENTRIES;
+
+ reset_csb_pointers(execlists);
+
+ return 0;
+}
+
+static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
+{
+ u32 indirect_ctx_offset;
+
+ switch (INTEL_GEN(engine->i915)) {
+ default:
+ MISSING_CASE(INTEL_GEN(engine->i915));
+ /* fall through */
+ case 11:
+ indirect_ctx_offset =
+ GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
+ break;
+ case 10:
+ indirect_ctx_offset =
+ GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
+ break;
+ case 9:
+ indirect_ctx_offset =
+ GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
+ break;
+ case 8:
+ indirect_ctx_offset =
+ GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
+ break;
+ }
+
+ return indirect_ctx_offset;
+}
+
+static void execlists_init_reg_state(u32 *regs,
+ struct intel_context *ce,
+ struct intel_engine_cs *engine,
+ struct intel_ring *ring)
+{
+ struct i915_hw_ppgtt *ppgtt = ce->gem_context->ppgtt;
+ bool rcs = engine->class == RENDER_CLASS;
+ u32 base = engine->mmio_base;
+
+ /*
+ * A context is actually a big batch buffer with several
+ * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
+ * values we are setting here are only for the first context restore:
+ * on a subsequent save, the GPU will recreate this batchbuffer with new
+ * values (including all the missing MI_LOAD_REGISTER_IMM commands that
+ * we are not initializing here).
+ *
+ * Must keep consistent with virtual_update_register_offsets().
+ */
+ regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
+ MI_LRI_FORCE_POSTED;
+
+ CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base),
+ _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
+ _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
+ if (INTEL_GEN(engine->i915) < 11) {
+ regs[CTX_CONTEXT_CONTROL + 1] |=
+ _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
+ CTX_CTRL_RS_CTX_ENABLE);
+ }
+ CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
+ CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
+ CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
+ CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
+ RING_CTL_SIZE(ring->size) | RING_VALID);
+ CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
+ CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
+ CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
+ CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
+ CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
+ CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
+ if (rcs) {
+ struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
+
+ CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
+ CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
+ RING_INDIRECT_CTX_OFFSET(base), 0);
+ if (wa_ctx->indirect_ctx.size) {
+ u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
+
+ regs[CTX_RCS_INDIRECT_CTX + 1] =
+ (ggtt_offset + wa_ctx->indirect_ctx.offset) |
+ (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
+
+ regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
+ intel_lr_indirect_ctx_offset(engine) << 6;
+ }
+
+ CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
+ if (wa_ctx->per_ctx.size) {
+ u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
+
+ regs[CTX_BB_PER_CTX_PTR + 1] =
+ (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
+ }
+ }
+
+ regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
+
+ CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
+ /* PDP values well be assigned later if needed */
+ CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0);
+ CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0);
+ CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0);
+ CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0);
+ CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0);
+ CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0);
+ CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0);
+ CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0);
+
+ if (i915_vm_is_4lvl(&ppgtt->vm)) {
+ /* 64b PPGTT (48bit canonical)
+ * PDP0_DESCRIPTOR contains the base address to PML4 and
+ * other PDP Descriptors are ignored.
+ */
+ ASSIGN_CTX_PML4(ppgtt, regs);
+ } else {
+ ASSIGN_CTX_PDP(ppgtt, regs, 3);
+ ASSIGN_CTX_PDP(ppgtt, regs, 2);
+ ASSIGN_CTX_PDP(ppgtt, regs, 1);
+ ASSIGN_CTX_PDP(ppgtt, regs, 0);
+ }
+
+ if (rcs) {
+ regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
+ CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);
+
+ i915_oa_init_reg_state(engine, ce, regs);
+ }
+
+ regs[CTX_END] = MI_BATCH_BUFFER_END;
+ if (INTEL_GEN(engine->i915) >= 10)
+ regs[CTX_END] |= BIT(0);
+}
+
+static int
+populate_lr_context(struct intel_context *ce,
+ struct drm_i915_gem_object *ctx_obj,
+ struct intel_engine_cs *engine,
+ struct intel_ring *ring)
+{
+ void *vaddr;
+ u32 *regs;
+ int ret;
+
+ vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
+ if (IS_ERR(vaddr)) {
+ ret = PTR_ERR(vaddr);
+ DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
+ return ret;
+ }
+
+ if (engine->default_state) {
+ /*
+ * We only want to copy over the template context state;
+ * skipping over the headers reserved for GuC communication,
+ * leaving those as zero.
+ */
+ const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
+ void *defaults;
+
+ defaults = i915_gem_object_pin_map(engine->default_state,
+ I915_MAP_WB);
+ if (IS_ERR(defaults)) {
+ ret = PTR_ERR(defaults);
+ goto err_unpin_ctx;
+ }
+
+ memcpy(vaddr + start, defaults + start, engine->context_size);
+ i915_gem_object_unpin_map(engine->default_state);
+ }
+
+ /* The second page of the context object contains some fields which must
+ * be set up prior to the first execution. */
+ regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
+ execlists_init_reg_state(regs, ce, engine, ring);
+ if (!engine->default_state)
+ regs[CTX_CONTEXT_CONTROL + 1] |=
+ _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
+ if (ce->gem_context == engine->i915->preempt_context &&
+ INTEL_GEN(engine->i915) < 11)
+ regs[CTX_CONTEXT_CONTROL + 1] |=
+ _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
+ CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
+
+ ret = 0;
+err_unpin_ctx:
+ __i915_gem_object_flush_map(ctx_obj,
+ LRC_HEADER_PAGES * PAGE_SIZE,
+ engine->context_size);
+ i915_gem_object_unpin_map(ctx_obj);
+ return ret;
+}
+
+static struct i915_timeline *get_timeline(struct i915_gem_context *ctx)
+{
+ if (ctx->timeline)
+ return i915_timeline_get(ctx->timeline);
+ else
+ return i915_timeline_create(ctx->i915, NULL);
+}
+
+static int execlists_context_deferred_alloc(struct intel_context *ce,
+ struct intel_engine_cs *engine)
+{
+ struct drm_i915_gem_object *ctx_obj;
+ struct i915_vma *vma;
+ u32 context_size;
+ struct intel_ring *ring;
+ struct i915_timeline *timeline;
+ int ret;
+
+ if (ce->state)
+ return 0;
+
+ context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
+
+ /*
+ * Before the actual start of the context image, we insert a few pages
+ * for our own use and for sharing with the GuC.
+ */
+ context_size += LRC_HEADER_PAGES * PAGE_SIZE;
+
+ ctx_obj = i915_gem_object_create(engine->i915, context_size);
+ if (IS_ERR(ctx_obj))
+ return PTR_ERR(ctx_obj);
+
+ vma = i915_vma_instance(ctx_obj, &engine->i915->ggtt.vm, NULL);
+ if (IS_ERR(vma)) {
+ ret = PTR_ERR(vma);
+ goto error_deref_obj;
+ }
+
+ timeline = get_timeline(ce->gem_context);
+ if (IS_ERR(timeline)) {
+ ret = PTR_ERR(timeline);
+ goto error_deref_obj;
+ }
+
+ ring = intel_engine_create_ring(engine,
+ timeline,
+ ce->gem_context->ring_size);
+ i915_timeline_put(timeline);
+ if (IS_ERR(ring)) {
+ ret = PTR_ERR(ring);
+ goto error_deref_obj;
+ }
+
+ ret = populate_lr_context(ce, ctx_obj, engine, ring);
+ if (ret) {
+ DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
+ goto error_ring_free;
+ }
+
+ ce->ring = ring;
+ ce->state = vma;
+
+ return 0;
+
+error_ring_free:
+ intel_ring_put(ring);
+error_deref_obj:
+ i915_gem_object_put(ctx_obj);
+ return ret;
+}
+
+static void virtual_context_destroy(struct kref *kref)
+{
+ struct virtual_engine *ve =
+ container_of(kref, typeof(*ve), context.ref);
+ unsigned int n;
+
+ GEM_BUG_ON(ve->request);
+ GEM_BUG_ON(ve->context.active);
+
+ for (n = 0; n < ve->num_siblings; n++) {
+ struct intel_engine_cs *sibling = ve->siblings[n];
+ struct rb_node *node = &ve->nodes[sibling->id].rb;
+
+ if (RB_EMPTY_NODE(node))
+ continue;
+
+ spin_lock_irq(&sibling->timeline.lock);
+
+ /* Detachment is lazily performed in the execlists tasklet */
+ if (!RB_EMPTY_NODE(node))
+ rb_erase_cached(node, &sibling->execlists.virtual);
+
+ spin_unlock_irq(&sibling->timeline.lock);
+ }
+ GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));
+
+ if (ve->context.state)
+ __execlists_context_fini(&ve->context);
+
+ kfree(ve->bonds);
+
+ i915_timeline_fini(&ve->base.timeline);
+ kfree(ve);
+}
+
+static void virtual_engine_initial_hint(struct virtual_engine *ve)
+{
+ int swp;
+
+ /*
+ * Pick a random sibling on starting to help spread the load around.
+ *
+ * New contexts are typically created with exactly the same order
+ * of siblings, and often started in batches. Due to the way we iterate
+ * the array of sibling when submitting requests, sibling[0] is
+ * prioritised for dequeuing. If we make sure that sibling[0] is fairly
+ * randomised across the system, we also help spread the load by the
+ * first engine we inspect being different each time.
+ *
+ * NB This does not force us to execute on this engine, it will just
+ * typically be the first we inspect for submission.
+ */
+ swp = prandom_u32_max(ve->num_siblings);
+ if (!swp)
+ return;
+
+ swap(ve->siblings[swp], ve->siblings[0]);
+ virtual_update_register_offsets(ve->context.lrc_reg_state,
+ ve->siblings[0]);
+}
+
+static int virtual_context_pin(struct intel_context *ce)
+{
+ struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
+ int err;
+
+ /* Note: we must use a real engine class for setting up reg state */
+ err = __execlists_context_pin(ce, ve->siblings[0]);
+ if (err)
+ return err;
+
+ virtual_engine_initial_hint(ve);
+ return 0;
+}
+
+static void virtual_context_enter(struct intel_context *ce)
+{
+ struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
+ unsigned int n;
+
+ for (n = 0; n < ve->num_siblings; n++)
+ intel_engine_pm_get(ve->siblings[n]);
+}
+
+static void virtual_context_exit(struct intel_context *ce)
+{
+ struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
+ unsigned int n;
+
+ ce->saturated = 0;
+ for (n = 0; n < ve->num_siblings; n++)
+ intel_engine_pm_put(ve->siblings[n]);
+}
+
+static const struct intel_context_ops virtual_context_ops = {
+ .pin = virtual_context_pin,
+ .unpin = execlists_context_unpin,
+
+ .enter = virtual_context_enter,
+ .exit = virtual_context_exit,
+
+ .destroy = virtual_context_destroy,
+};
+
+static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
+{
+ struct i915_request *rq;
+ intel_engine_mask_t mask;
+
+ rq = READ_ONCE(ve->request);
+ if (!rq)
+ return 0;
+
+ /* The rq is ready for submission; rq->execution_mask is now stable. */
+ mask = rq->execution_mask;
+ if (unlikely(!mask)) {
+ /* Invalid selection, submit to a random engine in error */
+ i915_request_skip(rq, -ENODEV);
+ mask = ve->siblings[0]->mask;
+ }
+
+ GEM_TRACE("%s: rq=%llx:%lld, mask=%x, prio=%d\n",
+ ve->base.name,
+ rq->fence.context, rq->fence.seqno,
+ mask, ve->base.execlists.queue_priority_hint);
+
+ return mask;
+}
+
+static void virtual_submission_tasklet(unsigned long data)
+{
+ struct virtual_engine * const ve = (struct virtual_engine *)data;
+ const int prio = ve->base.execlists.queue_priority_hint;
+ intel_engine_mask_t mask;
+ unsigned int n;
+
+ rcu_read_lock();
+ mask = virtual_submission_mask(ve);
+ rcu_read_unlock();
+ if (unlikely(!mask))
+ return;
+
+ local_irq_disable();
+ for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) {
+ struct intel_engine_cs *sibling = ve->siblings[n];
+ struct ve_node * const node = &ve->nodes[sibling->id];
+ struct rb_node **parent, *rb;
+ bool first;
+
+ if (unlikely(!(mask & sibling->mask))) {
+ if (!RB_EMPTY_NODE(&node->rb)) {
+ spin_lock(&sibling->timeline.lock);
+ rb_erase_cached(&node->rb,
+ &sibling->execlists.virtual);
+ RB_CLEAR_NODE(&node->rb);
+ spin_unlock(&sibling->timeline.lock);
+ }
+ continue;
+ }
+
+ spin_lock(&sibling->timeline.lock);
+
+ if (!RB_EMPTY_NODE(&node->rb)) {
+ /*
+ * Cheat and avoid rebalancing the tree if we can
+ * reuse this node in situ.
+ */
+ first = rb_first_cached(&sibling->execlists.virtual) ==
+ &node->rb;
+ if (prio == node->prio || (prio > node->prio && first))
+ goto submit_engine;
+
+ rb_erase_cached(&node->rb, &sibling->execlists.virtual);
+ }
+
+ rb = NULL;
+ first = true;
+ parent = &sibling->execlists.virtual.rb_root.rb_node;
+ while (*parent) {
+ struct ve_node *other;
+
+ rb = *parent;
+ other = rb_entry(rb, typeof(*other), rb);
+ if (prio > other->prio) {
+ parent = &rb->rb_left;
+ } else {
+ parent = &rb->rb_right;
+ first = false;
+ }
+ }
+
+ rb_link_node(&node->rb, rb, parent);
+ rb_insert_color_cached(&node->rb,
+ &sibling->execlists.virtual,
+ first);
+
+submit_engine:
+ GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
+ node->prio = prio;
+ if (first && prio > sibling->execlists.queue_priority_hint) {
+ sibling->execlists.queue_priority_hint = prio;
+ tasklet_hi_schedule(&sibling->execlists.tasklet);
+ }
+
+ spin_unlock(&sibling->timeline.lock);
+ }
+ local_irq_enable();
+}
+
+static void virtual_submit_request(struct i915_request *rq)
+{
+ struct virtual_engine *ve = to_virtual_engine(rq->engine);
+
+ GEM_TRACE("%s: rq=%llx:%lld\n",
+ ve->base.name,
+ rq->fence.context,
+ rq->fence.seqno);
+
+ GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
+
+ GEM_BUG_ON(ve->request);
+ ve->base.execlists.queue_priority_hint = rq_prio(rq);
+ WRITE_ONCE(ve->request, rq);
+
+ tasklet_schedule(&ve->base.execlists.tasklet);
+}
+
+static struct ve_bond *
+virtual_find_bond(struct virtual_engine *ve,
+ const struct intel_engine_cs *master)
+{
+ int i;
+
+ for (i = 0; i < ve->num_bonds; i++) {
+ if (ve->bonds[i].master == master)
+ return &ve->bonds[i];
+ }
+
+ return NULL;
+}
+
+static void
+virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
+{
+ struct virtual_engine *ve = to_virtual_engine(rq->engine);
+ struct ve_bond *bond;
+
+ bond = virtual_find_bond(ve, to_request(signal)->engine);
+ if (bond) {
+ intel_engine_mask_t old, new, cmp;
+
+ cmp = READ_ONCE(rq->execution_mask);
+ do {
+ old = cmp;
+ new = cmp & bond->sibling_mask;
+ } while ((cmp = cmpxchg(&rq->execution_mask, old, new)) != old);
+ }
+}
+
+struct intel_context *
+intel_execlists_create_virtual(struct i915_gem_context *ctx,
+ struct intel_engine_cs **siblings,
+ unsigned int count)
+{
+ struct virtual_engine *ve;
+ unsigned int n;
+ int err;
+
+ if (count == 0)
+ return ERR_PTR(-EINVAL);
+
+ if (count == 1)
+ return intel_context_create(ctx, siblings[0]);
+
+ ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
+ if (!ve)
+ return ERR_PTR(-ENOMEM);
+
+ ve->base.i915 = ctx->i915;
+ ve->base.id = -1;
+ ve->base.class = OTHER_CLASS;
+ ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
+ ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
+ ve->base.flags = I915_ENGINE_IS_VIRTUAL;
+
+ snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
+
+ err = i915_timeline_init(ctx->i915, &ve->base.timeline, NULL);
+ if (err)
+ goto err_put;
+ i915_timeline_set_subclass(&ve->base.timeline, TIMELINE_VIRTUAL);
+
+ intel_engine_init_execlists(&ve->base);
+
+ ve->base.cops = &virtual_context_ops;
+ ve->base.request_alloc = execlists_request_alloc;
+
+ ve->base.schedule = i915_schedule;
+ ve->base.submit_request = virtual_submit_request;
+ ve->base.bond_execute = virtual_bond_execute;
+
+ ve->base.execlists.queue_priority_hint = INT_MIN;
+ tasklet_init(&ve->base.execlists.tasklet,
+ virtual_submission_tasklet,
+ (unsigned long)ve);
+
+ intel_context_init(&ve->context, ctx, &ve->base);
+
+ for (n = 0; n < count; n++) {
+ struct intel_engine_cs *sibling = siblings[n];
+
+ GEM_BUG_ON(!is_power_of_2(sibling->mask));
+ if (sibling->mask & ve->base.mask) {
+ DRM_DEBUG("duplicate %s entry in load balancer\n",
+ sibling->name);
+ err = -EINVAL;
+ goto err_put;
+ }
+
+ /*
+ * The virtual engine implementation is tightly coupled to
+ * the execlists backend -- we push out request directly
+ * into a tree inside each physical engine. We could support
+ * layering if we handle cloning of the requests and
+ * submitting a copy into each backend.
+ */
+ if (sibling->execlists.tasklet.func !=
+ execlists_submission_tasklet) {
+ err = -ENODEV;
+ goto err_put;
+ }
+
+ GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
+ RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
+
+ ve->siblings[ve->num_siblings++] = sibling;
+ ve->base.mask |= sibling->mask;
+
+ /*
+ * All physical engines must be compatible for their emission
+ * functions (as we build the instructions during request
+ * construction and do not alter them before submission
+ * on the physical engine). We use the engine class as a guide
+ * here, although that could be refined.
+ */
+ if (ve->base.class != OTHER_CLASS) {
+ if (ve->base.class != sibling->class) {
+ DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
+ sibling->class, ve->base.class);
+ err = -EINVAL;
+ goto err_put;
+ }
+ continue;
+ }
+
+ ve->base.class = sibling->class;
+ ve->base.uabi_class = sibling->uabi_class;
+ snprintf(ve->base.name, sizeof(ve->base.name),
+ "v%dx%d", ve->base.class, count);
+ ve->base.context_size = sibling->context_size;
+
+ ve->base.emit_bb_start = sibling->emit_bb_start;
+ ve->base.emit_flush = sibling->emit_flush;
+ ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
+ ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
+ ve->base.emit_fini_breadcrumb_dw =
+ sibling->emit_fini_breadcrumb_dw;
+ }
+
+ return &ve->context;
+
+err_put:
+ intel_context_put(&ve->context);
+ return ERR_PTR(err);
+}
+
+struct intel_context *
+intel_execlists_clone_virtual(struct i915_gem_context *ctx,
+ struct intel_engine_cs *src)
+{
+ struct virtual_engine *se = to_virtual_engine(src);
+ struct intel_context *dst;
+
+ dst = intel_execlists_create_virtual(ctx,
+ se->siblings,
+ se->num_siblings);
+ if (IS_ERR(dst))
+ return dst;
+
+ if (se->num_bonds) {
+ struct virtual_engine *de = to_virtual_engine(dst->engine);
+
+ de->bonds = kmemdup(se->bonds,
+ sizeof(*se->bonds) * se->num_bonds,
+ GFP_KERNEL);
+ if (!de->bonds) {
+ intel_context_put(dst);
+ return ERR_PTR(-ENOMEM);
+ }
+
+ de->num_bonds = se->num_bonds;
+ }
+
+ return dst;
+}
+
+int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
+ const struct intel_engine_cs *master,
+ const struct intel_engine_cs *sibling)
+{
+ struct virtual_engine *ve = to_virtual_engine(engine);
+ struct ve_bond *bond;
+ int n;
+
+ /* Sanity check the sibling is part of the virtual engine */
+ for (n = 0; n < ve->num_siblings; n++)
+ if (sibling == ve->siblings[n])
+ break;
+ if (n == ve->num_siblings)
+ return -EINVAL;
+
+ bond = virtual_find_bond(ve, master);
+ if (bond) {
+ bond->sibling_mask |= sibling->mask;
+ return 0;
+ }
+
+ bond = krealloc(ve->bonds,
+ sizeof(*bond) * (ve->num_bonds + 1),
+ GFP_KERNEL);
+ if (!bond)
+ return -ENOMEM;
+
+ bond[ve->num_bonds].master = master;
+ bond[ve->num_bonds].sibling_mask = sibling->mask;
+
+ ve->bonds = bond;
+ ve->num_bonds++;
+
+ return 0;
+}
+
+void intel_execlists_show_requests(struct intel_engine_cs *engine,
+ struct drm_printer *m,
+ void (*show_request)(struct drm_printer *m,
+ struct i915_request *rq,
+ const char *prefix),
+ unsigned int max)
+{
+ const struct intel_engine_execlists *execlists = &engine->execlists;
+ struct i915_request *rq, *last;
+ unsigned long flags;
+ unsigned int count;
+ struct rb_node *rb;
+
+ spin_lock_irqsave(&engine->timeline.lock, flags);
+
+ last = NULL;
+ count = 0;
+ list_for_each_entry(rq, &engine->timeline.requests, link) {
+ if (count++ < max - 1)
+ show_request(m, rq, "\t\tE ");
+ else
+ last = rq;
+ }
+ if (last) {
+ if (count > max) {
+ drm_printf(m,
+ "\t\t...skipping %d executing requests...\n",
+ count - max);
+ }
+ show_request(m, last, "\t\tE ");
+ }
+
+ last = NULL;
+ count = 0;
+ if (execlists->queue_priority_hint != INT_MIN)
+ drm_printf(m, "\t\tQueue priority hint: %d\n",
+ execlists->queue_priority_hint);
+ for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
+ struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
+ int i;
+
+ priolist_for_each_request(rq, p, i) {
+ if (count++ < max - 1)
+ show_request(m, rq, "\t\tQ ");
+ else
+ last = rq;
+ }
+ }
+ if (last) {
+ if (count > max) {
+ drm_printf(m,
+ "\t\t...skipping %d queued requests...\n",
+ count - max);
+ }
+ show_request(m, last, "\t\tQ ");
+ }
+
+ last = NULL;
+ count = 0;
+ for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
+ struct virtual_engine *ve =
+ rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
+ struct i915_request *rq = READ_ONCE(ve->request);
+
+ if (rq) {
+ if (count++ < max - 1)
+ show_request(m, rq, "\t\tV ");
+ else
+ last = rq;
+ }
+ }
+ if (last) {
+ if (count > max) {
+ drm_printf(m,
+ "\t\t...skipping %d virtual requests...\n",
+ count - max);
+ }
+ show_request(m, last, "\t\tV ");
+ }
+
+ spin_unlock_irqrestore(&engine->timeline.lock, flags);
+}
+
+void intel_lr_context_reset(struct intel_engine_cs *engine,
+ struct intel_context *ce,
+ u32 head,
+ bool scrub)
+{
+ /*
+ * We want a simple context + ring to execute the breadcrumb update.
+ * We cannot rely on the context being intact across the GPU hang,
+ * so clear it and rebuild just what we need for the breadcrumb.
+ * All pending requests for this context will be zapped, and any
+ * future request will be after userspace has had the opportunity
+ * to recreate its own state.
+ */
+ if (scrub) {
+ u32 *regs = ce->lrc_reg_state;
+
+ if (engine->pinned_default_state) {
+ memcpy(regs, /* skip restoring the vanilla PPHWSP */
+ engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
+ engine->context_size - PAGE_SIZE);
+ }
+ execlists_init_reg_state(regs, ce, engine, ce->ring);
+ }
+
+ /* Rerun the request; its payload has been neutered (if guilty). */
+ ce->ring->head = head;
+ intel_ring_update_space(ce->ring);
+
+ __execlists_update_reg_state(ce, engine);
+}
+
+#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
+#include "selftest_lrc.c"
+#endif