diff options
Diffstat (limited to 'drivers/mtd/spi-nor/core.c')
-rw-r--r-- | drivers/mtd/spi-nor/core.c | 3466 |
1 files changed, 3466 insertions, 0 deletions
diff --git a/drivers/mtd/spi-nor/core.c b/drivers/mtd/spi-nor/core.c new file mode 100644 index 000000000000..cc68ea84318e --- /dev/null +++ b/drivers/mtd/spi-nor/core.c @@ -0,0 +1,3466 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with + * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c + * + * Copyright (C) 2005, Intec Automation Inc. + * Copyright (C) 2014, Freescale Semiconductor, Inc. + */ + +#include <linux/err.h> +#include <linux/errno.h> +#include <linux/module.h> +#include <linux/device.h> +#include <linux/mutex.h> +#include <linux/math64.h> +#include <linux/sizes.h> +#include <linux/slab.h> + +#include <linux/mtd/mtd.h> +#include <linux/of_platform.h> +#include <linux/sched/task_stack.h> +#include <linux/spi/flash.h> +#include <linux/mtd/spi-nor.h> + +#include "core.h" + +/* Define max times to check status register before we give up. */ + +/* + * For everything but full-chip erase; probably could be much smaller, but kept + * around for safety for now + */ +#define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ) + +/* + * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up + * for larger flash + */ +#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ) + +#define SPI_NOR_MAX_ADDR_WIDTH 4 + +/** + * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data + * transfer + * @nor: pointer to 'struct spi_nor' + * @op: pointer to 'struct spi_mem_op' template for transfer + * + * If we have to use the bounce buffer, the data field in @op will be updated. + * + * Return: true if the bounce buffer is needed, false if not + */ +static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op) +{ + /* op->data.buf.in occupies the same memory as op->data.buf.out */ + if (object_is_on_stack(op->data.buf.in) || + !virt_addr_valid(op->data.buf.in)) { + if (op->data.nbytes > nor->bouncebuf_size) + op->data.nbytes = nor->bouncebuf_size; + op->data.buf.in = nor->bouncebuf; + return true; + } + + return false; +} + +/** + * spi_nor_spimem_exec_op() - execute a memory operation + * @nor: pointer to 'struct spi_nor' + * @op: pointer to 'struct spi_mem_op' template for transfer + * + * Return: 0 on success, -error otherwise. + */ +static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op) +{ + int error; + + error = spi_mem_adjust_op_size(nor->spimem, op); + if (error) + return error; + + return spi_mem_exec_op(nor->spimem, op); +} + +/** + * spi_nor_spimem_read_data() - read data from flash's memory region via + * spi-mem + * @nor: pointer to 'struct spi_nor' + * @from: offset to read from + * @len: number of bytes to read + * @buf: pointer to dst buffer + * + * Return: number of bytes read successfully, -errno otherwise + */ +static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from, + size_t len, u8 *buf) +{ + struct spi_mem_op op = + SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1), + SPI_MEM_OP_ADDR(nor->addr_width, from, 1), + SPI_MEM_OP_DUMMY(nor->read_dummy, 1), + SPI_MEM_OP_DATA_IN(len, buf, 1)); + bool usebouncebuf; + ssize_t nbytes; + int error; + + /* get transfer protocols. */ + op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto); + op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto); + op.dummy.buswidth = op.addr.buswidth; + op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto); + + /* convert the dummy cycles to the number of bytes */ + op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8; + + usebouncebuf = spi_nor_spimem_bounce(nor, &op); + + if (nor->dirmap.rdesc) { + nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val, + op.data.nbytes, op.data.buf.in); + } else { + error = spi_nor_spimem_exec_op(nor, &op); + if (error) + return error; + nbytes = op.data.nbytes; + } + + if (usebouncebuf && nbytes > 0) + memcpy(buf, op.data.buf.in, nbytes); + + return nbytes; +} + +/** + * spi_nor_read_data() - read data from flash memory + * @nor: pointer to 'struct spi_nor' + * @from: offset to read from + * @len: number of bytes to read + * @buf: pointer to dst buffer + * + * Return: number of bytes read successfully, -errno otherwise + */ +ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf) +{ + if (nor->spimem) + return spi_nor_spimem_read_data(nor, from, len, buf); + + return nor->controller_ops->read(nor, from, len, buf); +} + +/** + * spi_nor_spimem_write_data() - write data to flash memory via + * spi-mem + * @nor: pointer to 'struct spi_nor' + * @to: offset to write to + * @len: number of bytes to write + * @buf: pointer to src buffer + * + * Return: number of bytes written successfully, -errno otherwise + */ +static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to, + size_t len, const u8 *buf) +{ + struct spi_mem_op op = + SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1), + SPI_MEM_OP_ADDR(nor->addr_width, to, 1), + SPI_MEM_OP_NO_DUMMY, + SPI_MEM_OP_DATA_OUT(len, buf, 1)); + ssize_t nbytes; + int error; + + op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto); + op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto); + op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto); + + if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second) + op.addr.nbytes = 0; + + if (spi_nor_spimem_bounce(nor, &op)) + memcpy(nor->bouncebuf, buf, op.data.nbytes); + + if (nor->dirmap.wdesc) { + nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val, + op.data.nbytes, op.data.buf.out); + } else { + error = spi_nor_spimem_exec_op(nor, &op); + if (error) + return error; + nbytes = op.data.nbytes; + } + + return nbytes; +} + +/** + * spi_nor_write_data() - write data to flash memory + * @nor: pointer to 'struct spi_nor' + * @to: offset to write to + * @len: number of bytes to write + * @buf: pointer to src buffer + * + * Return: number of bytes written successfully, -errno otherwise + */ +ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len, + const u8 *buf) +{ + if (nor->spimem) + return spi_nor_spimem_write_data(nor, to, len, buf); + + return nor->controller_ops->write(nor, to, len, buf); +} + +/** + * spi_nor_write_enable() - Set write enable latch with Write Enable command. + * @nor: pointer to 'struct spi_nor'. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_write_enable(struct spi_nor *nor) +{ + int ret; + + if (nor->spimem) { + struct spi_mem_op op = + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1), + SPI_MEM_OP_NO_ADDR, + SPI_MEM_OP_NO_DUMMY, + SPI_MEM_OP_NO_DATA); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREN, + NULL, 0); + } + + if (ret) + dev_dbg(nor->dev, "error %d on Write Enable\n", ret); + + return ret; +} + +/** + * spi_nor_write_disable() - Send Write Disable instruction to the chip. + * @nor: pointer to 'struct spi_nor'. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_write_disable(struct spi_nor *nor) +{ + int ret; + + if (nor->spimem) { + struct spi_mem_op op = + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1), + SPI_MEM_OP_NO_ADDR, + SPI_MEM_OP_NO_DUMMY, + SPI_MEM_OP_NO_DATA); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRDI, + NULL, 0); + } + + if (ret) + dev_dbg(nor->dev, "error %d on Write Disable\n", ret); + + return ret; +} + +/** + * spi_nor_read_sr() - Read the Status Register. + * @nor: pointer to 'struct spi_nor'. + * @sr: pointer to a DMA-able buffer where the value of the + * Status Register will be written. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_read_sr(struct spi_nor *nor, u8 *sr) +{ + int ret; + + if (nor->spimem) { + struct spi_mem_op op = + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1), + SPI_MEM_OP_NO_ADDR, + SPI_MEM_OP_NO_DUMMY, + SPI_MEM_OP_DATA_IN(1, sr, 1)); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR, + sr, 1); + } + + if (ret) + dev_dbg(nor->dev, "error %d reading SR\n", ret); + + return ret; +} + +/** + * spi_nor_read_fsr() - Read the Flag Status Register. + * @nor: pointer to 'struct spi_nor' + * @fsr: pointer to a DMA-able buffer where the value of the + * Flag Status Register will be written. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_read_fsr(struct spi_nor *nor, u8 *fsr) +{ + int ret; + + if (nor->spimem) { + struct spi_mem_op op = + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 1), + SPI_MEM_OP_NO_ADDR, + SPI_MEM_OP_NO_DUMMY, + SPI_MEM_OP_DATA_IN(1, fsr, 1)); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDFSR, + fsr, 1); + } + + if (ret) + dev_dbg(nor->dev, "error %d reading FSR\n", ret); + + return ret; +} + +/** + * spi_nor_read_cr() - Read the Configuration Register using the + * SPINOR_OP_RDCR (35h) command. + * @nor: pointer to 'struct spi_nor' + * @cr: pointer to a DMA-able buffer where the value of the + * Configuration Register will be written. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_read_cr(struct spi_nor *nor, u8 *cr) +{ + int ret; + + if (nor->spimem) { + struct spi_mem_op op = + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDCR, 1), + SPI_MEM_OP_NO_ADDR, + SPI_MEM_OP_NO_DUMMY, + SPI_MEM_OP_DATA_IN(1, cr, 1)); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDCR, cr, 1); + } + + if (ret) + dev_dbg(nor->dev, "error %d reading CR\n", ret); + + return ret; +} + +/** + * spi_nor_set_4byte_addr_mode() - Enter/Exit 4-byte address mode. + * @nor: pointer to 'struct spi_nor'. + * @enable: true to enter the 4-byte address mode, false to exit the 4-byte + * address mode. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable) +{ + int ret; + + if (nor->spimem) { + struct spi_mem_op op = + SPI_MEM_OP(SPI_MEM_OP_CMD(enable ? + SPINOR_OP_EN4B : + SPINOR_OP_EX4B, + 1), + SPI_MEM_OP_NO_ADDR, + SPI_MEM_OP_NO_DUMMY, + SPI_MEM_OP_NO_DATA); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = nor->controller_ops->write_reg(nor, + enable ? SPINOR_OP_EN4B : + SPINOR_OP_EX4B, + NULL, 0); + } + + if (ret) + dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret); + + return ret; +} + +/** + * spansion_set_4byte_addr_mode() - Set 4-byte address mode for Spansion + * flashes. + * @nor: pointer to 'struct spi_nor'. + * @enable: true to enter the 4-byte address mode, false to exit the 4-byte + * address mode. + * + * Return: 0 on success, -errno otherwise. + */ +static int spansion_set_4byte_addr_mode(struct spi_nor *nor, bool enable) +{ + int ret; + + nor->bouncebuf[0] = enable << 7; + + if (nor->spimem) { + struct spi_mem_op op = + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_BRWR, 1), + SPI_MEM_OP_NO_ADDR, + SPI_MEM_OP_NO_DUMMY, + SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1)); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = nor->controller_ops->write_reg(nor, SPINOR_OP_BRWR, + nor->bouncebuf, 1); + } + + if (ret) + dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret); + + return ret; +} + +/** + * spi_nor_write_ear() - Write Extended Address Register. + * @nor: pointer to 'struct spi_nor'. + * @ear: value to write to the Extended Address Register. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_write_ear(struct spi_nor *nor, u8 ear) +{ + int ret; + + nor->bouncebuf[0] = ear; + + if (nor->spimem) { + struct spi_mem_op op = + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREAR, 1), + SPI_MEM_OP_NO_ADDR, + SPI_MEM_OP_NO_DUMMY, + SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1)); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREAR, + nor->bouncebuf, 1); + } + + if (ret) + dev_dbg(nor->dev, "error %d writing EAR\n", ret); + + return ret; +} + +/** + * spi_nor_xread_sr() - Read the Status Register on S3AN flashes. + * @nor: pointer to 'struct spi_nor'. + * @sr: pointer to a DMA-able buffer where the value of the + * Status Register will be written. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_xread_sr(struct spi_nor *nor, u8 *sr) +{ + int ret; + + if (nor->spimem) { + struct spi_mem_op op = + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_XRDSR, 1), + SPI_MEM_OP_NO_ADDR, + SPI_MEM_OP_NO_DUMMY, + SPI_MEM_OP_DATA_IN(1, sr, 1)); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = nor->controller_ops->read_reg(nor, SPINOR_OP_XRDSR, + sr, 1); + } + + if (ret) + dev_dbg(nor->dev, "error %d reading XRDSR\n", ret); + + return ret; +} + +/** + * spi_nor_xsr_ready() - Query the Status Register of the S3AN flash to see if + * the flash is ready for new commands. + * @nor: pointer to 'struct spi_nor'. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_xsr_ready(struct spi_nor *nor) +{ + int ret; + + ret = spi_nor_xread_sr(nor, nor->bouncebuf); + if (ret) + return ret; + + return !!(nor->bouncebuf[0] & XSR_RDY); +} + +/** + * spi_nor_clear_sr() - Clear the Status Register. + * @nor: pointer to 'struct spi_nor'. + */ +static void spi_nor_clear_sr(struct spi_nor *nor) +{ + int ret; + + if (nor->spimem) { + struct spi_mem_op op = + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 1), + SPI_MEM_OP_NO_ADDR, + SPI_MEM_OP_NO_DUMMY, + SPI_MEM_OP_NO_DATA); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLSR, + NULL, 0); + } + + if (ret) + dev_dbg(nor->dev, "error %d clearing SR\n", ret); +} + +/** + * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready + * for new commands. + * @nor: pointer to 'struct spi_nor'. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_sr_ready(struct spi_nor *nor) +{ + int ret = spi_nor_read_sr(nor, nor->bouncebuf); + + if (ret) + return ret; + + if (nor->flags & SNOR_F_USE_CLSR && + nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) { + if (nor->bouncebuf[0] & SR_E_ERR) + dev_err(nor->dev, "Erase Error occurred\n"); + else + dev_err(nor->dev, "Programming Error occurred\n"); + + spi_nor_clear_sr(nor); + + /* + * WEL bit remains set to one when an erase or page program + * error occurs. Issue a Write Disable command to protect + * against inadvertent writes that can possibly corrupt the + * contents of the memory. + */ + ret = spi_nor_write_disable(nor); + if (ret) + return ret; + + return -EIO; + } + + return !(nor->bouncebuf[0] & SR_WIP); +} + +/** + * spi_nor_clear_fsr() - Clear the Flag Status Register. + * @nor: pointer to 'struct spi_nor'. + */ +static void spi_nor_clear_fsr(struct spi_nor *nor) +{ + int ret; + + if (nor->spimem) { + struct spi_mem_op op = + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 1), + SPI_MEM_OP_NO_ADDR, + SPI_MEM_OP_NO_DUMMY, + SPI_MEM_OP_NO_DATA); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLFSR, + NULL, 0); + } + + if (ret) + dev_dbg(nor->dev, "error %d clearing FSR\n", ret); +} + +/** + * spi_nor_fsr_ready() - Query the Flag Status Register to see if the flash is + * ready for new commands. + * @nor: pointer to 'struct spi_nor'. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_fsr_ready(struct spi_nor *nor) +{ + int ret = spi_nor_read_fsr(nor, nor->bouncebuf); + + if (ret) + return ret; + + if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) { + if (nor->bouncebuf[0] & FSR_E_ERR) + dev_err(nor->dev, "Erase operation failed.\n"); + else + dev_err(nor->dev, "Program operation failed.\n"); + + if (nor->bouncebuf[0] & FSR_PT_ERR) + dev_err(nor->dev, + "Attempted to modify a protected sector.\n"); + + spi_nor_clear_fsr(nor); + + /* + * WEL bit remains set to one when an erase or page program + * error occurs. Issue a Write Disable command to protect + * against inadvertent writes that can possibly corrupt the + * contents of the memory. + */ + ret = spi_nor_write_disable(nor); + if (ret) + return ret; + + return -EIO; + } + + return nor->bouncebuf[0] & FSR_READY; +} + +/** + * spi_nor_ready() - Query the flash to see if it is ready for new commands. + * @nor: pointer to 'struct spi_nor'. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_ready(struct spi_nor *nor) +{ + int sr, fsr; + + if (nor->flags & SNOR_F_READY_XSR_RDY) + sr = spi_nor_xsr_ready(nor); + else + sr = spi_nor_sr_ready(nor); + if (sr < 0) + return sr; + fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1; + if (fsr < 0) + return fsr; + return sr && fsr; +} + +/** + * spi_nor_wait_till_ready_with_timeout() - Service routine to read the + * Status Register until ready, or timeout occurs. + * @nor: pointer to "struct spi_nor". + * @timeout_jiffies: jiffies to wait until timeout. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor, + unsigned long timeout_jiffies) +{ + unsigned long deadline; + int timeout = 0, ret; + + deadline = jiffies + timeout_jiffies; + + while (!timeout) { + if (time_after_eq(jiffies, deadline)) + timeout = 1; + + ret = spi_nor_ready(nor); + if (ret < 0) + return ret; + if (ret) + return 0; + + cond_resched(); + } + + dev_dbg(nor->dev, "flash operation timed out\n"); + + return -ETIMEDOUT; +} + +/** + * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the + * flash to be ready, or timeout occurs. + * @nor: pointer to "struct spi_nor". + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_wait_till_ready(struct spi_nor *nor) +{ + return spi_nor_wait_till_ready_with_timeout(nor, + DEFAULT_READY_WAIT_JIFFIES); +} + +/** + * spi_nor_write_sr() - Write the Status Register. + * @nor: pointer to 'struct spi_nor'. + * @sr: pointer to DMA-able buffer to write to the Status Register. + * @len: number of bytes to write to the Status Register. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len) +{ + int ret; + + ret = spi_nor_write_enable(nor); + if (ret) + return ret; + + if (nor->spimem) { + struct spi_mem_op op = + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1), + SPI_MEM_OP_NO_ADDR, + SPI_MEM_OP_NO_DUMMY, + SPI_MEM_OP_DATA_OUT(len, sr, 1)); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR, + sr, len); + } + + if (ret) { + dev_dbg(nor->dev, "error %d writing SR\n", ret); + return ret; + } + + return spi_nor_wait_till_ready(nor); +} + +/** + * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and + * ensure that the byte written match the received value. + * @nor: pointer to a 'struct spi_nor'. + * @sr1: byte value to be written to the Status Register. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1) +{ + int ret; + + nor->bouncebuf[0] = sr1; + + ret = spi_nor_write_sr(nor, nor->bouncebuf, 1); + if (ret) + return ret; + + ret = spi_nor_read_sr(nor, nor->bouncebuf); + if (ret) + return ret; + + if (nor->bouncebuf[0] != sr1) { + dev_dbg(nor->dev, "SR1: read back test failed\n"); + return -EIO; + } + + return 0; +} + +/** + * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the + * Status Register 2 in one shot. Ensure that the byte written in the Status + * Register 1 match the received value, and that the 16-bit Write did not + * affect what was already in the Status Register 2. + * @nor: pointer to a 'struct spi_nor'. + * @sr1: byte value to be written to the Status Register 1. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1) +{ + int ret; + u8 *sr_cr = nor->bouncebuf; + u8 cr_written; + + /* Make sure we don't overwrite the contents of Status Register 2. */ + if (!(nor->flags & SNOR_F_NO_READ_CR)) { + ret = spi_nor_read_cr(nor, &sr_cr[1]); + if (ret) + return ret; + } else if (nor->params->quad_enable) { + /* + * If the Status Register 2 Read command (35h) is not + * supported, we should at least be sure we don't + * change the value of the SR2 Quad Enable bit. + * + * We can safely assume that when the Quad Enable method is + * set, the value of the QE bit is one, as a consequence of the + * nor->params->quad_enable() call. + * + * We can safely assume that the Quad Enable bit is present in + * the Status Register 2 at BIT(1). According to the JESD216 + * revB standard, BFPT DWORDS[15], bits 22:20, the 16-bit + * Write Status (01h) command is available just for the cases + * in which the QE bit is described in SR2 at BIT(1). + */ + sr_cr[1] = SR2_QUAD_EN_BIT1; + } else { + sr_cr[1] = 0; + } + + sr_cr[0] = sr1; + + ret = spi_nor_write_sr(nor, sr_cr, 2); + if (ret) + return ret; + + if (nor->flags & SNOR_F_NO_READ_CR) + return 0; + + cr_written = sr_cr[1]; + + ret = spi_nor_read_cr(nor, &sr_cr[1]); + if (ret) + return ret; + + if (cr_written != sr_cr[1]) { + dev_dbg(nor->dev, "CR: read back test failed\n"); + return -EIO; + } + + return 0; +} + +/** + * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the + * Configuration Register in one shot. Ensure that the byte written in the + * Configuration Register match the received value, and that the 16-bit Write + * did not affect what was already in the Status Register 1. + * @nor: pointer to a 'struct spi_nor'. + * @cr: byte value to be written to the Configuration Register. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr) +{ + int ret; + u8 *sr_cr = nor->bouncebuf; + u8 sr_written; + + /* Keep the current value of the Status Register 1. */ + ret = spi_nor_read_sr(nor, sr_cr); + if (ret) + return ret; + + sr_cr[1] = cr; + + ret = spi_nor_write_sr(nor, sr_cr, 2); + if (ret) + return ret; + + sr_written = sr_cr[0]; + + ret = spi_nor_read_sr(nor, sr_cr); + if (ret) + return ret; + + if (sr_written != sr_cr[0]) { + dev_dbg(nor->dev, "SR: Read back test failed\n"); + return -EIO; + } + + if (nor->flags & SNOR_F_NO_READ_CR) + return 0; + + ret = spi_nor_read_cr(nor, &sr_cr[1]); + if (ret) + return ret; + + if (cr != sr_cr[1]) { + dev_dbg(nor->dev, "CR: read back test failed\n"); + return -EIO; + } + + return 0; +} + +/** + * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that + * the byte written match the received value without affecting other bits in the + * Status Register 1 and 2. + * @nor: pointer to a 'struct spi_nor'. + * @sr1: byte value to be written to the Status Register. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1) +{ + if (nor->flags & SNOR_F_HAS_16BIT_SR) + return spi_nor_write_16bit_sr_and_check(nor, sr1); + + return spi_nor_write_sr1_and_check(nor, sr1); +} + +/** + * spi_nor_write_sr2() - Write the Status Register 2 using the + * SPINOR_OP_WRSR2 (3eh) command. + * @nor: pointer to 'struct spi_nor'. + * @sr2: pointer to DMA-able buffer to write to the Status Register 2. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2) +{ + int ret; + + ret = spi_nor_write_enable(nor); + if (ret) + return ret; + + if (nor->spimem) { + struct spi_mem_op op = + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR2, 1), + SPI_MEM_OP_NO_ADDR, + SPI_MEM_OP_NO_DUMMY, + SPI_MEM_OP_DATA_OUT(1, sr2, 1)); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR2, + sr2, 1); + } + + if (ret) { + dev_dbg(nor->dev, "error %d writing SR2\n", ret); + return ret; + } + + return spi_nor_wait_till_ready(nor); +} + +/** + * spi_nor_read_sr2() - Read the Status Register 2 using the + * SPINOR_OP_RDSR2 (3fh) command. + * @nor: pointer to 'struct spi_nor'. + * @sr2: pointer to DMA-able buffer where the value of the + * Status Register 2 will be written. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2) +{ + int ret; + + if (nor->spimem) { + struct spi_mem_op op = + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR2, 1), + SPI_MEM_OP_NO_ADDR, + SPI_MEM_OP_NO_DUMMY, + SPI_MEM_OP_DATA_IN(1, sr2, 1)); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR2, + sr2, 1); + } + + if (ret) + dev_dbg(nor->dev, "error %d reading SR2\n", ret); + + return ret; +} + +/** + * spi_nor_erase_chip() - Erase the entire flash memory. + * @nor: pointer to 'struct spi_nor'. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_erase_chip(struct spi_nor *nor) +{ + int ret; + + dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10)); + + if (nor->spimem) { + struct spi_mem_op op = + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE, 1), + SPI_MEM_OP_NO_ADDR, + SPI_MEM_OP_NO_DUMMY, + SPI_MEM_OP_NO_DATA); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CHIP_ERASE, + NULL, 0); + } + + if (ret) + dev_dbg(nor->dev, "error %d erasing chip\n", ret); + + return ret; +} + +static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size) +{ + size_t i; + + for (i = 0; i < size; i++) + if (table[i][0] == opcode) + return table[i][1]; + + /* No conversion found, keep input op code. */ + return opcode; +} + +u8 spi_nor_convert_3to4_read(u8 opcode) +{ + static const u8 spi_nor_3to4_read[][2] = { + { SPINOR_OP_READ, SPINOR_OP_READ_4B }, + { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B }, + { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B }, + { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B }, + { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B }, + { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B }, + { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B }, + { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B }, + + { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B }, + { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B }, + { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B }, + }; + + return spi_nor_convert_opcode(opcode, spi_nor_3to4_read, + ARRAY_SIZE(spi_nor_3to4_read)); +} + +static u8 spi_nor_convert_3to4_program(u8 opcode) +{ + static const u8 spi_nor_3to4_program[][2] = { + { SPINOR_OP_PP, SPINOR_OP_PP_4B }, + { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B }, + { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B }, + { SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B }, + { SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B }, + }; + + return spi_nor_convert_opcode(opcode, spi_nor_3to4_program, + ARRAY_SIZE(spi_nor_3to4_program)); +} + +static u8 spi_nor_convert_3to4_erase(u8 opcode) +{ + static const u8 spi_nor_3to4_erase[][2] = { + { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B }, + { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B }, + { SPINOR_OP_SE, SPINOR_OP_SE_4B }, + }; + + return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase, + ARRAY_SIZE(spi_nor_3to4_erase)); +} + +static bool spi_nor_has_uniform_erase(const struct spi_nor *nor) +{ + return !!nor->params->erase_map.uniform_erase_type; +} + +static void spi_nor_set_4byte_opcodes(struct spi_nor *nor) +{ + nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode); + nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode); + nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode); + + if (!spi_nor_has_uniform_erase(nor)) { + struct spi_nor_erase_map *map = &nor->params->erase_map; + struct spi_nor_erase_type *erase; + int i; + + for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { + erase = &map->erase_type[i]; + erase->opcode = + spi_nor_convert_3to4_erase(erase->opcode); + } + } +} + +int spi_nor_lock_and_prep(struct spi_nor *nor) +{ + int ret = 0; + + mutex_lock(&nor->lock); + + if (nor->controller_ops && nor->controller_ops->prepare) { + ret = nor->controller_ops->prepare(nor); + if (ret) { + mutex_unlock(&nor->lock); + return ret; + } + } + return ret; +} + +void spi_nor_unlock_and_unprep(struct spi_nor *nor) +{ + if (nor->controller_ops && nor->controller_ops->unprepare) + nor->controller_ops->unprepare(nor); + mutex_unlock(&nor->lock); +} + +static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr) +{ + if (!nor->params->convert_addr) + return addr; + + return nor->params->convert_addr(nor, addr); +} + +/* + * Initiate the erasure of a single sector + */ +static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr) +{ + int i; + + addr = spi_nor_convert_addr(nor, addr); + + if (nor->spimem) { + struct spi_mem_op op = + SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 1), + SPI_MEM_OP_ADDR(nor->addr_width, addr, 1), + SPI_MEM_OP_NO_DUMMY, + SPI_MEM_OP_NO_DATA); + + return spi_mem_exec_op(nor->spimem, &op); + } else if (nor->controller_ops->erase) { + return nor->controller_ops->erase(nor, addr); + } + + /* + * Default implementation, if driver doesn't have a specialized HW + * control + */ + for (i = nor->addr_width - 1; i >= 0; i--) { + nor->bouncebuf[i] = addr & 0xff; + addr >>= 8; + } + + return nor->controller_ops->write_reg(nor, nor->erase_opcode, + nor->bouncebuf, nor->addr_width); +} + +/** + * spi_nor_div_by_erase_size() - calculate remainder and update new dividend + * @erase: pointer to a structure that describes a SPI NOR erase type + * @dividend: dividend value + * @remainder: pointer to u32 remainder (will be updated) + * + * Return: the result of the division + */ +static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase, + u64 dividend, u32 *remainder) +{ + /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */ + *remainder = (u32)dividend & erase->size_mask; + return dividend >> erase->size_shift; +} + +/** + * spi_nor_find_best_erase_type() - find the best erase type for the given + * offset in the serial flash memory and the + * number of bytes to erase. The region in + * which the address fits is expected to be + * provided. + * @map: the erase map of the SPI NOR + * @region: pointer to a structure that describes a SPI NOR erase region + * @addr: offset in the serial flash memory + * @len: number of bytes to erase + * + * Return: a pointer to the best fitted erase type, NULL otherwise. + */ +static const struct spi_nor_erase_type * +spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map, + const struct spi_nor_erase_region *region, + u64 addr, u32 len) +{ + const struct spi_nor_erase_type *erase; + u32 rem; + int i; + u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK; + + /* + * Erase types are ordered by size, with the smallest erase type at + * index 0. + */ + for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { + /* Does the erase region support the tested erase type? */ + if (!(erase_mask & BIT(i))) + continue; + + erase = &map->erase_type[i]; + + /* Don't erase more than what the user has asked for. */ + if (erase->size > len) + continue; + + /* Alignment is not mandatory for overlaid regions */ + if (region->offset & SNOR_OVERLAID_REGION) + return erase; + + spi_nor_div_by_erase_size(erase, addr, &rem); + if (rem) + continue; + else + return erase; + } + + return NULL; +} + +static u64 spi_nor_region_is_last(const struct spi_nor_erase_region *region) +{ + return region->offset & SNOR_LAST_REGION; +} + +static u64 spi_nor_region_end(const struct spi_nor_erase_region *region) +{ + return (region->offset & ~SNOR_ERASE_FLAGS_MASK) + region->size; +} + +/** + * spi_nor_region_next() - get the next spi nor region + * @region: pointer to a structure that describes a SPI NOR erase region + * + * Return: the next spi nor region or NULL if last region. + */ +struct spi_nor_erase_region * +spi_nor_region_next(struct spi_nor_erase_region *region) +{ + if (spi_nor_region_is_last(region)) + return NULL; + region++; + return region; +} + +/** + * spi_nor_find_erase_region() - find the region of the serial flash memory in + * which the offset fits + * @map: the erase map of the SPI NOR + * @addr: offset in the serial flash memory + * + * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno) + * otherwise. + */ +static struct spi_nor_erase_region * +spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr) +{ + struct spi_nor_erase_region *region = map->regions; + u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK; + u64 region_end = region_start + region->size; + + while (addr < region_start || addr >= region_end) { + region = spi_nor_region_next(region); + if (!region) + return ERR_PTR(-EINVAL); + + region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK; + region_end = region_start + region->size; + } + + return region; +} + +/** + * spi_nor_init_erase_cmd() - initialize an erase command + * @region: pointer to a structure that describes a SPI NOR erase region + * @erase: pointer to a structure that describes a SPI NOR erase type + * + * Return: the pointer to the allocated erase command, ERR_PTR(-errno) + * otherwise. + */ +static struct spi_nor_erase_command * +spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region, + const struct spi_nor_erase_type *erase) +{ + struct spi_nor_erase_command *cmd; + + cmd = kmalloc(sizeof(*cmd), GFP_KERNEL); + if (!cmd) + return ERR_PTR(-ENOMEM); + + INIT_LIST_HEAD(&cmd->list); + cmd->opcode = erase->opcode; + cmd->count = 1; + + if (region->offset & SNOR_OVERLAID_REGION) + cmd->size = region->size; + else + cmd->size = erase->size; + + return cmd; +} + +/** + * spi_nor_destroy_erase_cmd_list() - destroy erase command list + * @erase_list: list of erase commands + */ +static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list) +{ + struct spi_nor_erase_command *cmd, *next; + + list_for_each_entry_safe(cmd, next, erase_list, list) { + list_del(&cmd->list); + kfree(cmd); + } +} + +/** + * spi_nor_init_erase_cmd_list() - initialize erase command list + * @nor: pointer to a 'struct spi_nor' + * @erase_list: list of erase commands to be executed once we validate that the + * erase can be performed + * @addr: offset in the serial flash memory + * @len: number of bytes to erase + * + * Builds the list of best fitted erase commands and verifies if the erase can + * be performed. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_init_erase_cmd_list(struct spi_nor *nor, + struct list_head *erase_list, + u64 addr, u32 len) +{ + const struct spi_nor_erase_map *map = &nor->params->erase_map; + const struct spi_nor_erase_type *erase, *prev_erase = NULL; + struct spi_nor_erase_region *region; + struct spi_nor_erase_command *cmd = NULL; + u64 region_end; + int ret = -EINVAL; + + region = spi_nor_find_erase_region(map, addr); + if (IS_ERR(region)) + return PTR_ERR(region); + + region_end = spi_nor_region_end(region); + + while (len) { + erase = spi_nor_find_best_erase_type(map, region, addr, len); + if (!erase) + goto destroy_erase_cmd_list; + + if (prev_erase != erase || + region->offset & SNOR_OVERLAID_REGION) { + cmd = spi_nor_init_erase_cmd(region, erase); + if (IS_ERR(cmd)) { + ret = PTR_ERR(cmd); + goto destroy_erase_cmd_list; + } + + list_add_tail(&cmd->list, erase_list); + } else { + cmd->count++; + } + + addr += cmd->size; + len -= cmd->size; + + if (len && addr >= region_end) { + region = spi_nor_region_next(region); + if (!region) + goto destroy_erase_cmd_list; + region_end = spi_nor_region_end(region); + } + + prev_erase = erase; + } + + return 0; + +destroy_erase_cmd_list: + spi_nor_destroy_erase_cmd_list(erase_list); + return ret; +} + +/** + * spi_nor_erase_multi_sectors() - perform a non-uniform erase + * @nor: pointer to a 'struct spi_nor' + * @addr: offset in the serial flash memory + * @len: number of bytes to erase + * + * Build a list of best fitted erase commands and execute it once we validate + * that the erase can be performed. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len) +{ + LIST_HEAD(erase_list); + struct spi_nor_erase_command *cmd, *next; + int ret; + + ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len); + if (ret) + return ret; + + list_for_each_entry_safe(cmd, next, &erase_list, list) { + nor->erase_opcode = cmd->opcode; + while (cmd->count) { + ret = spi_nor_write_enable(nor); + if (ret) + goto destroy_erase_cmd_list; + + ret = spi_nor_erase_sector(nor, addr); + if (ret) + goto destroy_erase_cmd_list; + + addr += cmd->size; + cmd->count--; + + ret = spi_nor_wait_till_ready(nor); + if (ret) + goto destroy_erase_cmd_list; + } + list_del(&cmd->list); + kfree(cmd); + } + + return 0; + +destroy_erase_cmd_list: + spi_nor_destroy_erase_cmd_list(&erase_list); + return ret; +} + +/* + * Erase an address range on the nor chip. The address range may extend + * one or more erase sectors. Return an error is there is a problem erasing. + */ +static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + u32 addr, len; + uint32_t rem; + int ret; + + dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr, + (long long)instr->len); + + if (spi_nor_has_uniform_erase(nor)) { + div_u64_rem(instr->len, mtd->erasesize, &rem); + if (rem) + return -EINVAL; + } + + addr = instr->addr; + len = instr->len; + + ret = spi_nor_lock_and_prep(nor); + if (ret) + return ret; + + /* whole-chip erase? */ + if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) { + unsigned long timeout; + + ret = spi_nor_write_enable(nor); + if (ret) + goto erase_err; + + ret = spi_nor_erase_chip(nor); + if (ret) + goto erase_err; + + /* + * Scale the timeout linearly with the size of the flash, with + * a minimum calibrated to an old 2MB flash. We could try to + * pull these from CFI/SFDP, but these values should be good + * enough for now. + */ + timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES, + CHIP_ERASE_2MB_READY_WAIT_JIFFIES * + (unsigned long)(mtd->size / SZ_2M)); + ret = spi_nor_wait_till_ready_with_timeout(nor, timeout); + if (ret) + goto erase_err; + + /* REVISIT in some cases we could speed up erasing large regions + * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up + * to use "small sector erase", but that's not always optimal. + */ + + /* "sector"-at-a-time erase */ + } else if (spi_nor_has_uniform_erase(nor)) { + while (len) { + ret = spi_nor_write_enable(nor); + if (ret) + goto erase_err; + + ret = spi_nor_erase_sector(nor, addr); + if (ret) + goto erase_err; + + addr += mtd->erasesize; + len -= mtd->erasesize; + + ret = spi_nor_wait_till_ready(nor); + if (ret) + goto erase_err; + } + + /* erase multiple sectors */ + } else { + ret = spi_nor_erase_multi_sectors(nor, addr, len); + if (ret) + goto erase_err; + } + + ret = spi_nor_write_disable(nor); + +erase_err: + spi_nor_unlock_and_unprep(nor); + + return ret; +} + +static u8 spi_nor_get_sr_bp_mask(struct spi_nor *nor) +{ + u8 mask = SR_BP2 | SR_BP1 | SR_BP0; + + if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6) + return mask | SR_BP3_BIT6; + + if (nor->flags & SNOR_F_HAS_4BIT_BP) + return mask | SR_BP3; + + return mask; +} + +static u8 spi_nor_get_sr_tb_mask(struct spi_nor *nor) +{ + if (nor->flags & SNOR_F_HAS_SR_TB_BIT6) + return SR_TB_BIT6; + else + return SR_TB_BIT5; +} + +static u64 spi_nor_get_min_prot_length_sr(struct spi_nor *nor) +{ + unsigned int bp_slots, bp_slots_needed; + u8 mask = spi_nor_get_sr_bp_mask(nor); + + /* Reserved one for "protect none" and one for "protect all". */ + bp_slots = (1 << hweight8(mask)) - 2; + bp_slots_needed = ilog2(nor->info->n_sectors); + + if (bp_slots_needed > bp_slots) + return nor->info->sector_size << + (bp_slots_needed - bp_slots); + else + return nor->info->sector_size; +} + +static void spi_nor_get_locked_range_sr(struct spi_nor *nor, u8 sr, loff_t *ofs, + uint64_t *len) +{ + struct mtd_info *mtd = &nor->mtd; + u64 min_prot_len; + u8 mask = spi_nor_get_sr_bp_mask(nor); + u8 tb_mask = spi_nor_get_sr_tb_mask(nor); + u8 bp, val = sr & mask; + + if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3_BIT6) + val = (val & ~SR_BP3_BIT6) | SR_BP3; + + bp = val >> SR_BP_SHIFT; + + if (!bp) { + /* No protection */ + *ofs = 0; + *len = 0; + return; + } + + min_prot_len = spi_nor_get_min_prot_length_sr(nor); + *len = min_prot_len << (bp - 1); + + if (*len > mtd->size) + *len = mtd->size; + + if (nor->flags & SNOR_F_HAS_SR_TB && sr & tb_mask) + *ofs = 0; + else + *ofs = mtd->size - *len; +} + +/* + * Return 1 if the entire region is locked (if @locked is true) or unlocked (if + * @locked is false); 0 otherwise + */ +static int spi_nor_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, + uint64_t len, u8 sr, bool locked) +{ + loff_t lock_offs; + uint64_t lock_len; + + if (!len) + return 1; + + spi_nor_get_locked_range_sr(nor, sr, &lock_offs, &lock_len); + + if (locked) + /* Requested range is a sub-range of locked range */ + return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs); + else + /* Requested range does not overlap with locked range */ + return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs); +} + +static int spi_nor_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len, + u8 sr) +{ + return spi_nor_check_lock_status_sr(nor, ofs, len, sr, true); +} + +static int spi_nor_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len, + u8 sr) +{ + return spi_nor_check_lock_status_sr(nor, ofs, len, sr, false); +} + +/* + * Lock a region of the flash. Compatible with ST Micro and similar flash. + * Supports the block protection bits BP{0,1,2}/BP{0,1,2,3} in the status + * register + * (SR). Does not support these features found in newer SR bitfields: + * - SEC: sector/block protect - only handle SEC=0 (block protect) + * - CMP: complement protect - only support CMP=0 (range is not complemented) + * + * Support for the following is provided conditionally for some flash: + * - TB: top/bottom protect + * + * Sample table portion for 8MB flash (Winbond w25q64fw): + * + * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion + * -------------------------------------------------------------------------- + * X | X | 0 | 0 | 0 | NONE | NONE + * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64 + * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32 + * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16 + * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8 + * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4 + * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2 + * X | X | 1 | 1 | 1 | 8 MB | ALL + * ------|-------|-------|-------|-------|---------------|------------------- + * 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64 + * 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32 + * 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16 + * 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8 + * 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4 + * 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2 + * + * Returns negative on errors, 0 on success. + */ +static int spi_nor_sr_lock(struct spi_nor *nor, loff_t ofs, uint64_t len) +{ + struct mtd_info *mtd = &nor->mtd; + u64 min_prot_len; + int ret, status_old, status_new; + u8 mask = spi_nor_get_sr_bp_mask(nor); + u8 tb_mask = spi_nor_get_sr_tb_mask(nor); + u8 pow, val; + loff_t lock_len; + bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB; + bool use_top; + + ret = spi_nor_read_sr(nor, nor->bouncebuf); + if (ret) + return ret; + + status_old = nor->bouncebuf[0]; + + /* If nothing in our range is unlocked, we don't need to do anything */ + if (spi_nor_is_locked_sr(nor, ofs, len, status_old)) + return 0; + + /* If anything below us is unlocked, we can't use 'bottom' protection */ + if (!spi_nor_is_locked_sr(nor, 0, ofs, status_old)) + can_be_bottom = false; + + /* If anything above us is unlocked, we can't use 'top' protection */ + if (!spi_nor_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len), + status_old)) + can_be_top = false; + + if (!can_be_bottom && !can_be_top) + return -EINVAL; + + /* Prefer top, if both are valid */ + use_top = can_be_top; + + /* lock_len: length of region that should end up locked */ + if (use_top) + lock_len = mtd->size - ofs; + else + lock_len = ofs + len; + + if (lock_len == mtd->size) { + val = mask; + } else { + min_prot_len = spi_nor_get_min_prot_length_sr(nor); + pow = ilog2(lock_len) - ilog2(min_prot_len) + 1; + val = pow << SR_BP_SHIFT; + + if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3) + val = (val & ~SR_BP3) | SR_BP3_BIT6; + + if (val & ~mask) + return -EINVAL; + + /* Don't "lock" with no region! */ + if (!(val & mask)) + return -EINVAL; + } + + status_new = (status_old & ~mask & ~tb_mask) | val; + + /* Disallow further writes if WP pin is asserted */ + status_new |= SR_SRWD; + + if (!use_top) + status_new |= tb_mask; + + /* Don't bother if they're the same */ + if (status_new == status_old) + return 0; + + /* Only modify protection if it will not unlock other areas */ + if ((status_new & mask) < (status_old & mask)) + return -EINVAL; + + return spi_nor_write_sr_and_check(nor, status_new); +} + +/* + * Unlock a region of the flash. See spi_nor_sr_lock() for more info + * + * Returns negative on errors, 0 on success. + */ +static int spi_nor_sr_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len) +{ + struct mtd_info *mtd = &nor->mtd; + u64 min_prot_len; + int ret, status_old, status_new; + u8 mask = spi_nor_get_sr_bp_mask(nor); + u8 tb_mask = spi_nor_get_sr_tb_mask(nor); + u8 pow, val; + loff_t lock_len; + bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB; + bool use_top; + + ret = spi_nor_read_sr(nor, nor->bouncebuf); + if (ret) + return ret; + + status_old = nor->bouncebuf[0]; + + /* If nothing in our range is locked, we don't need to do anything */ + if (spi_nor_is_unlocked_sr(nor, ofs, len, status_old)) + return 0; + + /* If anything below us is locked, we can't use 'top' protection */ + if (!spi_nor_is_unlocked_sr(nor, 0, ofs, status_old)) + can_be_top = false; + + /* If anything above us is locked, we can't use 'bottom' protection */ + if (!spi_nor_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len), + status_old)) + can_be_bottom = false; + + if (!can_be_bottom && !can_be_top) + return -EINVAL; + + /* Prefer top, if both are valid */ + use_top = can_be_top; + + /* lock_len: length of region that should remain locked */ + if (use_top) + lock_len = mtd->size - (ofs + len); + else + lock_len = ofs; + + if (lock_len == 0) { + val = 0; /* fully unlocked */ + } else { + min_prot_len = spi_nor_get_min_prot_length_sr(nor); + pow = ilog2(lock_len) - ilog2(min_prot_len) + 1; + val = pow << SR_BP_SHIFT; + + if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3) + val = (val & ~SR_BP3) | SR_BP3_BIT6; + + /* Some power-of-two sizes are not supported */ + if (val & ~mask) + return -EINVAL; + } + + status_new = (status_old & ~mask & ~tb_mask) | val; + + /* Don't protect status register if we're fully unlocked */ + if (lock_len == 0) + status_new &= ~SR_SRWD; + + if (!use_top) + status_new |= tb_mask; + + /* Don't bother if they're the same */ + if (status_new == status_old) + return 0; + + /* Only modify protection if it will not lock other areas */ + if ((status_new & mask) > (status_old & mask)) + return -EINVAL; + + return spi_nor_write_sr_and_check(nor, status_new); +} + +/* + * Check if a region of the flash is (completely) locked. See spi_nor_sr_lock() + * for more info. + * + * Returns 1 if entire region is locked, 0 if any portion is unlocked, and + * negative on errors. + */ +static int spi_nor_sr_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len) +{ + int ret; + + ret = spi_nor_read_sr(nor, nor->bouncebuf); + if (ret) + return ret; + + return spi_nor_is_locked_sr(nor, ofs, len, nor->bouncebuf[0]); +} + +static const struct spi_nor_locking_ops spi_nor_sr_locking_ops = { + .lock = spi_nor_sr_lock, + .unlock = spi_nor_sr_unlock, + .is_locked = spi_nor_sr_is_locked, +}; + +static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + int ret; + + ret = spi_nor_lock_and_prep(nor); + if (ret) + return ret; + + ret = nor->params->locking_ops->lock(nor, ofs, len); + + spi_nor_unlock_and_unprep(nor); + return ret; +} + +static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + int ret; + + ret = spi_nor_lock_and_prep(nor); + if (ret) + return ret; + + ret = nor->params->locking_ops->unlock(nor, ofs, len); + + spi_nor_unlock_and_unprep(nor); + return ret; +} + +static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + int ret; + + ret = spi_nor_lock_and_prep(nor); + if (ret) + return ret; + + ret = nor->params->locking_ops->is_locked(nor, ofs, len); + + spi_nor_unlock_and_unprep(nor); + return ret; +} + +/** + * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status + * Register 1. + * @nor: pointer to a 'struct spi_nor' + * + * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor) +{ + int ret; + + ret = spi_nor_read_sr(nor, nor->bouncebuf); + if (ret) + return ret; + + if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6) + return 0; + + nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6; + + return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]); +} + +/** + * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status + * Register 2. + * @nor: pointer to a 'struct spi_nor'. + * + * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor) +{ + int ret; + + if (nor->flags & SNOR_F_NO_READ_CR) + return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1); + + ret = spi_nor_read_cr(nor, nor->bouncebuf); + if (ret) + return ret; + + if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1) + return 0; + + nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1; + + return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]); +} + +/** + * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2. + * @nor: pointer to a 'struct spi_nor' + * + * Set the Quad Enable (QE) bit in the Status Register 2. + * + * This is one of the procedures to set the QE bit described in the SFDP + * (JESD216 rev B) specification but no manufacturer using this procedure has + * been identified yet, hence the name of the function. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor) +{ + u8 *sr2 = nor->bouncebuf; + int ret; + u8 sr2_written; + + /* Check current Quad Enable bit value. */ + ret = spi_nor_read_sr2(nor, sr2); + if (ret) + return ret; + if (*sr2 & SR2_QUAD_EN_BIT7) + return 0; + + /* Update the Quad Enable bit. */ + *sr2 |= SR2_QUAD_EN_BIT7; + + ret = spi_nor_write_sr2(nor, sr2); + if (ret) + return ret; + + sr2_written = *sr2; + + /* Read back and check it. */ + ret = spi_nor_read_sr2(nor, sr2); + if (ret) + return ret; + + if (*sr2 != sr2_written) { + dev_dbg(nor->dev, "SR2: Read back test failed\n"); + return -EIO; + } + + return 0; +} + +static const struct spi_nor_manufacturer *manufacturers[] = { + &spi_nor_atmel, + &spi_nor_catalyst, + &spi_nor_eon, + &spi_nor_esmt, + &spi_nor_everspin, + &spi_nor_fujitsu, + &spi_nor_gigadevice, + &spi_nor_intel, + &spi_nor_issi, + &spi_nor_macronix, + &spi_nor_micron, + &spi_nor_st, + &spi_nor_spansion, + &spi_nor_sst, + &spi_nor_winbond, + &spi_nor_xilinx, + &spi_nor_xmc, +}; + +static const struct flash_info * +spi_nor_search_part_by_id(const struct flash_info *parts, unsigned int nparts, + const u8 *id) +{ + unsigned int i; + + for (i = 0; i < nparts; i++) { + if (parts[i].id_len && + !memcmp(parts[i].id, id, parts[i].id_len)) + return &parts[i]; + } + + return NULL; +} + +static const struct flash_info *spi_nor_read_id(struct spi_nor *nor) +{ + const struct flash_info *info; + u8 *id = nor->bouncebuf; + unsigned int i; + int ret; + + if (nor->spimem) { + struct spi_mem_op op = + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1), + SPI_MEM_OP_NO_ADDR, + SPI_MEM_OP_NO_DUMMY, + SPI_MEM_OP_DATA_IN(SPI_NOR_MAX_ID_LEN, id, 1)); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id, + SPI_NOR_MAX_ID_LEN); + } + if (ret) { + dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret); + return ERR_PTR(ret); + } + + for (i = 0; i < ARRAY_SIZE(manufacturers); i++) { + info = spi_nor_search_part_by_id(manufacturers[i]->parts, + manufacturers[i]->nparts, + id); + if (info) { + nor->manufacturer = manufacturers[i]; + return info; + } + } + + dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n", + SPI_NOR_MAX_ID_LEN, id); + return ERR_PTR(-ENODEV); +} + +static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + ssize_t ret; + + dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len); + + ret = spi_nor_lock_and_prep(nor); + if (ret) + return ret; + + while (len) { + loff_t addr = from; + + addr = spi_nor_convert_addr(nor, addr); + + ret = spi_nor_read_data(nor, addr, len, buf); + if (ret == 0) { + /* We shouldn't see 0-length reads */ + ret = -EIO; + goto read_err; + } + if (ret < 0) + goto read_err; + + WARN_ON(ret > len); + *retlen += ret; + buf += ret; + from += ret; + len -= ret; + } + ret = 0; + +read_err: + spi_nor_unlock_and_unprep(nor); + return ret; +} + +/* + * Write an address range to the nor chip. Data must be written in + * FLASH_PAGESIZE chunks. The address range may be any size provided + * it is within the physical boundaries. + */ +static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + size_t page_offset, page_remain, i; + ssize_t ret; + + dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); + + ret = spi_nor_lock_and_prep(nor); + if (ret) + return ret; + + for (i = 0; i < len; ) { + ssize_t written; + loff_t addr = to + i; + + /* + * If page_size is a power of two, the offset can be quickly + * calculated with an AND operation. On the other cases we + * need to do a modulus operation (more expensive). + * Power of two numbers have only one bit set and we can use + * the instruction hweight32 to detect if we need to do a + * modulus (do_div()) or not. + */ + if (hweight32(nor->page_size) == 1) { + page_offset = addr & (nor->page_size - 1); + } else { + uint64_t aux = addr; + + page_offset = do_div(aux, nor->page_size); + } + /* the size of data remaining on the first page */ + page_remain = min_t(size_t, + nor->page_size - page_offset, len - i); + + addr = spi_nor_convert_addr(nor, addr); + + ret = spi_nor_write_enable(nor); + if (ret) + goto write_err; + + ret = spi_nor_write_data(nor, addr, page_remain, buf + i); + if (ret < 0) + goto write_err; + written = ret; + + ret = spi_nor_wait_till_ready(nor); + if (ret) + goto write_err; + *retlen += written; + i += written; + } + +write_err: + spi_nor_unlock_and_unprep(nor); + return ret; +} + +static int spi_nor_check(struct spi_nor *nor) +{ + if (!nor->dev || + (!nor->spimem && !nor->controller_ops) || + (!nor->spimem && nor->controller_ops && + (!nor->controller_ops->read || + !nor->controller_ops->write || + !nor->controller_ops->read_reg || + !nor->controller_ops->write_reg))) { + pr_err("spi-nor: please fill all the necessary fields!\n"); + return -EINVAL; + } + + if (nor->spimem && nor->controller_ops) { + dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n"); + return -EINVAL; + } + + return 0; +} + +static void +spi_nor_set_read_settings(struct spi_nor_read_command *read, + u8 num_mode_clocks, + u8 num_wait_states, + u8 opcode, + enum spi_nor_protocol proto) +{ + read->num_mode_clocks = num_mode_clocks; + read->num_wait_states = num_wait_states; + read->opcode = opcode; + read->proto = proto; +} + +void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode, + enum spi_nor_protocol proto) +{ + pp->opcode = opcode; + pp->proto = proto; +} + +static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size) +{ + size_t i; + + for (i = 0; i < size; i++) + if (table[i][0] == (int)hwcaps) + return table[i][1]; + + return -EINVAL; +} + +int spi_nor_hwcaps_read2cmd(u32 hwcaps) +{ + static const int hwcaps_read2cmd[][2] = { + { SNOR_HWCAPS_READ, SNOR_CMD_READ }, + { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST }, + { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR }, + { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 }, + { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 }, + { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 }, + { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR }, + { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 }, + { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 }, + { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 }, + { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR }, + { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 }, + { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 }, + { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 }, + { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR }, + }; + + return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd, + ARRAY_SIZE(hwcaps_read2cmd)); +} + +static int spi_nor_hwcaps_pp2cmd(u32 hwcaps) +{ + static const int hwcaps_pp2cmd[][2] = { + { SNOR_HWCAPS_PP, SNOR_CMD_PP }, + { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 }, + { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 }, + { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 }, + { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 }, + { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 }, + { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 }, + }; + + return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd, + ARRAY_SIZE(hwcaps_pp2cmd)); +} + +/** + * spi_nor_spimem_check_op - check if the operation is supported + * by controller + *@nor: pointer to a 'struct spi_nor' + *@op: pointer to op template to be checked + * + * Returns 0 if operation is supported, -ENOTSUPP otherwise. + */ +static int spi_nor_spimem_check_op(struct spi_nor *nor, + struct spi_mem_op *op) +{ + /* + * First test with 4 address bytes. The opcode itself might + * be a 3B addressing opcode but we don't care, because + * SPI controller implementation should not check the opcode, + * but just the sequence. + */ + op->addr.nbytes = 4; + if (!spi_mem_supports_op(nor->spimem, op)) { + if (nor->mtd.size > SZ_16M) + return -ENOTSUPP; + + /* If flash size <= 16MB, 3 address bytes are sufficient */ + op->addr.nbytes = 3; + if (!spi_mem_supports_op(nor->spimem, op)) + return -ENOTSUPP; + } + + return 0; +} + +/** + * spi_nor_spimem_check_readop - check if the read op is supported + * by controller + *@nor: pointer to a 'struct spi_nor' + *@read: pointer to op template to be checked + * + * Returns 0 if operation is supported, -ENOTSUPP otherwise. + */ +static int spi_nor_spimem_check_readop(struct spi_nor *nor, + const struct spi_nor_read_command *read) +{ + struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 1), + SPI_MEM_OP_ADDR(3, 0, 1), + SPI_MEM_OP_DUMMY(0, 1), + SPI_MEM_OP_DATA_IN(0, NULL, 1)); + + op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(read->proto); + op.addr.buswidth = spi_nor_get_protocol_addr_nbits(read->proto); + op.data.buswidth = spi_nor_get_protocol_data_nbits(read->proto); + op.dummy.buswidth = op.addr.buswidth; + op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) * + op.dummy.buswidth / 8; + + return spi_nor_spimem_check_op(nor, &op); +} + +/** + * spi_nor_spimem_check_pp - check if the page program op is supported + * by controller + *@nor: pointer to a 'struct spi_nor' + *@pp: pointer to op template to be checked + * + * Returns 0 if operation is supported, -ENOTSUPP otherwise. + */ +static int spi_nor_spimem_check_pp(struct spi_nor *nor, + const struct spi_nor_pp_command *pp) +{ + struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 1), + SPI_MEM_OP_ADDR(3, 0, 1), + SPI_MEM_OP_NO_DUMMY, + SPI_MEM_OP_DATA_OUT(0, NULL, 1)); + + op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(pp->proto); + op.addr.buswidth = spi_nor_get_protocol_addr_nbits(pp->proto); + op.data.buswidth = spi_nor_get_protocol_data_nbits(pp->proto); + + return spi_nor_spimem_check_op(nor, &op); +} + +/** + * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol + * based on SPI controller capabilities + * @nor: pointer to a 'struct spi_nor' + * @hwcaps: pointer to resulting capabilities after adjusting + * according to controller and flash's capability + */ +static void +spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps) +{ + struct spi_nor_flash_parameter *params = nor->params; + unsigned int cap; + + /* DTR modes are not supported yet, mask them all. */ + *hwcaps &= ~SNOR_HWCAPS_DTR; + + /* X-X-X modes are not supported yet, mask them all. */ + *hwcaps &= ~SNOR_HWCAPS_X_X_X; + + for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) { + int rdidx, ppidx; + + if (!(*hwcaps & BIT(cap))) + continue; + + rdidx = spi_nor_hwcaps_read2cmd(BIT(cap)); + if (rdidx >= 0 && + spi_nor_spimem_check_readop(nor, ¶ms->reads[rdidx])) + *hwcaps &= ~BIT(cap); + + ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap)); + if (ppidx < 0) + continue; + + if (spi_nor_spimem_check_pp(nor, + ¶ms->page_programs[ppidx])) + *hwcaps &= ~BIT(cap); + } +} + +/** + * spi_nor_set_erase_type() - set a SPI NOR erase type + * @erase: pointer to a structure that describes a SPI NOR erase type + * @size: the size of the sector/block erased by the erase type + * @opcode: the SPI command op code to erase the sector/block + */ +void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size, + u8 opcode) +{ + erase->size = size; + erase->opcode = opcode; + /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */ + erase->size_shift = ffs(erase->size) - 1; + erase->size_mask = (1 << erase->size_shift) - 1; +} + +/** + * spi_nor_init_uniform_erase_map() - Initialize uniform erase map + * @map: the erase map of the SPI NOR + * @erase_mask: bitmask encoding erase types that can erase the entire + * flash memory + * @flash_size: the spi nor flash memory size + */ +void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map, + u8 erase_mask, u64 flash_size) +{ + /* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */ + map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) | + SNOR_LAST_REGION; + map->uniform_region.size = flash_size; + map->regions = &map->uniform_region; + map->uniform_erase_type = erase_mask; +} + +int spi_nor_post_bfpt_fixups(struct spi_nor *nor, + const struct sfdp_parameter_header *bfpt_header, + const struct sfdp_bfpt *bfpt, + struct spi_nor_flash_parameter *params) +{ + int ret; + + if (nor->manufacturer && nor->manufacturer->fixups && + nor->manufacturer->fixups->post_bfpt) { + ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header, + bfpt, params); + if (ret) + return ret; + } + + if (nor->info->fixups && nor->info->fixups->post_bfpt) + return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt, + params); + + return 0; +} + +static int spi_nor_select_read(struct spi_nor *nor, + u32 shared_hwcaps) +{ + int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1; + const struct spi_nor_read_command *read; + + if (best_match < 0) + return -EINVAL; + + cmd = spi_nor_hwcaps_read2cmd(BIT(best_match)); + if (cmd < 0) + return -EINVAL; + + read = &nor->params->reads[cmd]; + nor->read_opcode = read->opcode; + nor->read_proto = read->proto; + + /* + * In the spi-nor framework, we don't need to make the difference + * between mode clock cycles and wait state clock cycles. + * Indeed, the value of the mode clock cycles is used by a QSPI + * flash memory to know whether it should enter or leave its 0-4-4 + * (Continuous Read / XIP) mode. + * eXecution In Place is out of the scope of the mtd sub-system. + * Hence we choose to merge both mode and wait state clock cycles + * into the so called dummy clock cycles. + */ + nor->read_dummy = read->num_mode_clocks + read->num_wait_states; + return 0; +} + +static int spi_nor_select_pp(struct spi_nor *nor, + u32 shared_hwcaps) +{ + int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1; + const struct spi_nor_pp_command *pp; + + if (best_match < 0) + return -EINVAL; + + cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match)); + if (cmd < 0) + return -EINVAL; + + pp = &nor->params->page_programs[cmd]; + nor->program_opcode = pp->opcode; + nor->write_proto = pp->proto; + return 0; +} + +/** + * spi_nor_select_uniform_erase() - select optimum uniform erase type + * @map: the erase map of the SPI NOR + * @wanted_size: the erase type size to search for. Contains the value of + * info->sector_size or of the "small sector" size in case + * CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined. + * + * Once the optimum uniform sector erase command is found, disable all the + * other. + * + * Return: pointer to erase type on success, NULL otherwise. + */ +static const struct spi_nor_erase_type * +spi_nor_select_uniform_erase(struct spi_nor_erase_map *map, + const u32 wanted_size) +{ + const struct spi_nor_erase_type *tested_erase, *erase = NULL; + int i; + u8 uniform_erase_type = map->uniform_erase_type; + + for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { + if (!(uniform_erase_type & BIT(i))) + continue; + + tested_erase = &map->erase_type[i]; + + /* + * If the current erase size is the one, stop here: + * we have found the right uniform Sector Erase command. + */ + if (tested_erase->size == wanted_size) { + erase = tested_erase; + break; + } + + /* + * Otherwise, the current erase size is still a valid canditate. + * Select the biggest valid candidate. + */ + if (!erase && tested_erase->size) + erase = tested_erase; + /* keep iterating to find the wanted_size */ + } + + if (!erase) + return NULL; + + /* Disable all other Sector Erase commands. */ + map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK; + map->uniform_erase_type |= BIT(erase - map->erase_type); + return erase; +} + +static int spi_nor_select_erase(struct spi_nor *nor) +{ + struct spi_nor_erase_map *map = &nor->params->erase_map; + const struct spi_nor_erase_type *erase = NULL; + struct mtd_info *mtd = &nor->mtd; + u32 wanted_size = nor->info->sector_size; + int i; + + /* + * The previous implementation handling Sector Erase commands assumed + * that the SPI flash memory has an uniform layout then used only one + * of the supported erase sizes for all Sector Erase commands. + * So to be backward compatible, the new implementation also tries to + * manage the SPI flash memory as uniform with a single erase sector + * size, when possible. + */ +#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS + /* prefer "small sector" erase if possible */ + wanted_size = 4096u; +#endif + + if (spi_nor_has_uniform_erase(nor)) { + erase = spi_nor_select_uniform_erase(map, wanted_size); + if (!erase) + return -EINVAL; + nor->erase_opcode = erase->opcode; + mtd->erasesize = erase->size; + return 0; + } + + /* + * For non-uniform SPI flash memory, set mtd->erasesize to the + * maximum erase sector size. No need to set nor->erase_opcode. + */ + for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { + if (map->erase_type[i].size) { + erase = &map->erase_type[i]; + break; + } + } + + if (!erase) + return -EINVAL; + + mtd->erasesize = erase->size; + return 0; +} + +static int spi_nor_default_setup(struct spi_nor *nor, + const struct spi_nor_hwcaps *hwcaps) +{ + struct spi_nor_flash_parameter *params = nor->params; + u32 ignored_mask, shared_mask; + int err; + + /* + * Keep only the hardware capabilities supported by both the SPI + * controller and the SPI flash memory. + */ + shared_mask = hwcaps->mask & params->hwcaps.mask; + + if (nor->spimem) { + /* + * When called from spi_nor_probe(), all caps are set and we + * need to discard some of them based on what the SPI + * controller actually supports (using spi_mem_supports_op()). + */ + spi_nor_spimem_adjust_hwcaps(nor, &shared_mask); + } else { + /* + * SPI n-n-n protocols are not supported when the SPI + * controller directly implements the spi_nor interface. + * Yet another reason to switch to spi-mem. + */ + ignored_mask = SNOR_HWCAPS_X_X_X; + if (shared_mask & ignored_mask) { + dev_dbg(nor->dev, + "SPI n-n-n protocols are not supported.\n"); + shared_mask &= ~ignored_mask; + } + } + + /* Select the (Fast) Read command. */ + err = spi_nor_select_read(nor, shared_mask); + if (err) { + dev_dbg(nor->dev, + "can't select read settings supported by both the SPI controller and memory.\n"); + return err; + } + + /* Select the Page Program command. */ + err = spi_nor_select_pp(nor, shared_mask); + if (err) { + dev_dbg(nor->dev, + "can't select write settings supported by both the SPI controller and memory.\n"); + return err; + } + + /* Select the Sector Erase command. */ + err = spi_nor_select_erase(nor); + if (err) { + dev_dbg(nor->dev, + "can't select erase settings supported by both the SPI controller and memory.\n"); + return err; + } + + return 0; +} + +static int spi_nor_setup(struct spi_nor *nor, + const struct spi_nor_hwcaps *hwcaps) +{ + if (!nor->params->setup) + return 0; + + return nor->params->setup(nor, hwcaps); +} + +/** + * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and + * settings based on MFR register and ->default_init() hook. + * @nor: pointer to a 'struct spi-nor'. + */ +static void spi_nor_manufacturer_init_params(struct spi_nor *nor) +{ + if (nor->manufacturer && nor->manufacturer->fixups && + nor->manufacturer->fixups->default_init) + nor->manufacturer->fixups->default_init(nor); + + if (nor->info->fixups && nor->info->fixups->default_init) + nor->info->fixups->default_init(nor); +} + +/** + * spi_nor_sfdp_init_params() - Initialize the flash's parameters and settings + * based on JESD216 SFDP standard. + * @nor: pointer to a 'struct spi-nor'. + * + * The method has a roll-back mechanism: in case the SFDP parsing fails, the + * legacy flash parameters and settings will be restored. + */ +static void spi_nor_sfdp_init_params(struct spi_nor *nor) +{ + struct spi_nor_flash_parameter sfdp_params; + + memcpy(&sfdp_params, nor->params, sizeof(sfdp_params)); + + if (spi_nor_parse_sfdp(nor, &sfdp_params)) { + nor->addr_width = 0; + nor->flags &= ~SNOR_F_4B_OPCODES; + } else { + memcpy(nor->params, &sfdp_params, sizeof(*nor->params)); + } +} + +/** + * spi_nor_info_init_params() - Initialize the flash's parameters and settings + * based on nor->info data. + * @nor: pointer to a 'struct spi-nor'. + */ +static void spi_nor_info_init_params(struct spi_nor *nor) +{ + struct spi_nor_flash_parameter *params = nor->params; + struct spi_nor_erase_map *map = ¶ms->erase_map; + const struct flash_info *info = nor->info; + struct device_node *np = spi_nor_get_flash_node(nor); + u8 i, erase_mask; + + /* Initialize legacy flash parameters and settings. */ + params->quad_enable = spi_nor_sr2_bit1_quad_enable; + params->set_4byte_addr_mode = spansion_set_4byte_addr_mode; + params->setup = spi_nor_default_setup; + /* Default to 16-bit Write Status (01h) Command */ + nor->flags |= SNOR_F_HAS_16BIT_SR; + + /* Set SPI NOR sizes. */ + params->size = (u64)info->sector_size * info->n_sectors; + params->page_size = info->page_size; + + if (!(info->flags & SPI_NOR_NO_FR)) { + /* Default to Fast Read for DT and non-DT platform devices. */ + params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST; + + /* Mask out Fast Read if not requested at DT instantiation. */ + if (np && !of_property_read_bool(np, "m25p,fast-read")) + params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST; + } + + /* (Fast) Read settings. */ + params->hwcaps.mask |= SNOR_HWCAPS_READ; + spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ], + 0, 0, SPINOR_OP_READ, + SNOR_PROTO_1_1_1); + + if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST) + spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST], + 0, 8, SPINOR_OP_READ_FAST, + SNOR_PROTO_1_1_1); + + if (info->flags & SPI_NOR_DUAL_READ) { + params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2; + spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2], + 0, 8, SPINOR_OP_READ_1_1_2, + SNOR_PROTO_1_1_2); + } + + if (info->flags & SPI_NOR_QUAD_READ) { + params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4; + spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4], + 0, 8, SPINOR_OP_READ_1_1_4, + SNOR_PROTO_1_1_4); + } + + if (info->flags & SPI_NOR_OCTAL_READ) { + params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8; + spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8], + 0, 8, SPINOR_OP_READ_1_1_8, + SNOR_PROTO_1_1_8); + } + + /* Page Program settings. */ + params->hwcaps.mask |= SNOR_HWCAPS_PP; + spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP], + SPINOR_OP_PP, SNOR_PROTO_1_1_1); + + /* + * Sector Erase settings. Sort Erase Types in ascending order, with the + * smallest erase size starting at BIT(0). + */ + erase_mask = 0; + i = 0; + if (info->flags & SECT_4K_PMC) { + erase_mask |= BIT(i); + spi_nor_set_erase_type(&map->erase_type[i], 4096u, + SPINOR_OP_BE_4K_PMC); + i++; + } else if (info->flags & SECT_4K) { + erase_mask |= BIT(i); + spi_nor_set_erase_type(&map->erase_type[i], 4096u, + SPINOR_OP_BE_4K); + i++; + } + erase_mask |= BIT(i); + spi_nor_set_erase_type(&map->erase_type[i], info->sector_size, + SPINOR_OP_SE); + spi_nor_init_uniform_erase_map(map, erase_mask, params->size); +} + +/** + * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings + * after SFDP has been parsed (is also called for SPI NORs that do not + * support RDSFDP). + * @nor: pointer to a 'struct spi_nor' + * + * Typically used to tweak various parameters that could not be extracted by + * other means (i.e. when information provided by the SFDP/flash_info tables + * are incomplete or wrong). + */ +static void spi_nor_post_sfdp_fixups(struct spi_nor *nor) +{ + if (nor->manufacturer && nor->manufacturer->fixups && + nor->manufacturer->fixups->post_sfdp) + nor->manufacturer->fixups->post_sfdp(nor); + + if (nor->info->fixups && nor->info->fixups->post_sfdp) + nor->info->fixups->post_sfdp(nor); +} + +/** + * spi_nor_late_init_params() - Late initialization of default flash parameters. + * @nor: pointer to a 'struct spi_nor' + * + * Used to set default flash parameters and settings when the ->default_init() + * hook or the SFDP parser let voids. + */ +static void spi_nor_late_init_params(struct spi_nor *nor) +{ + /* + * NOR protection support. When locking_ops are not provided, we pick + * the default ones. + */ + if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops) + nor->params->locking_ops = &spi_nor_sr_locking_ops; +} + +/** + * spi_nor_init_params() - Initialize the flash's parameters and settings. + * @nor: pointer to a 'struct spi-nor'. + * + * The flash parameters and settings are initialized based on a sequence of + * calls that are ordered by priority: + * + * 1/ Default flash parameters initialization. The initializations are done + * based on nor->info data: + * spi_nor_info_init_params() + * + * which can be overwritten by: + * 2/ Manufacturer flash parameters initialization. The initializations are + * done based on MFR register, or when the decisions can not be done solely + * based on MFR, by using specific flash_info tweeks, ->default_init(): + * spi_nor_manufacturer_init_params() + * + * which can be overwritten by: + * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and + * should be more accurate that the above. + * spi_nor_sfdp_init_params() + * + * Please note that there is a ->post_bfpt() fixup hook that can overwrite + * the flash parameters and settings immediately after parsing the Basic + * Flash Parameter Table. + * + * which can be overwritten by: + * 4/ Post SFDP flash parameters initialization. Used to tweak various + * parameters that could not be extracted by other means (i.e. when + * information provided by the SFDP/flash_info tables are incomplete or + * wrong). + * spi_nor_post_sfdp_fixups() + * + * 5/ Late default flash parameters initialization, used when the + * ->default_init() hook or the SFDP parser do not set specific params. + * spi_nor_late_init_params() + */ +static int spi_nor_init_params(struct spi_nor *nor) +{ + nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL); + if (!nor->params) + return -ENOMEM; + + spi_nor_info_init_params(nor); + + spi_nor_manufacturer_init_params(nor); + + if ((nor->info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) && + !(nor->info->flags & SPI_NOR_SKIP_SFDP)) + spi_nor_sfdp_init_params(nor); + + spi_nor_post_sfdp_fixups(nor); + + spi_nor_late_init_params(nor); + + return 0; +} + +/** + * spi_nor_quad_enable() - enable Quad I/O if needed. + * @nor: pointer to a 'struct spi_nor' + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_quad_enable(struct spi_nor *nor) +{ + if (!nor->params->quad_enable) + return 0; + + if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 || + spi_nor_get_protocol_width(nor->write_proto) == 4)) + return 0; + + return nor->params->quad_enable(nor); +} + +/** + * spi_nor_unlock_all() - Unlocks the entire flash memory array. + * @nor: pointer to a 'struct spi_nor'. + * + * Some SPI NOR flashes are write protected by default after a power-on reset + * cycle, in order to avoid inadvertent writes during power-up. Backward + * compatibility imposes to unlock the entire flash memory array at power-up + * by default. + */ +static int spi_nor_unlock_all(struct spi_nor *nor) +{ + if (nor->flags & SNOR_F_HAS_LOCK) + return spi_nor_unlock(&nor->mtd, 0, nor->params->size); + + return 0; +} + +static int spi_nor_init(struct spi_nor *nor) +{ + int err; + + err = spi_nor_quad_enable(nor); + if (err) { + dev_dbg(nor->dev, "quad mode not supported\n"); + return err; + } + + err = spi_nor_unlock_all(nor); + if (err) { + dev_dbg(nor->dev, "Failed to unlock the entire flash memory array\n"); + return err; + } + + if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES)) { + /* + * If the RESET# pin isn't hooked up properly, or the system + * otherwise doesn't perform a reset command in the boot + * sequence, it's impossible to 100% protect against unexpected + * reboots (e.g., crashes). Warn the user (or hopefully, system + * designer) that this is bad. + */ + WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET, + "enabling reset hack; may not recover from unexpected reboots\n"); + nor->params->set_4byte_addr_mode(nor, true); + } + + return 0; +} + +/* mtd resume handler */ +static void spi_nor_resume(struct mtd_info *mtd) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + struct device *dev = nor->dev; + int ret; + + /* re-initialize the nor chip */ + ret = spi_nor_init(nor); + if (ret) + dev_err(dev, "resume() failed\n"); +} + +void spi_nor_restore(struct spi_nor *nor) +{ + /* restore the addressing mode */ + if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) && + nor->flags & SNOR_F_BROKEN_RESET) + nor->params->set_4byte_addr_mode(nor, false); +} +EXPORT_SYMBOL_GPL(spi_nor_restore); + +static const struct flash_info *spi_nor_match_id(struct spi_nor *nor, + const char *name) +{ + unsigned int i, j; + + for (i = 0; i < ARRAY_SIZE(manufacturers); i++) { + for (j = 0; j < manufacturers[i]->nparts; j++) { + if (!strcmp(name, manufacturers[i]->parts[j].name)) { + nor->manufacturer = manufacturers[i]; + return &manufacturers[i]->parts[j]; + } + } + } + + return NULL; +} + +static int spi_nor_set_addr_width(struct spi_nor *nor) +{ + if (nor->addr_width) { + /* already configured from SFDP */ + } else if (nor->info->addr_width) { + nor->addr_width = nor->info->addr_width; + } else if (nor->mtd.size > 0x1000000) { + /* enable 4-byte addressing if the device exceeds 16MiB */ + nor->addr_width = 4; + } else { + nor->addr_width = 3; + } + + if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) { + dev_dbg(nor->dev, "address width is too large: %u\n", + nor->addr_width); + return -EINVAL; + } + + /* Set 4byte opcodes when possible. */ + if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES && + !(nor->flags & SNOR_F_HAS_4BAIT)) + spi_nor_set_4byte_opcodes(nor); + + return 0; +} + +static void spi_nor_debugfs_init(struct spi_nor *nor, + const struct flash_info *info) +{ + struct mtd_info *mtd = &nor->mtd; + + mtd->dbg.partname = info->name; + mtd->dbg.partid = devm_kasprintf(nor->dev, GFP_KERNEL, "spi-nor:%*phN", + info->id_len, info->id); +} + +static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor, + const char *name) +{ + const struct flash_info *info = NULL; + + if (name) + info = spi_nor_match_id(nor, name); + /* Try to auto-detect if chip name wasn't specified or not found */ + if (!info) + info = spi_nor_read_id(nor); + if (IS_ERR_OR_NULL(info)) + return ERR_PTR(-ENOENT); + + /* + * If caller has specified name of flash model that can normally be + * detected using JEDEC, let's verify it. + */ + if (name && info->id_len) { + const struct flash_info *jinfo; + + jinfo = spi_nor_read_id(nor); + if (IS_ERR(jinfo)) { + return jinfo; + } else if (jinfo != info) { + /* + * JEDEC knows better, so overwrite platform ID. We + * can't trust partitions any longer, but we'll let + * mtd apply them anyway, since some partitions may be + * marked read-only, and we don't want to lose that + * information, even if it's not 100% accurate. + */ + dev_warn(nor->dev, "found %s, expected %s\n", + jinfo->name, info->name); + info = jinfo; + } + } + + return info; +} + +int spi_nor_scan(struct spi_nor *nor, const char *name, + const struct spi_nor_hwcaps *hwcaps) +{ + const struct flash_info *info; + struct device *dev = nor->dev; + struct mtd_info *mtd = &nor->mtd; + struct device_node *np = spi_nor_get_flash_node(nor); + int ret; + int i; + + ret = spi_nor_check(nor); + if (ret) + return ret; + + /* Reset SPI protocol for all commands. */ + nor->reg_proto = SNOR_PROTO_1_1_1; + nor->read_proto = SNOR_PROTO_1_1_1; + nor->write_proto = SNOR_PROTO_1_1_1; + + /* + * We need the bounce buffer early to read/write registers when going + * through the spi-mem layer (buffers have to be DMA-able). + * For spi-mem drivers, we'll reallocate a new buffer if + * nor->page_size turns out to be greater than PAGE_SIZE (which + * shouldn't happen before long since NOR pages are usually less + * than 1KB) after spi_nor_scan() returns. + */ + nor->bouncebuf_size = PAGE_SIZE; + nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size, + GFP_KERNEL); + if (!nor->bouncebuf) + return -ENOMEM; + + info = spi_nor_get_flash_info(nor, name); + if (IS_ERR(info)) + return PTR_ERR(info); + + nor->info = info; + + spi_nor_debugfs_init(nor, info); + + mutex_init(&nor->lock); + + /* + * Make sure the XSR_RDY flag is set before calling + * spi_nor_wait_till_ready(). Xilinx S3AN share MFR + * with Atmel spi-nor + */ + if (info->flags & SPI_NOR_XSR_RDY) + nor->flags |= SNOR_F_READY_XSR_RDY; + + if (info->flags & SPI_NOR_HAS_LOCK) + nor->flags |= SNOR_F_HAS_LOCK; + + mtd->_write = spi_nor_write; + + /* Init flash parameters based on flash_info struct and SFDP */ + ret = spi_nor_init_params(nor); + if (ret) + return ret; + + if (!mtd->name) + mtd->name = dev_name(dev); + mtd->priv = nor; + mtd->type = MTD_NORFLASH; + mtd->writesize = 1; + mtd->flags = MTD_CAP_NORFLASH; + mtd->size = nor->params->size; + mtd->_erase = spi_nor_erase; + mtd->_read = spi_nor_read; + mtd->_resume = spi_nor_resume; + + if (nor->params->locking_ops) { + mtd->_lock = spi_nor_lock; + mtd->_unlock = spi_nor_unlock; + mtd->_is_locked = spi_nor_is_locked; + } + + if (info->flags & USE_FSR) + nor->flags |= SNOR_F_USE_FSR; + if (info->flags & SPI_NOR_HAS_TB) { + nor->flags |= SNOR_F_HAS_SR_TB; + if (info->flags & SPI_NOR_TB_SR_BIT6) + nor->flags |= SNOR_F_HAS_SR_TB_BIT6; + } + + if (info->flags & NO_CHIP_ERASE) + nor->flags |= SNOR_F_NO_OP_CHIP_ERASE; + if (info->flags & USE_CLSR) + nor->flags |= SNOR_F_USE_CLSR; + + if (info->flags & SPI_NOR_4BIT_BP) { + nor->flags |= SNOR_F_HAS_4BIT_BP; + if (info->flags & SPI_NOR_BP3_SR_BIT6) + nor->flags |= SNOR_F_HAS_SR_BP3_BIT6; + } + + if (info->flags & SPI_NOR_NO_ERASE) + mtd->flags |= MTD_NO_ERASE; + + mtd->dev.parent = dev; + nor->page_size = nor->params->page_size; + mtd->writebufsize = nor->page_size; + + if (of_property_read_bool(np, "broken-flash-reset")) + nor->flags |= SNOR_F_BROKEN_RESET; + + /* + * Configure the SPI memory: + * - select op codes for (Fast) Read, Page Program and Sector Erase. + * - set the number of dummy cycles (mode cycles + wait states). + * - set the SPI protocols for register and memory accesses. + */ + ret = spi_nor_setup(nor, hwcaps); + if (ret) + return ret; + + if (info->flags & SPI_NOR_4B_OPCODES) + nor->flags |= SNOR_F_4B_OPCODES; + + ret = spi_nor_set_addr_width(nor); + if (ret) + return ret; + + /* Send all the required SPI flash commands to initialize device */ + ret = spi_nor_init(nor); + if (ret) + return ret; + + dev_info(dev, "%s (%lld Kbytes)\n", info->name, + (long long)mtd->size >> 10); + + dev_dbg(dev, + "mtd .name = %s, .size = 0x%llx (%lldMiB), " + ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", + mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20), + mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions); + + if (mtd->numeraseregions) + for (i = 0; i < mtd->numeraseregions; i++) + dev_dbg(dev, + "mtd.eraseregions[%d] = { .offset = 0x%llx, " + ".erasesize = 0x%.8x (%uKiB), " + ".numblocks = %d }\n", + i, (long long)mtd->eraseregions[i].offset, + mtd->eraseregions[i].erasesize, + mtd->eraseregions[i].erasesize / 1024, + mtd->eraseregions[i].numblocks); + return 0; +} +EXPORT_SYMBOL_GPL(spi_nor_scan); + +static int spi_nor_create_read_dirmap(struct spi_nor *nor) +{ + struct spi_mem_dirmap_info info = { + .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1), + SPI_MEM_OP_ADDR(nor->addr_width, 0, 1), + SPI_MEM_OP_DUMMY(nor->read_dummy, 1), + SPI_MEM_OP_DATA_IN(0, NULL, 1)), + .offset = 0, + .length = nor->mtd.size, + }; + struct spi_mem_op *op = &info.op_tmpl; + + /* get transfer protocols. */ + op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto); + op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto); + op->dummy.buswidth = op->addr.buswidth; + op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto); + + /* convert the dummy cycles to the number of bytes */ + op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8; + + nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem, + &info); + return PTR_ERR_OR_ZERO(nor->dirmap.rdesc); +} + +static int spi_nor_create_write_dirmap(struct spi_nor *nor) +{ + struct spi_mem_dirmap_info info = { + .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1), + SPI_MEM_OP_ADDR(nor->addr_width, 0, 1), + SPI_MEM_OP_NO_DUMMY, + SPI_MEM_OP_DATA_OUT(0, NULL, 1)), + .offset = 0, + .length = nor->mtd.size, + }; + struct spi_mem_op *op = &info.op_tmpl; + + /* get transfer protocols. */ + op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto); + op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto); + op->dummy.buswidth = op->addr.buswidth; + op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto); + + if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second) + op->addr.nbytes = 0; + + nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem, + &info); + return PTR_ERR_OR_ZERO(nor->dirmap.wdesc); +} + +static int spi_nor_probe(struct spi_mem *spimem) +{ + struct spi_device *spi = spimem->spi; + struct flash_platform_data *data = dev_get_platdata(&spi->dev); + struct spi_nor *nor; + /* + * Enable all caps by default. The core will mask them after + * checking what's really supported using spi_mem_supports_op(). + */ + const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL }; + char *flash_name; + int ret; + + nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL); + if (!nor) + return -ENOMEM; + + nor->spimem = spimem; + nor->dev = &spi->dev; + spi_nor_set_flash_node(nor, spi->dev.of_node); + + spi_mem_set_drvdata(spimem, nor); + + if (data && data->name) + nor->mtd.name = data->name; + + if (!nor->mtd.name) + nor->mtd.name = spi_mem_get_name(spimem); + + /* + * For some (historical?) reason many platforms provide two different + * names in flash_platform_data: "name" and "type". Quite often name is + * set to "m25p80" and then "type" provides a real chip name. + * If that's the case, respect "type" and ignore a "name". + */ + if (data && data->type) + flash_name = data->type; + else if (!strcmp(spi->modalias, "spi-nor")) + flash_name = NULL; /* auto-detect */ + else + flash_name = spi->modalias; + + ret = spi_nor_scan(nor, flash_name, &hwcaps); + if (ret) + return ret; + + /* + * None of the existing parts have > 512B pages, but let's play safe + * and add this logic so that if anyone ever adds support for such + * a NOR we don't end up with buffer overflows. + */ + if (nor->page_size > PAGE_SIZE) { + nor->bouncebuf_size = nor->page_size; + devm_kfree(nor->dev, nor->bouncebuf); + nor->bouncebuf = devm_kmalloc(nor->dev, + nor->bouncebuf_size, + GFP_KERNEL); + if (!nor->bouncebuf) + return -ENOMEM; + } + + ret = spi_nor_create_read_dirmap(nor); + if (ret) + return ret; + + ret = spi_nor_create_write_dirmap(nor); + if (ret) + return ret; + + return mtd_device_register(&nor->mtd, data ? data->parts : NULL, + data ? data->nr_parts : 0); +} + +static int spi_nor_remove(struct spi_mem *spimem) +{ + struct spi_nor *nor = spi_mem_get_drvdata(spimem); + + spi_nor_restore(nor); + + /* Clean up MTD stuff. */ + return mtd_device_unregister(&nor->mtd); +} + +static void spi_nor_shutdown(struct spi_mem *spimem) +{ + struct spi_nor *nor = spi_mem_get_drvdata(spimem); + + spi_nor_restore(nor); +} + +/* + * Do NOT add to this array without reading the following: + * + * Historically, many flash devices are bound to this driver by their name. But + * since most of these flash are compatible to some extent, and their + * differences can often be differentiated by the JEDEC read-ID command, we + * encourage new users to add support to the spi-nor library, and simply bind + * against a generic string here (e.g., "jedec,spi-nor"). + * + * Many flash names are kept here in this list (as well as in spi-nor.c) to + * keep them available as module aliases for existing platforms. + */ +static const struct spi_device_id spi_nor_dev_ids[] = { + /* + * Allow non-DT platform devices to bind to the "spi-nor" modalias, and + * hack around the fact that the SPI core does not provide uevent + * matching for .of_match_table + */ + {"spi-nor"}, + + /* + * Entries not used in DTs that should be safe to drop after replacing + * them with "spi-nor" in platform data. + */ + {"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"}, + + /* + * Entries that were used in DTs without "jedec,spi-nor" fallback and + * should be kept for backward compatibility. + */ + {"at25df321a"}, {"at25df641"}, {"at26df081a"}, + {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"}, + {"mx25l25635e"},{"mx66l51235l"}, + {"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"}, + {"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"}, + {"s25fl064k"}, + {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"}, + {"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"}, + {"m25p64"}, {"m25p128"}, + {"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"}, + {"w25q80bl"}, {"w25q128"}, {"w25q256"}, + + /* Flashes that can't be detected using JEDEC */ + {"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"}, + {"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"}, + {"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"}, + + /* Everspin MRAMs (non-JEDEC) */ + { "mr25h128" }, /* 128 Kib, 40 MHz */ + { "mr25h256" }, /* 256 Kib, 40 MHz */ + { "mr25h10" }, /* 1 Mib, 40 MHz */ + { "mr25h40" }, /* 4 Mib, 40 MHz */ + + { }, +}; +MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids); + +static const struct of_device_id spi_nor_of_table[] = { + /* + * Generic compatibility for SPI NOR that can be identified by the + * JEDEC READ ID opcode (0x9F). Use this, if possible. + */ + { .compatible = "jedec,spi-nor" }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(of, spi_nor_of_table); + +/* + * REVISIT: many of these chips have deep power-down modes, which + * should clearly be entered on suspend() to minimize power use. + * And also when they're otherwise idle... + */ +static struct spi_mem_driver spi_nor_driver = { + .spidrv = { + .driver = { + .name = "spi-nor", + .of_match_table = spi_nor_of_table, + }, + .id_table = spi_nor_dev_ids, + }, + .probe = spi_nor_probe, + .remove = spi_nor_remove, + .shutdown = spi_nor_shutdown, +}; +module_spi_mem_driver(spi_nor_driver); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>"); +MODULE_AUTHOR("Mike Lavender"); +MODULE_DESCRIPTION("framework for SPI NOR"); |