summaryrefslogtreecommitdiff
path: root/drivers/mtd/spi-nor/core.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/spi-nor/core.c')
-rw-r--r--drivers/mtd/spi-nor/core.c3466
1 files changed, 3466 insertions, 0 deletions
diff --git a/drivers/mtd/spi-nor/core.c b/drivers/mtd/spi-nor/core.c
new file mode 100644
index 000000000000..cc68ea84318e
--- /dev/null
+++ b/drivers/mtd/spi-nor/core.c
@@ -0,0 +1,3466 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
+ * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
+ *
+ * Copyright (C) 2005, Intec Automation Inc.
+ * Copyright (C) 2014, Freescale Semiconductor, Inc.
+ */
+
+#include <linux/err.h>
+#include <linux/errno.h>
+#include <linux/module.h>
+#include <linux/device.h>
+#include <linux/mutex.h>
+#include <linux/math64.h>
+#include <linux/sizes.h>
+#include <linux/slab.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/of_platform.h>
+#include <linux/sched/task_stack.h>
+#include <linux/spi/flash.h>
+#include <linux/mtd/spi-nor.h>
+
+#include "core.h"
+
+/* Define max times to check status register before we give up. */
+
+/*
+ * For everything but full-chip erase; probably could be much smaller, but kept
+ * around for safety for now
+ */
+#define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
+
+/*
+ * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
+ * for larger flash
+ */
+#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
+
+#define SPI_NOR_MAX_ADDR_WIDTH 4
+
+/**
+ * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
+ * transfer
+ * @nor: pointer to 'struct spi_nor'
+ * @op: pointer to 'struct spi_mem_op' template for transfer
+ *
+ * If we have to use the bounce buffer, the data field in @op will be updated.
+ *
+ * Return: true if the bounce buffer is needed, false if not
+ */
+static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
+{
+ /* op->data.buf.in occupies the same memory as op->data.buf.out */
+ if (object_is_on_stack(op->data.buf.in) ||
+ !virt_addr_valid(op->data.buf.in)) {
+ if (op->data.nbytes > nor->bouncebuf_size)
+ op->data.nbytes = nor->bouncebuf_size;
+ op->data.buf.in = nor->bouncebuf;
+ return true;
+ }
+
+ return false;
+}
+
+/**
+ * spi_nor_spimem_exec_op() - execute a memory operation
+ * @nor: pointer to 'struct spi_nor'
+ * @op: pointer to 'struct spi_mem_op' template for transfer
+ *
+ * Return: 0 on success, -error otherwise.
+ */
+static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
+{
+ int error;
+
+ error = spi_mem_adjust_op_size(nor->spimem, op);
+ if (error)
+ return error;
+
+ return spi_mem_exec_op(nor->spimem, op);
+}
+
+/**
+ * spi_nor_spimem_read_data() - read data from flash's memory region via
+ * spi-mem
+ * @nor: pointer to 'struct spi_nor'
+ * @from: offset to read from
+ * @len: number of bytes to read
+ * @buf: pointer to dst buffer
+ *
+ * Return: number of bytes read successfully, -errno otherwise
+ */
+static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
+ size_t len, u8 *buf)
+{
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
+ SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
+ SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
+ SPI_MEM_OP_DATA_IN(len, buf, 1));
+ bool usebouncebuf;
+ ssize_t nbytes;
+ int error;
+
+ /* get transfer protocols. */
+ op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
+ op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
+ op.dummy.buswidth = op.addr.buswidth;
+ op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
+
+ /* convert the dummy cycles to the number of bytes */
+ op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
+
+ usebouncebuf = spi_nor_spimem_bounce(nor, &op);
+
+ if (nor->dirmap.rdesc) {
+ nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
+ op.data.nbytes, op.data.buf.in);
+ } else {
+ error = spi_nor_spimem_exec_op(nor, &op);
+ if (error)
+ return error;
+ nbytes = op.data.nbytes;
+ }
+
+ if (usebouncebuf && nbytes > 0)
+ memcpy(buf, op.data.buf.in, nbytes);
+
+ return nbytes;
+}
+
+/**
+ * spi_nor_read_data() - read data from flash memory
+ * @nor: pointer to 'struct spi_nor'
+ * @from: offset to read from
+ * @len: number of bytes to read
+ * @buf: pointer to dst buffer
+ *
+ * Return: number of bytes read successfully, -errno otherwise
+ */
+ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
+{
+ if (nor->spimem)
+ return spi_nor_spimem_read_data(nor, from, len, buf);
+
+ return nor->controller_ops->read(nor, from, len, buf);
+}
+
+/**
+ * spi_nor_spimem_write_data() - write data to flash memory via
+ * spi-mem
+ * @nor: pointer to 'struct spi_nor'
+ * @to: offset to write to
+ * @len: number of bytes to write
+ * @buf: pointer to src buffer
+ *
+ * Return: number of bytes written successfully, -errno otherwise
+ */
+static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
+ size_t len, const u8 *buf)
+{
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
+ SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_OUT(len, buf, 1));
+ ssize_t nbytes;
+ int error;
+
+ op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
+ op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
+ op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
+
+ if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
+ op.addr.nbytes = 0;
+
+ if (spi_nor_spimem_bounce(nor, &op))
+ memcpy(nor->bouncebuf, buf, op.data.nbytes);
+
+ if (nor->dirmap.wdesc) {
+ nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
+ op.data.nbytes, op.data.buf.out);
+ } else {
+ error = spi_nor_spimem_exec_op(nor, &op);
+ if (error)
+ return error;
+ nbytes = op.data.nbytes;
+ }
+
+ return nbytes;
+}
+
+/**
+ * spi_nor_write_data() - write data to flash memory
+ * @nor: pointer to 'struct spi_nor'
+ * @to: offset to write to
+ * @len: number of bytes to write
+ * @buf: pointer to src buffer
+ *
+ * Return: number of bytes written successfully, -errno otherwise
+ */
+ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
+ const u8 *buf)
+{
+ if (nor->spimem)
+ return spi_nor_spimem_write_data(nor, to, len, buf);
+
+ return nor->controller_ops->write(nor, to, len, buf);
+}
+
+/**
+ * spi_nor_write_enable() - Set write enable latch with Write Enable command.
+ * @nor: pointer to 'struct spi_nor'.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+int spi_nor_write_enable(struct spi_nor *nor)
+{
+ int ret;
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_NO_DATA);
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREN,
+ NULL, 0);
+ }
+
+ if (ret)
+ dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
+
+ return ret;
+}
+
+/**
+ * spi_nor_write_disable() - Send Write Disable instruction to the chip.
+ * @nor: pointer to 'struct spi_nor'.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+int spi_nor_write_disable(struct spi_nor *nor)
+{
+ int ret;
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_NO_DATA);
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRDI,
+ NULL, 0);
+ }
+
+ if (ret)
+ dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
+
+ return ret;
+}
+
+/**
+ * spi_nor_read_sr() - Read the Status Register.
+ * @nor: pointer to 'struct spi_nor'.
+ * @sr: pointer to a DMA-able buffer where the value of the
+ * Status Register will be written.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
+{
+ int ret;
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_IN(1, sr, 1));
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR,
+ sr, 1);
+ }
+
+ if (ret)
+ dev_dbg(nor->dev, "error %d reading SR\n", ret);
+
+ return ret;
+}
+
+/**
+ * spi_nor_read_fsr() - Read the Flag Status Register.
+ * @nor: pointer to 'struct spi_nor'
+ * @fsr: pointer to a DMA-able buffer where the value of the
+ * Flag Status Register will be written.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
+{
+ int ret;
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_IN(1, fsr, 1));
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDFSR,
+ fsr, 1);
+ }
+
+ if (ret)
+ dev_dbg(nor->dev, "error %d reading FSR\n", ret);
+
+ return ret;
+}
+
+/**
+ * spi_nor_read_cr() - Read the Configuration Register using the
+ * SPINOR_OP_RDCR (35h) command.
+ * @nor: pointer to 'struct spi_nor'
+ * @cr: pointer to a DMA-able buffer where the value of the
+ * Configuration Register will be written.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
+{
+ int ret;
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDCR, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_IN(1, cr, 1));
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDCR, cr, 1);
+ }
+
+ if (ret)
+ dev_dbg(nor->dev, "error %d reading CR\n", ret);
+
+ return ret;
+}
+
+/**
+ * spi_nor_set_4byte_addr_mode() - Enter/Exit 4-byte address mode.
+ * @nor: pointer to 'struct spi_nor'.
+ * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
+ * address mode.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
+{
+ int ret;
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(enable ?
+ SPINOR_OP_EN4B :
+ SPINOR_OP_EX4B,
+ 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_NO_DATA);
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->write_reg(nor,
+ enable ? SPINOR_OP_EN4B :
+ SPINOR_OP_EX4B,
+ NULL, 0);
+ }
+
+ if (ret)
+ dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
+
+ return ret;
+}
+
+/**
+ * spansion_set_4byte_addr_mode() - Set 4-byte address mode for Spansion
+ * flashes.
+ * @nor: pointer to 'struct spi_nor'.
+ * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
+ * address mode.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spansion_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
+{
+ int ret;
+
+ nor->bouncebuf[0] = enable << 7;
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_BRWR, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->write_reg(nor, SPINOR_OP_BRWR,
+ nor->bouncebuf, 1);
+ }
+
+ if (ret)
+ dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
+
+ return ret;
+}
+
+/**
+ * spi_nor_write_ear() - Write Extended Address Register.
+ * @nor: pointer to 'struct spi_nor'.
+ * @ear: value to write to the Extended Address Register.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+int spi_nor_write_ear(struct spi_nor *nor, u8 ear)
+{
+ int ret;
+
+ nor->bouncebuf[0] = ear;
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREAR, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREAR,
+ nor->bouncebuf, 1);
+ }
+
+ if (ret)
+ dev_dbg(nor->dev, "error %d writing EAR\n", ret);
+
+ return ret;
+}
+
+/**
+ * spi_nor_xread_sr() - Read the Status Register on S3AN flashes.
+ * @nor: pointer to 'struct spi_nor'.
+ * @sr: pointer to a DMA-able buffer where the value of the
+ * Status Register will be written.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+int spi_nor_xread_sr(struct spi_nor *nor, u8 *sr)
+{
+ int ret;
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_XRDSR, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_IN(1, sr, 1));
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->read_reg(nor, SPINOR_OP_XRDSR,
+ sr, 1);
+ }
+
+ if (ret)
+ dev_dbg(nor->dev, "error %d reading XRDSR\n", ret);
+
+ return ret;
+}
+
+/**
+ * spi_nor_xsr_ready() - Query the Status Register of the S3AN flash to see if
+ * the flash is ready for new commands.
+ * @nor: pointer to 'struct spi_nor'.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_xsr_ready(struct spi_nor *nor)
+{
+ int ret;
+
+ ret = spi_nor_xread_sr(nor, nor->bouncebuf);
+ if (ret)
+ return ret;
+
+ return !!(nor->bouncebuf[0] & XSR_RDY);
+}
+
+/**
+ * spi_nor_clear_sr() - Clear the Status Register.
+ * @nor: pointer to 'struct spi_nor'.
+ */
+static void spi_nor_clear_sr(struct spi_nor *nor)
+{
+ int ret;
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_NO_DATA);
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLSR,
+ NULL, 0);
+ }
+
+ if (ret)
+ dev_dbg(nor->dev, "error %d clearing SR\n", ret);
+}
+
+/**
+ * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
+ * for new commands.
+ * @nor: pointer to 'struct spi_nor'.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_sr_ready(struct spi_nor *nor)
+{
+ int ret = spi_nor_read_sr(nor, nor->bouncebuf);
+
+ if (ret)
+ return ret;
+
+ if (nor->flags & SNOR_F_USE_CLSR &&
+ nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
+ if (nor->bouncebuf[0] & SR_E_ERR)
+ dev_err(nor->dev, "Erase Error occurred\n");
+ else
+ dev_err(nor->dev, "Programming Error occurred\n");
+
+ spi_nor_clear_sr(nor);
+
+ /*
+ * WEL bit remains set to one when an erase or page program
+ * error occurs. Issue a Write Disable command to protect
+ * against inadvertent writes that can possibly corrupt the
+ * contents of the memory.
+ */
+ ret = spi_nor_write_disable(nor);
+ if (ret)
+ return ret;
+
+ return -EIO;
+ }
+
+ return !(nor->bouncebuf[0] & SR_WIP);
+}
+
+/**
+ * spi_nor_clear_fsr() - Clear the Flag Status Register.
+ * @nor: pointer to 'struct spi_nor'.
+ */
+static void spi_nor_clear_fsr(struct spi_nor *nor)
+{
+ int ret;
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_NO_DATA);
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLFSR,
+ NULL, 0);
+ }
+
+ if (ret)
+ dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
+}
+
+/**
+ * spi_nor_fsr_ready() - Query the Flag Status Register to see if the flash is
+ * ready for new commands.
+ * @nor: pointer to 'struct spi_nor'.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_fsr_ready(struct spi_nor *nor)
+{
+ int ret = spi_nor_read_fsr(nor, nor->bouncebuf);
+
+ if (ret)
+ return ret;
+
+ if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
+ if (nor->bouncebuf[0] & FSR_E_ERR)
+ dev_err(nor->dev, "Erase operation failed.\n");
+ else
+ dev_err(nor->dev, "Program operation failed.\n");
+
+ if (nor->bouncebuf[0] & FSR_PT_ERR)
+ dev_err(nor->dev,
+ "Attempted to modify a protected sector.\n");
+
+ spi_nor_clear_fsr(nor);
+
+ /*
+ * WEL bit remains set to one when an erase or page program
+ * error occurs. Issue a Write Disable command to protect
+ * against inadvertent writes that can possibly corrupt the
+ * contents of the memory.
+ */
+ ret = spi_nor_write_disable(nor);
+ if (ret)
+ return ret;
+
+ return -EIO;
+ }
+
+ return nor->bouncebuf[0] & FSR_READY;
+}
+
+/**
+ * spi_nor_ready() - Query the flash to see if it is ready for new commands.
+ * @nor: pointer to 'struct spi_nor'.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_ready(struct spi_nor *nor)
+{
+ int sr, fsr;
+
+ if (nor->flags & SNOR_F_READY_XSR_RDY)
+ sr = spi_nor_xsr_ready(nor);
+ else
+ sr = spi_nor_sr_ready(nor);
+ if (sr < 0)
+ return sr;
+ fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
+ if (fsr < 0)
+ return fsr;
+ return sr && fsr;
+}
+
+/**
+ * spi_nor_wait_till_ready_with_timeout() - Service routine to read the
+ * Status Register until ready, or timeout occurs.
+ * @nor: pointer to "struct spi_nor".
+ * @timeout_jiffies: jiffies to wait until timeout.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
+ unsigned long timeout_jiffies)
+{
+ unsigned long deadline;
+ int timeout = 0, ret;
+
+ deadline = jiffies + timeout_jiffies;
+
+ while (!timeout) {
+ if (time_after_eq(jiffies, deadline))
+ timeout = 1;
+
+ ret = spi_nor_ready(nor);
+ if (ret < 0)
+ return ret;
+ if (ret)
+ return 0;
+
+ cond_resched();
+ }
+
+ dev_dbg(nor->dev, "flash operation timed out\n");
+
+ return -ETIMEDOUT;
+}
+
+/**
+ * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
+ * flash to be ready, or timeout occurs.
+ * @nor: pointer to "struct spi_nor".
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+int spi_nor_wait_till_ready(struct spi_nor *nor)
+{
+ return spi_nor_wait_till_ready_with_timeout(nor,
+ DEFAULT_READY_WAIT_JIFFIES);
+}
+
+/**
+ * spi_nor_write_sr() - Write the Status Register.
+ * @nor: pointer to 'struct spi_nor'.
+ * @sr: pointer to DMA-able buffer to write to the Status Register.
+ * @len: number of bytes to write to the Status Register.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
+{
+ int ret;
+
+ ret = spi_nor_write_enable(nor);
+ if (ret)
+ return ret;
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_OUT(len, sr, 1));
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR,
+ sr, len);
+ }
+
+ if (ret) {
+ dev_dbg(nor->dev, "error %d writing SR\n", ret);
+ return ret;
+ }
+
+ return spi_nor_wait_till_ready(nor);
+}
+
+/**
+ * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
+ * ensure that the byte written match the received value.
+ * @nor: pointer to a 'struct spi_nor'.
+ * @sr1: byte value to be written to the Status Register.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
+{
+ int ret;
+
+ nor->bouncebuf[0] = sr1;
+
+ ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
+ if (ret)
+ return ret;
+
+ ret = spi_nor_read_sr(nor, nor->bouncebuf);
+ if (ret)
+ return ret;
+
+ if (nor->bouncebuf[0] != sr1) {
+ dev_dbg(nor->dev, "SR1: read back test failed\n");
+ return -EIO;
+ }
+
+ return 0;
+}
+
+/**
+ * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
+ * Status Register 2 in one shot. Ensure that the byte written in the Status
+ * Register 1 match the received value, and that the 16-bit Write did not
+ * affect what was already in the Status Register 2.
+ * @nor: pointer to a 'struct spi_nor'.
+ * @sr1: byte value to be written to the Status Register 1.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
+{
+ int ret;
+ u8 *sr_cr = nor->bouncebuf;
+ u8 cr_written;
+
+ /* Make sure we don't overwrite the contents of Status Register 2. */
+ if (!(nor->flags & SNOR_F_NO_READ_CR)) {
+ ret = spi_nor_read_cr(nor, &sr_cr[1]);
+ if (ret)
+ return ret;
+ } else if (nor->params->quad_enable) {
+ /*
+ * If the Status Register 2 Read command (35h) is not
+ * supported, we should at least be sure we don't
+ * change the value of the SR2 Quad Enable bit.
+ *
+ * We can safely assume that when the Quad Enable method is
+ * set, the value of the QE bit is one, as a consequence of the
+ * nor->params->quad_enable() call.
+ *
+ * We can safely assume that the Quad Enable bit is present in
+ * the Status Register 2 at BIT(1). According to the JESD216
+ * revB standard, BFPT DWORDS[15], bits 22:20, the 16-bit
+ * Write Status (01h) command is available just for the cases
+ * in which the QE bit is described in SR2 at BIT(1).
+ */
+ sr_cr[1] = SR2_QUAD_EN_BIT1;
+ } else {
+ sr_cr[1] = 0;
+ }
+
+ sr_cr[0] = sr1;
+
+ ret = spi_nor_write_sr(nor, sr_cr, 2);
+ if (ret)
+ return ret;
+
+ if (nor->flags & SNOR_F_NO_READ_CR)
+ return 0;
+
+ cr_written = sr_cr[1];
+
+ ret = spi_nor_read_cr(nor, &sr_cr[1]);
+ if (ret)
+ return ret;
+
+ if (cr_written != sr_cr[1]) {
+ dev_dbg(nor->dev, "CR: read back test failed\n");
+ return -EIO;
+ }
+
+ return 0;
+}
+
+/**
+ * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
+ * Configuration Register in one shot. Ensure that the byte written in the
+ * Configuration Register match the received value, and that the 16-bit Write
+ * did not affect what was already in the Status Register 1.
+ * @nor: pointer to a 'struct spi_nor'.
+ * @cr: byte value to be written to the Configuration Register.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
+{
+ int ret;
+ u8 *sr_cr = nor->bouncebuf;
+ u8 sr_written;
+
+ /* Keep the current value of the Status Register 1. */
+ ret = spi_nor_read_sr(nor, sr_cr);
+ if (ret)
+ return ret;
+
+ sr_cr[1] = cr;
+
+ ret = spi_nor_write_sr(nor, sr_cr, 2);
+ if (ret)
+ return ret;
+
+ sr_written = sr_cr[0];
+
+ ret = spi_nor_read_sr(nor, sr_cr);
+ if (ret)
+ return ret;
+
+ if (sr_written != sr_cr[0]) {
+ dev_dbg(nor->dev, "SR: Read back test failed\n");
+ return -EIO;
+ }
+
+ if (nor->flags & SNOR_F_NO_READ_CR)
+ return 0;
+
+ ret = spi_nor_read_cr(nor, &sr_cr[1]);
+ if (ret)
+ return ret;
+
+ if (cr != sr_cr[1]) {
+ dev_dbg(nor->dev, "CR: read back test failed\n");
+ return -EIO;
+ }
+
+ return 0;
+}
+
+/**
+ * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
+ * the byte written match the received value without affecting other bits in the
+ * Status Register 1 and 2.
+ * @nor: pointer to a 'struct spi_nor'.
+ * @sr1: byte value to be written to the Status Register.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
+{
+ if (nor->flags & SNOR_F_HAS_16BIT_SR)
+ return spi_nor_write_16bit_sr_and_check(nor, sr1);
+
+ return spi_nor_write_sr1_and_check(nor, sr1);
+}
+
+/**
+ * spi_nor_write_sr2() - Write the Status Register 2 using the
+ * SPINOR_OP_WRSR2 (3eh) command.
+ * @nor: pointer to 'struct spi_nor'.
+ * @sr2: pointer to DMA-able buffer to write to the Status Register 2.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
+{
+ int ret;
+
+ ret = spi_nor_write_enable(nor);
+ if (ret)
+ return ret;
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR2, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_OUT(1, sr2, 1));
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR2,
+ sr2, 1);
+ }
+
+ if (ret) {
+ dev_dbg(nor->dev, "error %d writing SR2\n", ret);
+ return ret;
+ }
+
+ return spi_nor_wait_till_ready(nor);
+}
+
+/**
+ * spi_nor_read_sr2() - Read the Status Register 2 using the
+ * SPINOR_OP_RDSR2 (3fh) command.
+ * @nor: pointer to 'struct spi_nor'.
+ * @sr2: pointer to DMA-able buffer where the value of the
+ * Status Register 2 will be written.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
+{
+ int ret;
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR2, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_IN(1, sr2, 1));
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR2,
+ sr2, 1);
+ }
+
+ if (ret)
+ dev_dbg(nor->dev, "error %d reading SR2\n", ret);
+
+ return ret;
+}
+
+/**
+ * spi_nor_erase_chip() - Erase the entire flash memory.
+ * @nor: pointer to 'struct spi_nor'.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_erase_chip(struct spi_nor *nor)
+{
+ int ret;
+
+ dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_NO_DATA);
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CHIP_ERASE,
+ NULL, 0);
+ }
+
+ if (ret)
+ dev_dbg(nor->dev, "error %d erasing chip\n", ret);
+
+ return ret;
+}
+
+static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
+{
+ size_t i;
+
+ for (i = 0; i < size; i++)
+ if (table[i][0] == opcode)
+ return table[i][1];
+
+ /* No conversion found, keep input op code. */
+ return opcode;
+}
+
+u8 spi_nor_convert_3to4_read(u8 opcode)
+{
+ static const u8 spi_nor_3to4_read[][2] = {
+ { SPINOR_OP_READ, SPINOR_OP_READ_4B },
+ { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
+ { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
+ { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
+ { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
+ { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
+ { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B },
+ { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B },
+
+ { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B },
+ { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B },
+ { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B },
+ };
+
+ return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
+ ARRAY_SIZE(spi_nor_3to4_read));
+}
+
+static u8 spi_nor_convert_3to4_program(u8 opcode)
+{
+ static const u8 spi_nor_3to4_program[][2] = {
+ { SPINOR_OP_PP, SPINOR_OP_PP_4B },
+ { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
+ { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
+ { SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B },
+ { SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B },
+ };
+
+ return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
+ ARRAY_SIZE(spi_nor_3to4_program));
+}
+
+static u8 spi_nor_convert_3to4_erase(u8 opcode)
+{
+ static const u8 spi_nor_3to4_erase[][2] = {
+ { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
+ { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
+ { SPINOR_OP_SE, SPINOR_OP_SE_4B },
+ };
+
+ return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
+ ARRAY_SIZE(spi_nor_3to4_erase));
+}
+
+static bool spi_nor_has_uniform_erase(const struct spi_nor *nor)
+{
+ return !!nor->params->erase_map.uniform_erase_type;
+}
+
+static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
+{
+ nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
+ nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
+ nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
+
+ if (!spi_nor_has_uniform_erase(nor)) {
+ struct spi_nor_erase_map *map = &nor->params->erase_map;
+ struct spi_nor_erase_type *erase;
+ int i;
+
+ for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
+ erase = &map->erase_type[i];
+ erase->opcode =
+ spi_nor_convert_3to4_erase(erase->opcode);
+ }
+ }
+}
+
+int spi_nor_lock_and_prep(struct spi_nor *nor)
+{
+ int ret = 0;
+
+ mutex_lock(&nor->lock);
+
+ if (nor->controller_ops && nor->controller_ops->prepare) {
+ ret = nor->controller_ops->prepare(nor);
+ if (ret) {
+ mutex_unlock(&nor->lock);
+ return ret;
+ }
+ }
+ return ret;
+}
+
+void spi_nor_unlock_and_unprep(struct spi_nor *nor)
+{
+ if (nor->controller_ops && nor->controller_ops->unprepare)
+ nor->controller_ops->unprepare(nor);
+ mutex_unlock(&nor->lock);
+}
+
+static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr)
+{
+ if (!nor->params->convert_addr)
+ return addr;
+
+ return nor->params->convert_addr(nor, addr);
+}
+
+/*
+ * Initiate the erasure of a single sector
+ */
+static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
+{
+ int i;
+
+ addr = spi_nor_convert_addr(nor, addr);
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 1),
+ SPI_MEM_OP_ADDR(nor->addr_width, addr, 1),
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_NO_DATA);
+
+ return spi_mem_exec_op(nor->spimem, &op);
+ } else if (nor->controller_ops->erase) {
+ return nor->controller_ops->erase(nor, addr);
+ }
+
+ /*
+ * Default implementation, if driver doesn't have a specialized HW
+ * control
+ */
+ for (i = nor->addr_width - 1; i >= 0; i--) {
+ nor->bouncebuf[i] = addr & 0xff;
+ addr >>= 8;
+ }
+
+ return nor->controller_ops->write_reg(nor, nor->erase_opcode,
+ nor->bouncebuf, nor->addr_width);
+}
+
+/**
+ * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
+ * @erase: pointer to a structure that describes a SPI NOR erase type
+ * @dividend: dividend value
+ * @remainder: pointer to u32 remainder (will be updated)
+ *
+ * Return: the result of the division
+ */
+static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
+ u64 dividend, u32 *remainder)
+{
+ /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
+ *remainder = (u32)dividend & erase->size_mask;
+ return dividend >> erase->size_shift;
+}
+
+/**
+ * spi_nor_find_best_erase_type() - find the best erase type for the given
+ * offset in the serial flash memory and the
+ * number of bytes to erase. The region in
+ * which the address fits is expected to be
+ * provided.
+ * @map: the erase map of the SPI NOR
+ * @region: pointer to a structure that describes a SPI NOR erase region
+ * @addr: offset in the serial flash memory
+ * @len: number of bytes to erase
+ *
+ * Return: a pointer to the best fitted erase type, NULL otherwise.
+ */
+static const struct spi_nor_erase_type *
+spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
+ const struct spi_nor_erase_region *region,
+ u64 addr, u32 len)
+{
+ const struct spi_nor_erase_type *erase;
+ u32 rem;
+ int i;
+ u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
+
+ /*
+ * Erase types are ordered by size, with the smallest erase type at
+ * index 0.
+ */
+ for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
+ /* Does the erase region support the tested erase type? */
+ if (!(erase_mask & BIT(i)))
+ continue;
+
+ erase = &map->erase_type[i];
+
+ /* Don't erase more than what the user has asked for. */
+ if (erase->size > len)
+ continue;
+
+ /* Alignment is not mandatory for overlaid regions */
+ if (region->offset & SNOR_OVERLAID_REGION)
+ return erase;
+
+ spi_nor_div_by_erase_size(erase, addr, &rem);
+ if (rem)
+ continue;
+ else
+ return erase;
+ }
+
+ return NULL;
+}
+
+static u64 spi_nor_region_is_last(const struct spi_nor_erase_region *region)
+{
+ return region->offset & SNOR_LAST_REGION;
+}
+
+static u64 spi_nor_region_end(const struct spi_nor_erase_region *region)
+{
+ return (region->offset & ~SNOR_ERASE_FLAGS_MASK) + region->size;
+}
+
+/**
+ * spi_nor_region_next() - get the next spi nor region
+ * @region: pointer to a structure that describes a SPI NOR erase region
+ *
+ * Return: the next spi nor region or NULL if last region.
+ */
+struct spi_nor_erase_region *
+spi_nor_region_next(struct spi_nor_erase_region *region)
+{
+ if (spi_nor_region_is_last(region))
+ return NULL;
+ region++;
+ return region;
+}
+
+/**
+ * spi_nor_find_erase_region() - find the region of the serial flash memory in
+ * which the offset fits
+ * @map: the erase map of the SPI NOR
+ * @addr: offset in the serial flash memory
+ *
+ * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
+ * otherwise.
+ */
+static struct spi_nor_erase_region *
+spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
+{
+ struct spi_nor_erase_region *region = map->regions;
+ u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
+ u64 region_end = region_start + region->size;
+
+ while (addr < region_start || addr >= region_end) {
+ region = spi_nor_region_next(region);
+ if (!region)
+ return ERR_PTR(-EINVAL);
+
+ region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
+ region_end = region_start + region->size;
+ }
+
+ return region;
+}
+
+/**
+ * spi_nor_init_erase_cmd() - initialize an erase command
+ * @region: pointer to a structure that describes a SPI NOR erase region
+ * @erase: pointer to a structure that describes a SPI NOR erase type
+ *
+ * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
+ * otherwise.
+ */
+static struct spi_nor_erase_command *
+spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
+ const struct spi_nor_erase_type *erase)
+{
+ struct spi_nor_erase_command *cmd;
+
+ cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
+ if (!cmd)
+ return ERR_PTR(-ENOMEM);
+
+ INIT_LIST_HEAD(&cmd->list);
+ cmd->opcode = erase->opcode;
+ cmd->count = 1;
+
+ if (region->offset & SNOR_OVERLAID_REGION)
+ cmd->size = region->size;
+ else
+ cmd->size = erase->size;
+
+ return cmd;
+}
+
+/**
+ * spi_nor_destroy_erase_cmd_list() - destroy erase command list
+ * @erase_list: list of erase commands
+ */
+static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
+{
+ struct spi_nor_erase_command *cmd, *next;
+
+ list_for_each_entry_safe(cmd, next, erase_list, list) {
+ list_del(&cmd->list);
+ kfree(cmd);
+ }
+}
+
+/**
+ * spi_nor_init_erase_cmd_list() - initialize erase command list
+ * @nor: pointer to a 'struct spi_nor'
+ * @erase_list: list of erase commands to be executed once we validate that the
+ * erase can be performed
+ * @addr: offset in the serial flash memory
+ * @len: number of bytes to erase
+ *
+ * Builds the list of best fitted erase commands and verifies if the erase can
+ * be performed.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
+ struct list_head *erase_list,
+ u64 addr, u32 len)
+{
+ const struct spi_nor_erase_map *map = &nor->params->erase_map;
+ const struct spi_nor_erase_type *erase, *prev_erase = NULL;
+ struct spi_nor_erase_region *region;
+ struct spi_nor_erase_command *cmd = NULL;
+ u64 region_end;
+ int ret = -EINVAL;
+
+ region = spi_nor_find_erase_region(map, addr);
+ if (IS_ERR(region))
+ return PTR_ERR(region);
+
+ region_end = spi_nor_region_end(region);
+
+ while (len) {
+ erase = spi_nor_find_best_erase_type(map, region, addr, len);
+ if (!erase)
+ goto destroy_erase_cmd_list;
+
+ if (prev_erase != erase ||
+ region->offset & SNOR_OVERLAID_REGION) {
+ cmd = spi_nor_init_erase_cmd(region, erase);
+ if (IS_ERR(cmd)) {
+ ret = PTR_ERR(cmd);
+ goto destroy_erase_cmd_list;
+ }
+
+ list_add_tail(&cmd->list, erase_list);
+ } else {
+ cmd->count++;
+ }
+
+ addr += cmd->size;
+ len -= cmd->size;
+
+ if (len && addr >= region_end) {
+ region = spi_nor_region_next(region);
+ if (!region)
+ goto destroy_erase_cmd_list;
+ region_end = spi_nor_region_end(region);
+ }
+
+ prev_erase = erase;
+ }
+
+ return 0;
+
+destroy_erase_cmd_list:
+ spi_nor_destroy_erase_cmd_list(erase_list);
+ return ret;
+}
+
+/**
+ * spi_nor_erase_multi_sectors() - perform a non-uniform erase
+ * @nor: pointer to a 'struct spi_nor'
+ * @addr: offset in the serial flash memory
+ * @len: number of bytes to erase
+ *
+ * Build a list of best fitted erase commands and execute it once we validate
+ * that the erase can be performed.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
+{
+ LIST_HEAD(erase_list);
+ struct spi_nor_erase_command *cmd, *next;
+ int ret;
+
+ ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
+ if (ret)
+ return ret;
+
+ list_for_each_entry_safe(cmd, next, &erase_list, list) {
+ nor->erase_opcode = cmd->opcode;
+ while (cmd->count) {
+ ret = spi_nor_write_enable(nor);
+ if (ret)
+ goto destroy_erase_cmd_list;
+
+ ret = spi_nor_erase_sector(nor, addr);
+ if (ret)
+ goto destroy_erase_cmd_list;
+
+ addr += cmd->size;
+ cmd->count--;
+
+ ret = spi_nor_wait_till_ready(nor);
+ if (ret)
+ goto destroy_erase_cmd_list;
+ }
+ list_del(&cmd->list);
+ kfree(cmd);
+ }
+
+ return 0;
+
+destroy_erase_cmd_list:
+ spi_nor_destroy_erase_cmd_list(&erase_list);
+ return ret;
+}
+
+/*
+ * Erase an address range on the nor chip. The address range may extend
+ * one or more erase sectors. Return an error is there is a problem erasing.
+ */
+static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
+{
+ struct spi_nor *nor = mtd_to_spi_nor(mtd);
+ u32 addr, len;
+ uint32_t rem;
+ int ret;
+
+ dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
+ (long long)instr->len);
+
+ if (spi_nor_has_uniform_erase(nor)) {
+ div_u64_rem(instr->len, mtd->erasesize, &rem);
+ if (rem)
+ return -EINVAL;
+ }
+
+ addr = instr->addr;
+ len = instr->len;
+
+ ret = spi_nor_lock_and_prep(nor);
+ if (ret)
+ return ret;
+
+ /* whole-chip erase? */
+ if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
+ unsigned long timeout;
+
+ ret = spi_nor_write_enable(nor);
+ if (ret)
+ goto erase_err;
+
+ ret = spi_nor_erase_chip(nor);
+ if (ret)
+ goto erase_err;
+
+ /*
+ * Scale the timeout linearly with the size of the flash, with
+ * a minimum calibrated to an old 2MB flash. We could try to
+ * pull these from CFI/SFDP, but these values should be good
+ * enough for now.
+ */
+ timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
+ CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
+ (unsigned long)(mtd->size / SZ_2M));
+ ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
+ if (ret)
+ goto erase_err;
+
+ /* REVISIT in some cases we could speed up erasing large regions
+ * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
+ * to use "small sector erase", but that's not always optimal.
+ */
+
+ /* "sector"-at-a-time erase */
+ } else if (spi_nor_has_uniform_erase(nor)) {
+ while (len) {
+ ret = spi_nor_write_enable(nor);
+ if (ret)
+ goto erase_err;
+
+ ret = spi_nor_erase_sector(nor, addr);
+ if (ret)
+ goto erase_err;
+
+ addr += mtd->erasesize;
+ len -= mtd->erasesize;
+
+ ret = spi_nor_wait_till_ready(nor);
+ if (ret)
+ goto erase_err;
+ }
+
+ /* erase multiple sectors */
+ } else {
+ ret = spi_nor_erase_multi_sectors(nor, addr, len);
+ if (ret)
+ goto erase_err;
+ }
+
+ ret = spi_nor_write_disable(nor);
+
+erase_err:
+ spi_nor_unlock_and_unprep(nor);
+
+ return ret;
+}
+
+static u8 spi_nor_get_sr_bp_mask(struct spi_nor *nor)
+{
+ u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
+
+ if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6)
+ return mask | SR_BP3_BIT6;
+
+ if (nor->flags & SNOR_F_HAS_4BIT_BP)
+ return mask | SR_BP3;
+
+ return mask;
+}
+
+static u8 spi_nor_get_sr_tb_mask(struct spi_nor *nor)
+{
+ if (nor->flags & SNOR_F_HAS_SR_TB_BIT6)
+ return SR_TB_BIT6;
+ else
+ return SR_TB_BIT5;
+}
+
+static u64 spi_nor_get_min_prot_length_sr(struct spi_nor *nor)
+{
+ unsigned int bp_slots, bp_slots_needed;
+ u8 mask = spi_nor_get_sr_bp_mask(nor);
+
+ /* Reserved one for "protect none" and one for "protect all". */
+ bp_slots = (1 << hweight8(mask)) - 2;
+ bp_slots_needed = ilog2(nor->info->n_sectors);
+
+ if (bp_slots_needed > bp_slots)
+ return nor->info->sector_size <<
+ (bp_slots_needed - bp_slots);
+ else
+ return nor->info->sector_size;
+}
+
+static void spi_nor_get_locked_range_sr(struct spi_nor *nor, u8 sr, loff_t *ofs,
+ uint64_t *len)
+{
+ struct mtd_info *mtd = &nor->mtd;
+ u64 min_prot_len;
+ u8 mask = spi_nor_get_sr_bp_mask(nor);
+ u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
+ u8 bp, val = sr & mask;
+
+ if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3_BIT6)
+ val = (val & ~SR_BP3_BIT6) | SR_BP3;
+
+ bp = val >> SR_BP_SHIFT;
+
+ if (!bp) {
+ /* No protection */
+ *ofs = 0;
+ *len = 0;
+ return;
+ }
+
+ min_prot_len = spi_nor_get_min_prot_length_sr(nor);
+ *len = min_prot_len << (bp - 1);
+
+ if (*len > mtd->size)
+ *len = mtd->size;
+
+ if (nor->flags & SNOR_F_HAS_SR_TB && sr & tb_mask)
+ *ofs = 0;
+ else
+ *ofs = mtd->size - *len;
+}
+
+/*
+ * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
+ * @locked is false); 0 otherwise
+ */
+static int spi_nor_check_lock_status_sr(struct spi_nor *nor, loff_t ofs,
+ uint64_t len, u8 sr, bool locked)
+{
+ loff_t lock_offs;
+ uint64_t lock_len;
+
+ if (!len)
+ return 1;
+
+ spi_nor_get_locked_range_sr(nor, sr, &lock_offs, &lock_len);
+
+ if (locked)
+ /* Requested range is a sub-range of locked range */
+ return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
+ else
+ /* Requested range does not overlap with locked range */
+ return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
+}
+
+static int spi_nor_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
+ u8 sr)
+{
+ return spi_nor_check_lock_status_sr(nor, ofs, len, sr, true);
+}
+
+static int spi_nor_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
+ u8 sr)
+{
+ return spi_nor_check_lock_status_sr(nor, ofs, len, sr, false);
+}
+
+/*
+ * Lock a region of the flash. Compatible with ST Micro and similar flash.
+ * Supports the block protection bits BP{0,1,2}/BP{0,1,2,3} in the status
+ * register
+ * (SR). Does not support these features found in newer SR bitfields:
+ * - SEC: sector/block protect - only handle SEC=0 (block protect)
+ * - CMP: complement protect - only support CMP=0 (range is not complemented)
+ *
+ * Support for the following is provided conditionally for some flash:
+ * - TB: top/bottom protect
+ *
+ * Sample table portion for 8MB flash (Winbond w25q64fw):
+ *
+ * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
+ * --------------------------------------------------------------------------
+ * X | X | 0 | 0 | 0 | NONE | NONE
+ * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
+ * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
+ * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
+ * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
+ * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
+ * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
+ * X | X | 1 | 1 | 1 | 8 MB | ALL
+ * ------|-------|-------|-------|-------|---------------|-------------------
+ * 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64
+ * 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32
+ * 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16
+ * 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8
+ * 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4
+ * 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2
+ *
+ * Returns negative on errors, 0 on success.
+ */
+static int spi_nor_sr_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
+{
+ struct mtd_info *mtd = &nor->mtd;
+ u64 min_prot_len;
+ int ret, status_old, status_new;
+ u8 mask = spi_nor_get_sr_bp_mask(nor);
+ u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
+ u8 pow, val;
+ loff_t lock_len;
+ bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
+ bool use_top;
+
+ ret = spi_nor_read_sr(nor, nor->bouncebuf);
+ if (ret)
+ return ret;
+
+ status_old = nor->bouncebuf[0];
+
+ /* If nothing in our range is unlocked, we don't need to do anything */
+ if (spi_nor_is_locked_sr(nor, ofs, len, status_old))
+ return 0;
+
+ /* If anything below us is unlocked, we can't use 'bottom' protection */
+ if (!spi_nor_is_locked_sr(nor, 0, ofs, status_old))
+ can_be_bottom = false;
+
+ /* If anything above us is unlocked, we can't use 'top' protection */
+ if (!spi_nor_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
+ status_old))
+ can_be_top = false;
+
+ if (!can_be_bottom && !can_be_top)
+ return -EINVAL;
+
+ /* Prefer top, if both are valid */
+ use_top = can_be_top;
+
+ /* lock_len: length of region that should end up locked */
+ if (use_top)
+ lock_len = mtd->size - ofs;
+ else
+ lock_len = ofs + len;
+
+ if (lock_len == mtd->size) {
+ val = mask;
+ } else {
+ min_prot_len = spi_nor_get_min_prot_length_sr(nor);
+ pow = ilog2(lock_len) - ilog2(min_prot_len) + 1;
+ val = pow << SR_BP_SHIFT;
+
+ if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3)
+ val = (val & ~SR_BP3) | SR_BP3_BIT6;
+
+ if (val & ~mask)
+ return -EINVAL;
+
+ /* Don't "lock" with no region! */
+ if (!(val & mask))
+ return -EINVAL;
+ }
+
+ status_new = (status_old & ~mask & ~tb_mask) | val;
+
+ /* Disallow further writes if WP pin is asserted */
+ status_new |= SR_SRWD;
+
+ if (!use_top)
+ status_new |= tb_mask;
+
+ /* Don't bother if they're the same */
+ if (status_new == status_old)
+ return 0;
+
+ /* Only modify protection if it will not unlock other areas */
+ if ((status_new & mask) < (status_old & mask))
+ return -EINVAL;
+
+ return spi_nor_write_sr_and_check(nor, status_new);
+}
+
+/*
+ * Unlock a region of the flash. See spi_nor_sr_lock() for more info
+ *
+ * Returns negative on errors, 0 on success.
+ */
+static int spi_nor_sr_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
+{
+ struct mtd_info *mtd = &nor->mtd;
+ u64 min_prot_len;
+ int ret, status_old, status_new;
+ u8 mask = spi_nor_get_sr_bp_mask(nor);
+ u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
+ u8 pow, val;
+ loff_t lock_len;
+ bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
+ bool use_top;
+
+ ret = spi_nor_read_sr(nor, nor->bouncebuf);
+ if (ret)
+ return ret;
+
+ status_old = nor->bouncebuf[0];
+
+ /* If nothing in our range is locked, we don't need to do anything */
+ if (spi_nor_is_unlocked_sr(nor, ofs, len, status_old))
+ return 0;
+
+ /* If anything below us is locked, we can't use 'top' protection */
+ if (!spi_nor_is_unlocked_sr(nor, 0, ofs, status_old))
+ can_be_top = false;
+
+ /* If anything above us is locked, we can't use 'bottom' protection */
+ if (!spi_nor_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
+ status_old))
+ can_be_bottom = false;
+
+ if (!can_be_bottom && !can_be_top)
+ return -EINVAL;
+
+ /* Prefer top, if both are valid */
+ use_top = can_be_top;
+
+ /* lock_len: length of region that should remain locked */
+ if (use_top)
+ lock_len = mtd->size - (ofs + len);
+ else
+ lock_len = ofs;
+
+ if (lock_len == 0) {
+ val = 0; /* fully unlocked */
+ } else {
+ min_prot_len = spi_nor_get_min_prot_length_sr(nor);
+ pow = ilog2(lock_len) - ilog2(min_prot_len) + 1;
+ val = pow << SR_BP_SHIFT;
+
+ if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3)
+ val = (val & ~SR_BP3) | SR_BP3_BIT6;
+
+ /* Some power-of-two sizes are not supported */
+ if (val & ~mask)
+ return -EINVAL;
+ }
+
+ status_new = (status_old & ~mask & ~tb_mask) | val;
+
+ /* Don't protect status register if we're fully unlocked */
+ if (lock_len == 0)
+ status_new &= ~SR_SRWD;
+
+ if (!use_top)
+ status_new |= tb_mask;
+
+ /* Don't bother if they're the same */
+ if (status_new == status_old)
+ return 0;
+
+ /* Only modify protection if it will not lock other areas */
+ if ((status_new & mask) > (status_old & mask))
+ return -EINVAL;
+
+ return spi_nor_write_sr_and_check(nor, status_new);
+}
+
+/*
+ * Check if a region of the flash is (completely) locked. See spi_nor_sr_lock()
+ * for more info.
+ *
+ * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
+ * negative on errors.
+ */
+static int spi_nor_sr_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
+{
+ int ret;
+
+ ret = spi_nor_read_sr(nor, nor->bouncebuf);
+ if (ret)
+ return ret;
+
+ return spi_nor_is_locked_sr(nor, ofs, len, nor->bouncebuf[0]);
+}
+
+static const struct spi_nor_locking_ops spi_nor_sr_locking_ops = {
+ .lock = spi_nor_sr_lock,
+ .unlock = spi_nor_sr_unlock,
+ .is_locked = spi_nor_sr_is_locked,
+};
+
+static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+ struct spi_nor *nor = mtd_to_spi_nor(mtd);
+ int ret;
+
+ ret = spi_nor_lock_and_prep(nor);
+ if (ret)
+ return ret;
+
+ ret = nor->params->locking_ops->lock(nor, ofs, len);
+
+ spi_nor_unlock_and_unprep(nor);
+ return ret;
+}
+
+static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+ struct spi_nor *nor = mtd_to_spi_nor(mtd);
+ int ret;
+
+ ret = spi_nor_lock_and_prep(nor);
+ if (ret)
+ return ret;
+
+ ret = nor->params->locking_ops->unlock(nor, ofs, len);
+
+ spi_nor_unlock_and_unprep(nor);
+ return ret;
+}
+
+static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+ struct spi_nor *nor = mtd_to_spi_nor(mtd);
+ int ret;
+
+ ret = spi_nor_lock_and_prep(nor);
+ if (ret)
+ return ret;
+
+ ret = nor->params->locking_ops->is_locked(nor, ofs, len);
+
+ spi_nor_unlock_and_unprep(nor);
+ return ret;
+}
+
+/**
+ * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
+ * Register 1.
+ * @nor: pointer to a 'struct spi_nor'
+ *
+ * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
+{
+ int ret;
+
+ ret = spi_nor_read_sr(nor, nor->bouncebuf);
+ if (ret)
+ return ret;
+
+ if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
+ return 0;
+
+ nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
+
+ return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
+}
+
+/**
+ * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
+ * Register 2.
+ * @nor: pointer to a 'struct spi_nor'.
+ *
+ * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
+{
+ int ret;
+
+ if (nor->flags & SNOR_F_NO_READ_CR)
+ return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
+
+ ret = spi_nor_read_cr(nor, nor->bouncebuf);
+ if (ret)
+ return ret;
+
+ if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
+ return 0;
+
+ nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;
+
+ return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
+}
+
+/**
+ * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
+ * @nor: pointer to a 'struct spi_nor'
+ *
+ * Set the Quad Enable (QE) bit in the Status Register 2.
+ *
+ * This is one of the procedures to set the QE bit described in the SFDP
+ * (JESD216 rev B) specification but no manufacturer using this procedure has
+ * been identified yet, hence the name of the function.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
+{
+ u8 *sr2 = nor->bouncebuf;
+ int ret;
+ u8 sr2_written;
+
+ /* Check current Quad Enable bit value. */
+ ret = spi_nor_read_sr2(nor, sr2);
+ if (ret)
+ return ret;
+ if (*sr2 & SR2_QUAD_EN_BIT7)
+ return 0;
+
+ /* Update the Quad Enable bit. */
+ *sr2 |= SR2_QUAD_EN_BIT7;
+
+ ret = spi_nor_write_sr2(nor, sr2);
+ if (ret)
+ return ret;
+
+ sr2_written = *sr2;
+
+ /* Read back and check it. */
+ ret = spi_nor_read_sr2(nor, sr2);
+ if (ret)
+ return ret;
+
+ if (*sr2 != sr2_written) {
+ dev_dbg(nor->dev, "SR2: Read back test failed\n");
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static const struct spi_nor_manufacturer *manufacturers[] = {
+ &spi_nor_atmel,
+ &spi_nor_catalyst,
+ &spi_nor_eon,
+ &spi_nor_esmt,
+ &spi_nor_everspin,
+ &spi_nor_fujitsu,
+ &spi_nor_gigadevice,
+ &spi_nor_intel,
+ &spi_nor_issi,
+ &spi_nor_macronix,
+ &spi_nor_micron,
+ &spi_nor_st,
+ &spi_nor_spansion,
+ &spi_nor_sst,
+ &spi_nor_winbond,
+ &spi_nor_xilinx,
+ &spi_nor_xmc,
+};
+
+static const struct flash_info *
+spi_nor_search_part_by_id(const struct flash_info *parts, unsigned int nparts,
+ const u8 *id)
+{
+ unsigned int i;
+
+ for (i = 0; i < nparts; i++) {
+ if (parts[i].id_len &&
+ !memcmp(parts[i].id, id, parts[i].id_len))
+ return &parts[i];
+ }
+
+ return NULL;
+}
+
+static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
+{
+ const struct flash_info *info;
+ u8 *id = nor->bouncebuf;
+ unsigned int i;
+ int ret;
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_IN(SPI_NOR_MAX_ID_LEN, id, 1));
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
+ SPI_NOR_MAX_ID_LEN);
+ }
+ if (ret) {
+ dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
+ return ERR_PTR(ret);
+ }
+
+ for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
+ info = spi_nor_search_part_by_id(manufacturers[i]->parts,
+ manufacturers[i]->nparts,
+ id);
+ if (info) {
+ nor->manufacturer = manufacturers[i];
+ return info;
+ }
+ }
+
+ dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
+ SPI_NOR_MAX_ID_LEN, id);
+ return ERR_PTR(-ENODEV);
+}
+
+static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf)
+{
+ struct spi_nor *nor = mtd_to_spi_nor(mtd);
+ ssize_t ret;
+
+ dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
+
+ ret = spi_nor_lock_and_prep(nor);
+ if (ret)
+ return ret;
+
+ while (len) {
+ loff_t addr = from;
+
+ addr = spi_nor_convert_addr(nor, addr);
+
+ ret = spi_nor_read_data(nor, addr, len, buf);
+ if (ret == 0) {
+ /* We shouldn't see 0-length reads */
+ ret = -EIO;
+ goto read_err;
+ }
+ if (ret < 0)
+ goto read_err;
+
+ WARN_ON(ret > len);
+ *retlen += ret;
+ buf += ret;
+ from += ret;
+ len -= ret;
+ }
+ ret = 0;
+
+read_err:
+ spi_nor_unlock_and_unprep(nor);
+ return ret;
+}
+
+/*
+ * Write an address range to the nor chip. Data must be written in
+ * FLASH_PAGESIZE chunks. The address range may be any size provided
+ * it is within the physical boundaries.
+ */
+static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const u_char *buf)
+{
+ struct spi_nor *nor = mtd_to_spi_nor(mtd);
+ size_t page_offset, page_remain, i;
+ ssize_t ret;
+
+ dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
+
+ ret = spi_nor_lock_and_prep(nor);
+ if (ret)
+ return ret;
+
+ for (i = 0; i < len; ) {
+ ssize_t written;
+ loff_t addr = to + i;
+
+ /*
+ * If page_size is a power of two, the offset can be quickly
+ * calculated with an AND operation. On the other cases we
+ * need to do a modulus operation (more expensive).
+ * Power of two numbers have only one bit set and we can use
+ * the instruction hweight32 to detect if we need to do a
+ * modulus (do_div()) or not.
+ */
+ if (hweight32(nor->page_size) == 1) {
+ page_offset = addr & (nor->page_size - 1);
+ } else {
+ uint64_t aux = addr;
+
+ page_offset = do_div(aux, nor->page_size);
+ }
+ /* the size of data remaining on the first page */
+ page_remain = min_t(size_t,
+ nor->page_size - page_offset, len - i);
+
+ addr = spi_nor_convert_addr(nor, addr);
+
+ ret = spi_nor_write_enable(nor);
+ if (ret)
+ goto write_err;
+
+ ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
+ if (ret < 0)
+ goto write_err;
+ written = ret;
+
+ ret = spi_nor_wait_till_ready(nor);
+ if (ret)
+ goto write_err;
+ *retlen += written;
+ i += written;
+ }
+
+write_err:
+ spi_nor_unlock_and_unprep(nor);
+ return ret;
+}
+
+static int spi_nor_check(struct spi_nor *nor)
+{
+ if (!nor->dev ||
+ (!nor->spimem && !nor->controller_ops) ||
+ (!nor->spimem && nor->controller_ops &&
+ (!nor->controller_ops->read ||
+ !nor->controller_ops->write ||
+ !nor->controller_ops->read_reg ||
+ !nor->controller_ops->write_reg))) {
+ pr_err("spi-nor: please fill all the necessary fields!\n");
+ return -EINVAL;
+ }
+
+ if (nor->spimem && nor->controller_ops) {
+ dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static void
+spi_nor_set_read_settings(struct spi_nor_read_command *read,
+ u8 num_mode_clocks,
+ u8 num_wait_states,
+ u8 opcode,
+ enum spi_nor_protocol proto)
+{
+ read->num_mode_clocks = num_mode_clocks;
+ read->num_wait_states = num_wait_states;
+ read->opcode = opcode;
+ read->proto = proto;
+}
+
+void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
+ enum spi_nor_protocol proto)
+{
+ pp->opcode = opcode;
+ pp->proto = proto;
+}
+
+static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
+{
+ size_t i;
+
+ for (i = 0; i < size; i++)
+ if (table[i][0] == (int)hwcaps)
+ return table[i][1];
+
+ return -EINVAL;
+}
+
+int spi_nor_hwcaps_read2cmd(u32 hwcaps)
+{
+ static const int hwcaps_read2cmd[][2] = {
+ { SNOR_HWCAPS_READ, SNOR_CMD_READ },
+ { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST },
+ { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR },
+ { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 },
+ { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 },
+ { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 },
+ { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR },
+ { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 },
+ { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 },
+ { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 },
+ { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR },
+ { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 },
+ { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 },
+ { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 },
+ { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR },
+ };
+
+ return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
+ ARRAY_SIZE(hwcaps_read2cmd));
+}
+
+static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
+{
+ static const int hwcaps_pp2cmd[][2] = {
+ { SNOR_HWCAPS_PP, SNOR_CMD_PP },
+ { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 },
+ { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 },
+ { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 },
+ { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 },
+ { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 },
+ { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 },
+ };
+
+ return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
+ ARRAY_SIZE(hwcaps_pp2cmd));
+}
+
+/**
+ * spi_nor_spimem_check_op - check if the operation is supported
+ * by controller
+ *@nor: pointer to a 'struct spi_nor'
+ *@op: pointer to op template to be checked
+ *
+ * Returns 0 if operation is supported, -ENOTSUPP otherwise.
+ */
+static int spi_nor_spimem_check_op(struct spi_nor *nor,
+ struct spi_mem_op *op)
+{
+ /*
+ * First test with 4 address bytes. The opcode itself might
+ * be a 3B addressing opcode but we don't care, because
+ * SPI controller implementation should not check the opcode,
+ * but just the sequence.
+ */
+ op->addr.nbytes = 4;
+ if (!spi_mem_supports_op(nor->spimem, op)) {
+ if (nor->mtd.size > SZ_16M)
+ return -ENOTSUPP;
+
+ /* If flash size <= 16MB, 3 address bytes are sufficient */
+ op->addr.nbytes = 3;
+ if (!spi_mem_supports_op(nor->spimem, op))
+ return -ENOTSUPP;
+ }
+
+ return 0;
+}
+
+/**
+ * spi_nor_spimem_check_readop - check if the read op is supported
+ * by controller
+ *@nor: pointer to a 'struct spi_nor'
+ *@read: pointer to op template to be checked
+ *
+ * Returns 0 if operation is supported, -ENOTSUPP otherwise.
+ */
+static int spi_nor_spimem_check_readop(struct spi_nor *nor,
+ const struct spi_nor_read_command *read)
+{
+ struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 1),
+ SPI_MEM_OP_ADDR(3, 0, 1),
+ SPI_MEM_OP_DUMMY(0, 1),
+ SPI_MEM_OP_DATA_IN(0, NULL, 1));
+
+ op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(read->proto);
+ op.addr.buswidth = spi_nor_get_protocol_addr_nbits(read->proto);
+ op.data.buswidth = spi_nor_get_protocol_data_nbits(read->proto);
+ op.dummy.buswidth = op.addr.buswidth;
+ op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
+ op.dummy.buswidth / 8;
+
+ return spi_nor_spimem_check_op(nor, &op);
+}
+
+/**
+ * spi_nor_spimem_check_pp - check if the page program op is supported
+ * by controller
+ *@nor: pointer to a 'struct spi_nor'
+ *@pp: pointer to op template to be checked
+ *
+ * Returns 0 if operation is supported, -ENOTSUPP otherwise.
+ */
+static int spi_nor_spimem_check_pp(struct spi_nor *nor,
+ const struct spi_nor_pp_command *pp)
+{
+ struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 1),
+ SPI_MEM_OP_ADDR(3, 0, 1),
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_OUT(0, NULL, 1));
+
+ op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(pp->proto);
+ op.addr.buswidth = spi_nor_get_protocol_addr_nbits(pp->proto);
+ op.data.buswidth = spi_nor_get_protocol_data_nbits(pp->proto);
+
+ return spi_nor_spimem_check_op(nor, &op);
+}
+
+/**
+ * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
+ * based on SPI controller capabilities
+ * @nor: pointer to a 'struct spi_nor'
+ * @hwcaps: pointer to resulting capabilities after adjusting
+ * according to controller and flash's capability
+ */
+static void
+spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
+{
+ struct spi_nor_flash_parameter *params = nor->params;
+ unsigned int cap;
+
+ /* DTR modes are not supported yet, mask them all. */
+ *hwcaps &= ~SNOR_HWCAPS_DTR;
+
+ /* X-X-X modes are not supported yet, mask them all. */
+ *hwcaps &= ~SNOR_HWCAPS_X_X_X;
+
+ for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
+ int rdidx, ppidx;
+
+ if (!(*hwcaps & BIT(cap)))
+ continue;
+
+ rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
+ if (rdidx >= 0 &&
+ spi_nor_spimem_check_readop(nor, &params->reads[rdidx]))
+ *hwcaps &= ~BIT(cap);
+
+ ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
+ if (ppidx < 0)
+ continue;
+
+ if (spi_nor_spimem_check_pp(nor,
+ &params->page_programs[ppidx]))
+ *hwcaps &= ~BIT(cap);
+ }
+}
+
+/**
+ * spi_nor_set_erase_type() - set a SPI NOR erase type
+ * @erase: pointer to a structure that describes a SPI NOR erase type
+ * @size: the size of the sector/block erased by the erase type
+ * @opcode: the SPI command op code to erase the sector/block
+ */
+void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
+ u8 opcode)
+{
+ erase->size = size;
+ erase->opcode = opcode;
+ /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
+ erase->size_shift = ffs(erase->size) - 1;
+ erase->size_mask = (1 << erase->size_shift) - 1;
+}
+
+/**
+ * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
+ * @map: the erase map of the SPI NOR
+ * @erase_mask: bitmask encoding erase types that can erase the entire
+ * flash memory
+ * @flash_size: the spi nor flash memory size
+ */
+void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
+ u8 erase_mask, u64 flash_size)
+{
+ /* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
+ map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
+ SNOR_LAST_REGION;
+ map->uniform_region.size = flash_size;
+ map->regions = &map->uniform_region;
+ map->uniform_erase_type = erase_mask;
+}
+
+int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
+ const struct sfdp_parameter_header *bfpt_header,
+ const struct sfdp_bfpt *bfpt,
+ struct spi_nor_flash_parameter *params)
+{
+ int ret;
+
+ if (nor->manufacturer && nor->manufacturer->fixups &&
+ nor->manufacturer->fixups->post_bfpt) {
+ ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
+ bfpt, params);
+ if (ret)
+ return ret;
+ }
+
+ if (nor->info->fixups && nor->info->fixups->post_bfpt)
+ return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt,
+ params);
+
+ return 0;
+}
+
+static int spi_nor_select_read(struct spi_nor *nor,
+ u32 shared_hwcaps)
+{
+ int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
+ const struct spi_nor_read_command *read;
+
+ if (best_match < 0)
+ return -EINVAL;
+
+ cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
+ if (cmd < 0)
+ return -EINVAL;
+
+ read = &nor->params->reads[cmd];
+ nor->read_opcode = read->opcode;
+ nor->read_proto = read->proto;
+
+ /*
+ * In the spi-nor framework, we don't need to make the difference
+ * between mode clock cycles and wait state clock cycles.
+ * Indeed, the value of the mode clock cycles is used by a QSPI
+ * flash memory to know whether it should enter or leave its 0-4-4
+ * (Continuous Read / XIP) mode.
+ * eXecution In Place is out of the scope of the mtd sub-system.
+ * Hence we choose to merge both mode and wait state clock cycles
+ * into the so called dummy clock cycles.
+ */
+ nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
+ return 0;
+}
+
+static int spi_nor_select_pp(struct spi_nor *nor,
+ u32 shared_hwcaps)
+{
+ int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
+ const struct spi_nor_pp_command *pp;
+
+ if (best_match < 0)
+ return -EINVAL;
+
+ cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
+ if (cmd < 0)
+ return -EINVAL;
+
+ pp = &nor->params->page_programs[cmd];
+ nor->program_opcode = pp->opcode;
+ nor->write_proto = pp->proto;
+ return 0;
+}
+
+/**
+ * spi_nor_select_uniform_erase() - select optimum uniform erase type
+ * @map: the erase map of the SPI NOR
+ * @wanted_size: the erase type size to search for. Contains the value of
+ * info->sector_size or of the "small sector" size in case
+ * CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined.
+ *
+ * Once the optimum uniform sector erase command is found, disable all the
+ * other.
+ *
+ * Return: pointer to erase type on success, NULL otherwise.
+ */
+static const struct spi_nor_erase_type *
+spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
+ const u32 wanted_size)
+{
+ const struct spi_nor_erase_type *tested_erase, *erase = NULL;
+ int i;
+ u8 uniform_erase_type = map->uniform_erase_type;
+
+ for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
+ if (!(uniform_erase_type & BIT(i)))
+ continue;
+
+ tested_erase = &map->erase_type[i];
+
+ /*
+ * If the current erase size is the one, stop here:
+ * we have found the right uniform Sector Erase command.
+ */
+ if (tested_erase->size == wanted_size) {
+ erase = tested_erase;
+ break;
+ }
+
+ /*
+ * Otherwise, the current erase size is still a valid canditate.
+ * Select the biggest valid candidate.
+ */
+ if (!erase && tested_erase->size)
+ erase = tested_erase;
+ /* keep iterating to find the wanted_size */
+ }
+
+ if (!erase)
+ return NULL;
+
+ /* Disable all other Sector Erase commands. */
+ map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
+ map->uniform_erase_type |= BIT(erase - map->erase_type);
+ return erase;
+}
+
+static int spi_nor_select_erase(struct spi_nor *nor)
+{
+ struct spi_nor_erase_map *map = &nor->params->erase_map;
+ const struct spi_nor_erase_type *erase = NULL;
+ struct mtd_info *mtd = &nor->mtd;
+ u32 wanted_size = nor->info->sector_size;
+ int i;
+
+ /*
+ * The previous implementation handling Sector Erase commands assumed
+ * that the SPI flash memory has an uniform layout then used only one
+ * of the supported erase sizes for all Sector Erase commands.
+ * So to be backward compatible, the new implementation also tries to
+ * manage the SPI flash memory as uniform with a single erase sector
+ * size, when possible.
+ */
+#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
+ /* prefer "small sector" erase if possible */
+ wanted_size = 4096u;
+#endif
+
+ if (spi_nor_has_uniform_erase(nor)) {
+ erase = spi_nor_select_uniform_erase(map, wanted_size);
+ if (!erase)
+ return -EINVAL;
+ nor->erase_opcode = erase->opcode;
+ mtd->erasesize = erase->size;
+ return 0;
+ }
+
+ /*
+ * For non-uniform SPI flash memory, set mtd->erasesize to the
+ * maximum erase sector size. No need to set nor->erase_opcode.
+ */
+ for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
+ if (map->erase_type[i].size) {
+ erase = &map->erase_type[i];
+ break;
+ }
+ }
+
+ if (!erase)
+ return -EINVAL;
+
+ mtd->erasesize = erase->size;
+ return 0;
+}
+
+static int spi_nor_default_setup(struct spi_nor *nor,
+ const struct spi_nor_hwcaps *hwcaps)
+{
+ struct spi_nor_flash_parameter *params = nor->params;
+ u32 ignored_mask, shared_mask;
+ int err;
+
+ /*
+ * Keep only the hardware capabilities supported by both the SPI
+ * controller and the SPI flash memory.
+ */
+ shared_mask = hwcaps->mask & params->hwcaps.mask;
+
+ if (nor->spimem) {
+ /*
+ * When called from spi_nor_probe(), all caps are set and we
+ * need to discard some of them based on what the SPI
+ * controller actually supports (using spi_mem_supports_op()).
+ */
+ spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
+ } else {
+ /*
+ * SPI n-n-n protocols are not supported when the SPI
+ * controller directly implements the spi_nor interface.
+ * Yet another reason to switch to spi-mem.
+ */
+ ignored_mask = SNOR_HWCAPS_X_X_X;
+ if (shared_mask & ignored_mask) {
+ dev_dbg(nor->dev,
+ "SPI n-n-n protocols are not supported.\n");
+ shared_mask &= ~ignored_mask;
+ }
+ }
+
+ /* Select the (Fast) Read command. */
+ err = spi_nor_select_read(nor, shared_mask);
+ if (err) {
+ dev_dbg(nor->dev,
+ "can't select read settings supported by both the SPI controller and memory.\n");
+ return err;
+ }
+
+ /* Select the Page Program command. */
+ err = spi_nor_select_pp(nor, shared_mask);
+ if (err) {
+ dev_dbg(nor->dev,
+ "can't select write settings supported by both the SPI controller and memory.\n");
+ return err;
+ }
+
+ /* Select the Sector Erase command. */
+ err = spi_nor_select_erase(nor);
+ if (err) {
+ dev_dbg(nor->dev,
+ "can't select erase settings supported by both the SPI controller and memory.\n");
+ return err;
+ }
+
+ return 0;
+}
+
+static int spi_nor_setup(struct spi_nor *nor,
+ const struct spi_nor_hwcaps *hwcaps)
+{
+ if (!nor->params->setup)
+ return 0;
+
+ return nor->params->setup(nor, hwcaps);
+}
+
+/**
+ * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
+ * settings based on MFR register and ->default_init() hook.
+ * @nor: pointer to a 'struct spi-nor'.
+ */
+static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
+{
+ if (nor->manufacturer && nor->manufacturer->fixups &&
+ nor->manufacturer->fixups->default_init)
+ nor->manufacturer->fixups->default_init(nor);
+
+ if (nor->info->fixups && nor->info->fixups->default_init)
+ nor->info->fixups->default_init(nor);
+}
+
+/**
+ * spi_nor_sfdp_init_params() - Initialize the flash's parameters and settings
+ * based on JESD216 SFDP standard.
+ * @nor: pointer to a 'struct spi-nor'.
+ *
+ * The method has a roll-back mechanism: in case the SFDP parsing fails, the
+ * legacy flash parameters and settings will be restored.
+ */
+static void spi_nor_sfdp_init_params(struct spi_nor *nor)
+{
+ struct spi_nor_flash_parameter sfdp_params;
+
+ memcpy(&sfdp_params, nor->params, sizeof(sfdp_params));
+
+ if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
+ nor->addr_width = 0;
+ nor->flags &= ~SNOR_F_4B_OPCODES;
+ } else {
+ memcpy(nor->params, &sfdp_params, sizeof(*nor->params));
+ }
+}
+
+/**
+ * spi_nor_info_init_params() - Initialize the flash's parameters and settings
+ * based on nor->info data.
+ * @nor: pointer to a 'struct spi-nor'.
+ */
+static void spi_nor_info_init_params(struct spi_nor *nor)
+{
+ struct spi_nor_flash_parameter *params = nor->params;
+ struct spi_nor_erase_map *map = &params->erase_map;
+ const struct flash_info *info = nor->info;
+ struct device_node *np = spi_nor_get_flash_node(nor);
+ u8 i, erase_mask;
+
+ /* Initialize legacy flash parameters and settings. */
+ params->quad_enable = spi_nor_sr2_bit1_quad_enable;
+ params->set_4byte_addr_mode = spansion_set_4byte_addr_mode;
+ params->setup = spi_nor_default_setup;
+ /* Default to 16-bit Write Status (01h) Command */
+ nor->flags |= SNOR_F_HAS_16BIT_SR;
+
+ /* Set SPI NOR sizes. */
+ params->size = (u64)info->sector_size * info->n_sectors;
+ params->page_size = info->page_size;
+
+ if (!(info->flags & SPI_NOR_NO_FR)) {
+ /* Default to Fast Read for DT and non-DT platform devices. */
+ params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
+
+ /* Mask out Fast Read if not requested at DT instantiation. */
+ if (np && !of_property_read_bool(np, "m25p,fast-read"))
+ params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
+ }
+
+ /* (Fast) Read settings. */
+ params->hwcaps.mask |= SNOR_HWCAPS_READ;
+ spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
+ 0, 0, SPINOR_OP_READ,
+ SNOR_PROTO_1_1_1);
+
+ if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
+ spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
+ 0, 8, SPINOR_OP_READ_FAST,
+ SNOR_PROTO_1_1_1);
+
+ if (info->flags & SPI_NOR_DUAL_READ) {
+ params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
+ spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
+ 0, 8, SPINOR_OP_READ_1_1_2,
+ SNOR_PROTO_1_1_2);
+ }
+
+ if (info->flags & SPI_NOR_QUAD_READ) {
+ params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
+ spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
+ 0, 8, SPINOR_OP_READ_1_1_4,
+ SNOR_PROTO_1_1_4);
+ }
+
+ if (info->flags & SPI_NOR_OCTAL_READ) {
+ params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
+ spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
+ 0, 8, SPINOR_OP_READ_1_1_8,
+ SNOR_PROTO_1_1_8);
+ }
+
+ /* Page Program settings. */
+ params->hwcaps.mask |= SNOR_HWCAPS_PP;
+ spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
+ SPINOR_OP_PP, SNOR_PROTO_1_1_1);
+
+ /*
+ * Sector Erase settings. Sort Erase Types in ascending order, with the
+ * smallest erase size starting at BIT(0).
+ */
+ erase_mask = 0;
+ i = 0;
+ if (info->flags & SECT_4K_PMC) {
+ erase_mask |= BIT(i);
+ spi_nor_set_erase_type(&map->erase_type[i], 4096u,
+ SPINOR_OP_BE_4K_PMC);
+ i++;
+ } else if (info->flags & SECT_4K) {
+ erase_mask |= BIT(i);
+ spi_nor_set_erase_type(&map->erase_type[i], 4096u,
+ SPINOR_OP_BE_4K);
+ i++;
+ }
+ erase_mask |= BIT(i);
+ spi_nor_set_erase_type(&map->erase_type[i], info->sector_size,
+ SPINOR_OP_SE);
+ spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
+}
+
+/**
+ * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
+ * after SFDP has been parsed (is also called for SPI NORs that do not
+ * support RDSFDP).
+ * @nor: pointer to a 'struct spi_nor'
+ *
+ * Typically used to tweak various parameters that could not be extracted by
+ * other means (i.e. when information provided by the SFDP/flash_info tables
+ * are incomplete or wrong).
+ */
+static void spi_nor_post_sfdp_fixups(struct spi_nor *nor)
+{
+ if (nor->manufacturer && nor->manufacturer->fixups &&
+ nor->manufacturer->fixups->post_sfdp)
+ nor->manufacturer->fixups->post_sfdp(nor);
+
+ if (nor->info->fixups && nor->info->fixups->post_sfdp)
+ nor->info->fixups->post_sfdp(nor);
+}
+
+/**
+ * spi_nor_late_init_params() - Late initialization of default flash parameters.
+ * @nor: pointer to a 'struct spi_nor'
+ *
+ * Used to set default flash parameters and settings when the ->default_init()
+ * hook or the SFDP parser let voids.
+ */
+static void spi_nor_late_init_params(struct spi_nor *nor)
+{
+ /*
+ * NOR protection support. When locking_ops are not provided, we pick
+ * the default ones.
+ */
+ if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops)
+ nor->params->locking_ops = &spi_nor_sr_locking_ops;
+}
+
+/**
+ * spi_nor_init_params() - Initialize the flash's parameters and settings.
+ * @nor: pointer to a 'struct spi-nor'.
+ *
+ * The flash parameters and settings are initialized based on a sequence of
+ * calls that are ordered by priority:
+ *
+ * 1/ Default flash parameters initialization. The initializations are done
+ * based on nor->info data:
+ * spi_nor_info_init_params()
+ *
+ * which can be overwritten by:
+ * 2/ Manufacturer flash parameters initialization. The initializations are
+ * done based on MFR register, or when the decisions can not be done solely
+ * based on MFR, by using specific flash_info tweeks, ->default_init():
+ * spi_nor_manufacturer_init_params()
+ *
+ * which can be overwritten by:
+ * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
+ * should be more accurate that the above.
+ * spi_nor_sfdp_init_params()
+ *
+ * Please note that there is a ->post_bfpt() fixup hook that can overwrite
+ * the flash parameters and settings immediately after parsing the Basic
+ * Flash Parameter Table.
+ *
+ * which can be overwritten by:
+ * 4/ Post SFDP flash parameters initialization. Used to tweak various
+ * parameters that could not be extracted by other means (i.e. when
+ * information provided by the SFDP/flash_info tables are incomplete or
+ * wrong).
+ * spi_nor_post_sfdp_fixups()
+ *
+ * 5/ Late default flash parameters initialization, used when the
+ * ->default_init() hook or the SFDP parser do not set specific params.
+ * spi_nor_late_init_params()
+ */
+static int spi_nor_init_params(struct spi_nor *nor)
+{
+ nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL);
+ if (!nor->params)
+ return -ENOMEM;
+
+ spi_nor_info_init_params(nor);
+
+ spi_nor_manufacturer_init_params(nor);
+
+ if ((nor->info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
+ !(nor->info->flags & SPI_NOR_SKIP_SFDP))
+ spi_nor_sfdp_init_params(nor);
+
+ spi_nor_post_sfdp_fixups(nor);
+
+ spi_nor_late_init_params(nor);
+
+ return 0;
+}
+
+/**
+ * spi_nor_quad_enable() - enable Quad I/O if needed.
+ * @nor: pointer to a 'struct spi_nor'
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_quad_enable(struct spi_nor *nor)
+{
+ if (!nor->params->quad_enable)
+ return 0;
+
+ if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
+ spi_nor_get_protocol_width(nor->write_proto) == 4))
+ return 0;
+
+ return nor->params->quad_enable(nor);
+}
+
+/**
+ * spi_nor_unlock_all() - Unlocks the entire flash memory array.
+ * @nor: pointer to a 'struct spi_nor'.
+ *
+ * Some SPI NOR flashes are write protected by default after a power-on reset
+ * cycle, in order to avoid inadvertent writes during power-up. Backward
+ * compatibility imposes to unlock the entire flash memory array at power-up
+ * by default.
+ */
+static int spi_nor_unlock_all(struct spi_nor *nor)
+{
+ if (nor->flags & SNOR_F_HAS_LOCK)
+ return spi_nor_unlock(&nor->mtd, 0, nor->params->size);
+
+ return 0;
+}
+
+static int spi_nor_init(struct spi_nor *nor)
+{
+ int err;
+
+ err = spi_nor_quad_enable(nor);
+ if (err) {
+ dev_dbg(nor->dev, "quad mode not supported\n");
+ return err;
+ }
+
+ err = spi_nor_unlock_all(nor);
+ if (err) {
+ dev_dbg(nor->dev, "Failed to unlock the entire flash memory array\n");
+ return err;
+ }
+
+ if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES)) {
+ /*
+ * If the RESET# pin isn't hooked up properly, or the system
+ * otherwise doesn't perform a reset command in the boot
+ * sequence, it's impossible to 100% protect against unexpected
+ * reboots (e.g., crashes). Warn the user (or hopefully, system
+ * designer) that this is bad.
+ */
+ WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
+ "enabling reset hack; may not recover from unexpected reboots\n");
+ nor->params->set_4byte_addr_mode(nor, true);
+ }
+
+ return 0;
+}
+
+/* mtd resume handler */
+static void spi_nor_resume(struct mtd_info *mtd)
+{
+ struct spi_nor *nor = mtd_to_spi_nor(mtd);
+ struct device *dev = nor->dev;
+ int ret;
+
+ /* re-initialize the nor chip */
+ ret = spi_nor_init(nor);
+ if (ret)
+ dev_err(dev, "resume() failed\n");
+}
+
+void spi_nor_restore(struct spi_nor *nor)
+{
+ /* restore the addressing mode */
+ if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
+ nor->flags & SNOR_F_BROKEN_RESET)
+ nor->params->set_4byte_addr_mode(nor, false);
+}
+EXPORT_SYMBOL_GPL(spi_nor_restore);
+
+static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
+ const char *name)
+{
+ unsigned int i, j;
+
+ for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
+ for (j = 0; j < manufacturers[i]->nparts; j++) {
+ if (!strcmp(name, manufacturers[i]->parts[j].name)) {
+ nor->manufacturer = manufacturers[i];
+ return &manufacturers[i]->parts[j];
+ }
+ }
+ }
+
+ return NULL;
+}
+
+static int spi_nor_set_addr_width(struct spi_nor *nor)
+{
+ if (nor->addr_width) {
+ /* already configured from SFDP */
+ } else if (nor->info->addr_width) {
+ nor->addr_width = nor->info->addr_width;
+ } else if (nor->mtd.size > 0x1000000) {
+ /* enable 4-byte addressing if the device exceeds 16MiB */
+ nor->addr_width = 4;
+ } else {
+ nor->addr_width = 3;
+ }
+
+ if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
+ dev_dbg(nor->dev, "address width is too large: %u\n",
+ nor->addr_width);
+ return -EINVAL;
+ }
+
+ /* Set 4byte opcodes when possible. */
+ if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES &&
+ !(nor->flags & SNOR_F_HAS_4BAIT))
+ spi_nor_set_4byte_opcodes(nor);
+
+ return 0;
+}
+
+static void spi_nor_debugfs_init(struct spi_nor *nor,
+ const struct flash_info *info)
+{
+ struct mtd_info *mtd = &nor->mtd;
+
+ mtd->dbg.partname = info->name;
+ mtd->dbg.partid = devm_kasprintf(nor->dev, GFP_KERNEL, "spi-nor:%*phN",
+ info->id_len, info->id);
+}
+
+static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
+ const char *name)
+{
+ const struct flash_info *info = NULL;
+
+ if (name)
+ info = spi_nor_match_id(nor, name);
+ /* Try to auto-detect if chip name wasn't specified or not found */
+ if (!info)
+ info = spi_nor_read_id(nor);
+ if (IS_ERR_OR_NULL(info))
+ return ERR_PTR(-ENOENT);
+
+ /*
+ * If caller has specified name of flash model that can normally be
+ * detected using JEDEC, let's verify it.
+ */
+ if (name && info->id_len) {
+ const struct flash_info *jinfo;
+
+ jinfo = spi_nor_read_id(nor);
+ if (IS_ERR(jinfo)) {
+ return jinfo;
+ } else if (jinfo != info) {
+ /*
+ * JEDEC knows better, so overwrite platform ID. We
+ * can't trust partitions any longer, but we'll let
+ * mtd apply them anyway, since some partitions may be
+ * marked read-only, and we don't want to lose that
+ * information, even if it's not 100% accurate.
+ */
+ dev_warn(nor->dev, "found %s, expected %s\n",
+ jinfo->name, info->name);
+ info = jinfo;
+ }
+ }
+
+ return info;
+}
+
+int spi_nor_scan(struct spi_nor *nor, const char *name,
+ const struct spi_nor_hwcaps *hwcaps)
+{
+ const struct flash_info *info;
+ struct device *dev = nor->dev;
+ struct mtd_info *mtd = &nor->mtd;
+ struct device_node *np = spi_nor_get_flash_node(nor);
+ int ret;
+ int i;
+
+ ret = spi_nor_check(nor);
+ if (ret)
+ return ret;
+
+ /* Reset SPI protocol for all commands. */
+ nor->reg_proto = SNOR_PROTO_1_1_1;
+ nor->read_proto = SNOR_PROTO_1_1_1;
+ nor->write_proto = SNOR_PROTO_1_1_1;
+
+ /*
+ * We need the bounce buffer early to read/write registers when going
+ * through the spi-mem layer (buffers have to be DMA-able).
+ * For spi-mem drivers, we'll reallocate a new buffer if
+ * nor->page_size turns out to be greater than PAGE_SIZE (which
+ * shouldn't happen before long since NOR pages are usually less
+ * than 1KB) after spi_nor_scan() returns.
+ */
+ nor->bouncebuf_size = PAGE_SIZE;
+ nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
+ GFP_KERNEL);
+ if (!nor->bouncebuf)
+ return -ENOMEM;
+
+ info = spi_nor_get_flash_info(nor, name);
+ if (IS_ERR(info))
+ return PTR_ERR(info);
+
+ nor->info = info;
+
+ spi_nor_debugfs_init(nor, info);
+
+ mutex_init(&nor->lock);
+
+ /*
+ * Make sure the XSR_RDY flag is set before calling
+ * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
+ * with Atmel spi-nor
+ */
+ if (info->flags & SPI_NOR_XSR_RDY)
+ nor->flags |= SNOR_F_READY_XSR_RDY;
+
+ if (info->flags & SPI_NOR_HAS_LOCK)
+ nor->flags |= SNOR_F_HAS_LOCK;
+
+ mtd->_write = spi_nor_write;
+
+ /* Init flash parameters based on flash_info struct and SFDP */
+ ret = spi_nor_init_params(nor);
+ if (ret)
+ return ret;
+
+ if (!mtd->name)
+ mtd->name = dev_name(dev);
+ mtd->priv = nor;
+ mtd->type = MTD_NORFLASH;
+ mtd->writesize = 1;
+ mtd->flags = MTD_CAP_NORFLASH;
+ mtd->size = nor->params->size;
+ mtd->_erase = spi_nor_erase;
+ mtd->_read = spi_nor_read;
+ mtd->_resume = spi_nor_resume;
+
+ if (nor->params->locking_ops) {
+ mtd->_lock = spi_nor_lock;
+ mtd->_unlock = spi_nor_unlock;
+ mtd->_is_locked = spi_nor_is_locked;
+ }
+
+ if (info->flags & USE_FSR)
+ nor->flags |= SNOR_F_USE_FSR;
+ if (info->flags & SPI_NOR_HAS_TB) {
+ nor->flags |= SNOR_F_HAS_SR_TB;
+ if (info->flags & SPI_NOR_TB_SR_BIT6)
+ nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
+ }
+
+ if (info->flags & NO_CHIP_ERASE)
+ nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
+ if (info->flags & USE_CLSR)
+ nor->flags |= SNOR_F_USE_CLSR;
+
+ if (info->flags & SPI_NOR_4BIT_BP) {
+ nor->flags |= SNOR_F_HAS_4BIT_BP;
+ if (info->flags & SPI_NOR_BP3_SR_BIT6)
+ nor->flags |= SNOR_F_HAS_SR_BP3_BIT6;
+ }
+
+ if (info->flags & SPI_NOR_NO_ERASE)
+ mtd->flags |= MTD_NO_ERASE;
+
+ mtd->dev.parent = dev;
+ nor->page_size = nor->params->page_size;
+ mtd->writebufsize = nor->page_size;
+
+ if (of_property_read_bool(np, "broken-flash-reset"))
+ nor->flags |= SNOR_F_BROKEN_RESET;
+
+ /*
+ * Configure the SPI memory:
+ * - select op codes for (Fast) Read, Page Program and Sector Erase.
+ * - set the number of dummy cycles (mode cycles + wait states).
+ * - set the SPI protocols for register and memory accesses.
+ */
+ ret = spi_nor_setup(nor, hwcaps);
+ if (ret)
+ return ret;
+
+ if (info->flags & SPI_NOR_4B_OPCODES)
+ nor->flags |= SNOR_F_4B_OPCODES;
+
+ ret = spi_nor_set_addr_width(nor);
+ if (ret)
+ return ret;
+
+ /* Send all the required SPI flash commands to initialize device */
+ ret = spi_nor_init(nor);
+ if (ret)
+ return ret;
+
+ dev_info(dev, "%s (%lld Kbytes)\n", info->name,
+ (long long)mtd->size >> 10);
+
+ dev_dbg(dev,
+ "mtd .name = %s, .size = 0x%llx (%lldMiB), "
+ ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
+ mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
+ mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
+
+ if (mtd->numeraseregions)
+ for (i = 0; i < mtd->numeraseregions; i++)
+ dev_dbg(dev,
+ "mtd.eraseregions[%d] = { .offset = 0x%llx, "
+ ".erasesize = 0x%.8x (%uKiB), "
+ ".numblocks = %d }\n",
+ i, (long long)mtd->eraseregions[i].offset,
+ mtd->eraseregions[i].erasesize,
+ mtd->eraseregions[i].erasesize / 1024,
+ mtd->eraseregions[i].numblocks);
+ return 0;
+}
+EXPORT_SYMBOL_GPL(spi_nor_scan);
+
+static int spi_nor_create_read_dirmap(struct spi_nor *nor)
+{
+ struct spi_mem_dirmap_info info = {
+ .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
+ SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
+ SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
+ SPI_MEM_OP_DATA_IN(0, NULL, 1)),
+ .offset = 0,
+ .length = nor->mtd.size,
+ };
+ struct spi_mem_op *op = &info.op_tmpl;
+
+ /* get transfer protocols. */
+ op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
+ op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
+ op->dummy.buswidth = op->addr.buswidth;
+ op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
+
+ /* convert the dummy cycles to the number of bytes */
+ op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;
+
+ nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
+ &info);
+ return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
+}
+
+static int spi_nor_create_write_dirmap(struct spi_nor *nor)
+{
+ struct spi_mem_dirmap_info info = {
+ .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
+ SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_OUT(0, NULL, 1)),
+ .offset = 0,
+ .length = nor->mtd.size,
+ };
+ struct spi_mem_op *op = &info.op_tmpl;
+
+ /* get transfer protocols. */
+ op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
+ op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
+ op->dummy.buswidth = op->addr.buswidth;
+ op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
+
+ if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
+ op->addr.nbytes = 0;
+
+ nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
+ &info);
+ return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
+}
+
+static int spi_nor_probe(struct spi_mem *spimem)
+{
+ struct spi_device *spi = spimem->spi;
+ struct flash_platform_data *data = dev_get_platdata(&spi->dev);
+ struct spi_nor *nor;
+ /*
+ * Enable all caps by default. The core will mask them after
+ * checking what's really supported using spi_mem_supports_op().
+ */
+ const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
+ char *flash_name;
+ int ret;
+
+ nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
+ if (!nor)
+ return -ENOMEM;
+
+ nor->spimem = spimem;
+ nor->dev = &spi->dev;
+ spi_nor_set_flash_node(nor, spi->dev.of_node);
+
+ spi_mem_set_drvdata(spimem, nor);
+
+ if (data && data->name)
+ nor->mtd.name = data->name;
+
+ if (!nor->mtd.name)
+ nor->mtd.name = spi_mem_get_name(spimem);
+
+ /*
+ * For some (historical?) reason many platforms provide two different
+ * names in flash_platform_data: "name" and "type". Quite often name is
+ * set to "m25p80" and then "type" provides a real chip name.
+ * If that's the case, respect "type" and ignore a "name".
+ */
+ if (data && data->type)
+ flash_name = data->type;
+ else if (!strcmp(spi->modalias, "spi-nor"))
+ flash_name = NULL; /* auto-detect */
+ else
+ flash_name = spi->modalias;
+
+ ret = spi_nor_scan(nor, flash_name, &hwcaps);
+ if (ret)
+ return ret;
+
+ /*
+ * None of the existing parts have > 512B pages, but let's play safe
+ * and add this logic so that if anyone ever adds support for such
+ * a NOR we don't end up with buffer overflows.
+ */
+ if (nor->page_size > PAGE_SIZE) {
+ nor->bouncebuf_size = nor->page_size;
+ devm_kfree(nor->dev, nor->bouncebuf);
+ nor->bouncebuf = devm_kmalloc(nor->dev,
+ nor->bouncebuf_size,
+ GFP_KERNEL);
+ if (!nor->bouncebuf)
+ return -ENOMEM;
+ }
+
+ ret = spi_nor_create_read_dirmap(nor);
+ if (ret)
+ return ret;
+
+ ret = spi_nor_create_write_dirmap(nor);
+ if (ret)
+ return ret;
+
+ return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
+ data ? data->nr_parts : 0);
+}
+
+static int spi_nor_remove(struct spi_mem *spimem)
+{
+ struct spi_nor *nor = spi_mem_get_drvdata(spimem);
+
+ spi_nor_restore(nor);
+
+ /* Clean up MTD stuff. */
+ return mtd_device_unregister(&nor->mtd);
+}
+
+static void spi_nor_shutdown(struct spi_mem *spimem)
+{
+ struct spi_nor *nor = spi_mem_get_drvdata(spimem);
+
+ spi_nor_restore(nor);
+}
+
+/*
+ * Do NOT add to this array without reading the following:
+ *
+ * Historically, many flash devices are bound to this driver by their name. But
+ * since most of these flash are compatible to some extent, and their
+ * differences can often be differentiated by the JEDEC read-ID command, we
+ * encourage new users to add support to the spi-nor library, and simply bind
+ * against a generic string here (e.g., "jedec,spi-nor").
+ *
+ * Many flash names are kept here in this list (as well as in spi-nor.c) to
+ * keep them available as module aliases for existing platforms.
+ */
+static const struct spi_device_id spi_nor_dev_ids[] = {
+ /*
+ * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
+ * hack around the fact that the SPI core does not provide uevent
+ * matching for .of_match_table
+ */
+ {"spi-nor"},
+
+ /*
+ * Entries not used in DTs that should be safe to drop after replacing
+ * them with "spi-nor" in platform data.
+ */
+ {"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"},
+
+ /*
+ * Entries that were used in DTs without "jedec,spi-nor" fallback and
+ * should be kept for backward compatibility.
+ */
+ {"at25df321a"}, {"at25df641"}, {"at26df081a"},
+ {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"},
+ {"mx25l25635e"},{"mx66l51235l"},
+ {"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"},
+ {"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"},
+ {"s25fl064k"},
+ {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
+ {"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"},
+ {"m25p64"}, {"m25p128"},
+ {"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"},
+ {"w25q80bl"}, {"w25q128"}, {"w25q256"},
+
+ /* Flashes that can't be detected using JEDEC */
+ {"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"},
+ {"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"},
+ {"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"},
+
+ /* Everspin MRAMs (non-JEDEC) */
+ { "mr25h128" }, /* 128 Kib, 40 MHz */
+ { "mr25h256" }, /* 256 Kib, 40 MHz */
+ { "mr25h10" }, /* 1 Mib, 40 MHz */
+ { "mr25h40" }, /* 4 Mib, 40 MHz */
+
+ { },
+};
+MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
+
+static const struct of_device_id spi_nor_of_table[] = {
+ /*
+ * Generic compatibility for SPI NOR that can be identified by the
+ * JEDEC READ ID opcode (0x9F). Use this, if possible.
+ */
+ { .compatible = "jedec,spi-nor" },
+ { /* sentinel */ },
+};
+MODULE_DEVICE_TABLE(of, spi_nor_of_table);
+
+/*
+ * REVISIT: many of these chips have deep power-down modes, which
+ * should clearly be entered on suspend() to minimize power use.
+ * And also when they're otherwise idle...
+ */
+static struct spi_mem_driver spi_nor_driver = {
+ .spidrv = {
+ .driver = {
+ .name = "spi-nor",
+ .of_match_table = spi_nor_of_table,
+ },
+ .id_table = spi_nor_dev_ids,
+ },
+ .probe = spi_nor_probe,
+ .remove = spi_nor_remove,
+ .shutdown = spi_nor_shutdown,
+};
+module_spi_mem_driver(spi_nor_driver);
+
+MODULE_LICENSE("GPL v2");
+MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
+MODULE_AUTHOR("Mike Lavender");
+MODULE_DESCRIPTION("framework for SPI NOR");