diff options
Diffstat (limited to 'kernel/sched/core.c')
-rw-r--r-- | kernel/sched/core.c | 669 |
1 files changed, 622 insertions, 47 deletions
diff --git a/kernel/sched/core.c b/kernel/sched/core.c index 8d2b6742d02c..54c75af24899 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -261,36 +261,51 @@ void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) resched_curr(rq); } -/* - * Find left-most (aka, highest priority) task matching @cookie. - */ -static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) +static int sched_task_is_throttled(struct task_struct *p, int cpu) { - struct rb_node *node; - - node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); - /* - * The idle task always matches any cookie! - */ - if (!node) - return idle_sched_class.pick_task(rq); + if (p->sched_class->task_is_throttled) + return p->sched_class->task_is_throttled(p, cpu); - return __node_2_sc(node); + return 0; } static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) { struct rb_node *node = &p->core_node; + int cpu = task_cpu(p); - node = rb_next(node); + do { + node = rb_next(node); + if (!node) + return NULL; + + p = __node_2_sc(node); + if (p->core_cookie != cookie) + return NULL; + + } while (sched_task_is_throttled(p, cpu)); + + return p; +} + +/* + * Find left-most (aka, highest priority) and unthrottled task matching @cookie. + * If no suitable task is found, NULL will be returned. + */ +static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) +{ + struct task_struct *p; + struct rb_node *node; + + node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); if (!node) return NULL; - p = container_of(node, struct task_struct, core_node); - if (p->core_cookie != cookie) - return NULL; + p = __node_2_sc(node); + if (!sched_task_is_throttled(p, rq->cpu)) + return p; - return p; + return sched_core_next(p, cookie); } /* @@ -2087,6 +2102,8 @@ void activate_task(struct rq *rq, struct task_struct *p, int flags) { if (task_on_rq_migrating(p)) flags |= ENQUEUE_MIGRATED; + if (flags & ENQUEUE_MIGRATED) + sched_mm_cid_migrate_to(rq, p); enqueue_task(rq, p, flags); @@ -3196,6 +3213,7 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu) p->sched_class->migrate_task_rq(p, new_cpu); p->se.nr_migrations++; rseq_migrate(p); + sched_mm_cid_migrate_from(p); perf_event_task_migrate(p); } @@ -4469,6 +4487,7 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p) p->wake_entry.u_flags = CSD_TYPE_TTWU; p->migration_pending = NULL; #endif + init_sched_mm_cid(p); } DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); @@ -5115,7 +5134,6 @@ prepare_task_switch(struct rq *rq, struct task_struct *prev, sched_info_switch(rq, prev, next); perf_event_task_sched_out(prev, next); rseq_preempt(prev); - switch_mm_cid(prev, next); fire_sched_out_preempt_notifiers(prev, next); kmap_local_sched_out(); prepare_task(next); @@ -5272,6 +5290,9 @@ context_switch(struct rq *rq, struct task_struct *prev, * * kernel -> user switch + mmdrop_lazy_tlb() active * user -> user switch + * + * switch_mm_cid() needs to be updated if the barriers provided + * by context_switch() are modified. */ if (!next->mm) { // to kernel enter_lazy_tlb(prev->active_mm, next); @@ -5301,6 +5322,9 @@ context_switch(struct rq *rq, struct task_struct *prev, } } + /* switch_mm_cid() requires the memory barriers above. */ + switch_mm_cid(rq, prev, next); + rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); prepare_lock_switch(rq, next, rf); @@ -5589,6 +5613,7 @@ void scheduler_tick(void) resched_latency = cpu_resched_latency(rq); calc_global_load_tick(rq); sched_core_tick(rq); + task_tick_mm_cid(rq, curr); rq_unlock(rq, &rf); @@ -6241,7 +6266,7 @@ static bool try_steal_cookie(int this, int that) goto unlock; p = sched_core_find(src, cookie); - if (p == src->idle) + if (!p) goto unlock; do { @@ -6253,6 +6278,13 @@ static bool try_steal_cookie(int this, int that) if (p->core_occupation > dst->idle->core_occupation) goto next; + /* + * sched_core_find() and sched_core_next() will ensure that task @p + * is not throttled now, we also need to check whether the runqueue + * of the destination CPU is being throttled. + */ + if (sched_task_is_throttled(p, this)) + goto next; deactivate_task(src, p, 0); set_task_cpu(p, this); @@ -8508,6 +8540,7 @@ EXPORT_STATIC_CALL_TRAMP(might_resched); static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); int __sched dynamic_cond_resched(void) { + klp_sched_try_switch(); if (!static_branch_unlikely(&sk_dynamic_cond_resched)) return 0; return __cond_resched(); @@ -8656,13 +8689,17 @@ int sched_dynamic_mode(const char *str) #error "Unsupported PREEMPT_DYNAMIC mechanism" #endif -void sched_dynamic_update(int mode) +static DEFINE_MUTEX(sched_dynamic_mutex); +static bool klp_override; + +static void __sched_dynamic_update(int mode) { /* * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in * the ZERO state, which is invalid. */ - preempt_dynamic_enable(cond_resched); + if (!klp_override) + preempt_dynamic_enable(cond_resched); preempt_dynamic_enable(might_resched); preempt_dynamic_enable(preempt_schedule); preempt_dynamic_enable(preempt_schedule_notrace); @@ -8670,36 +8707,79 @@ void sched_dynamic_update(int mode) switch (mode) { case preempt_dynamic_none: - preempt_dynamic_enable(cond_resched); + if (!klp_override) + preempt_dynamic_enable(cond_resched); preempt_dynamic_disable(might_resched); preempt_dynamic_disable(preempt_schedule); preempt_dynamic_disable(preempt_schedule_notrace); preempt_dynamic_disable(irqentry_exit_cond_resched); - pr_info("Dynamic Preempt: none\n"); + if (mode != preempt_dynamic_mode) + pr_info("Dynamic Preempt: none\n"); break; case preempt_dynamic_voluntary: - preempt_dynamic_enable(cond_resched); + if (!klp_override) + preempt_dynamic_enable(cond_resched); preempt_dynamic_enable(might_resched); preempt_dynamic_disable(preempt_schedule); preempt_dynamic_disable(preempt_schedule_notrace); preempt_dynamic_disable(irqentry_exit_cond_resched); - pr_info("Dynamic Preempt: voluntary\n"); + if (mode != preempt_dynamic_mode) + pr_info("Dynamic Preempt: voluntary\n"); break; case preempt_dynamic_full: - preempt_dynamic_disable(cond_resched); + if (!klp_override) + preempt_dynamic_disable(cond_resched); preempt_dynamic_disable(might_resched); preempt_dynamic_enable(preempt_schedule); preempt_dynamic_enable(preempt_schedule_notrace); preempt_dynamic_enable(irqentry_exit_cond_resched); - pr_info("Dynamic Preempt: full\n"); + if (mode != preempt_dynamic_mode) + pr_info("Dynamic Preempt: full\n"); break; } preempt_dynamic_mode = mode; } +void sched_dynamic_update(int mode) +{ + mutex_lock(&sched_dynamic_mutex); + __sched_dynamic_update(mode); + mutex_unlock(&sched_dynamic_mutex); +} + +#ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL + +static int klp_cond_resched(void) +{ + __klp_sched_try_switch(); + return __cond_resched(); +} + +void sched_dynamic_klp_enable(void) +{ + mutex_lock(&sched_dynamic_mutex); + + klp_override = true; + static_call_update(cond_resched, klp_cond_resched); + + mutex_unlock(&sched_dynamic_mutex); +} + +void sched_dynamic_klp_disable(void) +{ + mutex_lock(&sched_dynamic_mutex); + + klp_override = false; + __sched_dynamic_update(preempt_dynamic_mode); + + mutex_unlock(&sched_dynamic_mutex); +} + +#endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ + static int __init setup_preempt_mode(char *str) { int mode = sched_dynamic_mode(str); @@ -10334,7 +10414,7 @@ void sched_release_group(struct task_group *tg) spin_unlock_irqrestore(&task_group_lock, flags); } -static void sched_change_group(struct task_struct *tsk) +static struct task_group *sched_get_task_group(struct task_struct *tsk) { struct task_group *tg; @@ -10346,7 +10426,13 @@ static void sched_change_group(struct task_struct *tsk) tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), struct task_group, css); tg = autogroup_task_group(tsk, tg); - tsk->sched_task_group = tg; + + return tg; +} + +static void sched_change_group(struct task_struct *tsk, struct task_group *group) +{ + tsk->sched_task_group = group; #ifdef CONFIG_FAIR_GROUP_SCHED if (tsk->sched_class->task_change_group) @@ -10367,10 +10453,19 @@ void sched_move_task(struct task_struct *tsk) { int queued, running, queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; + struct task_group *group; struct rq_flags rf; struct rq *rq; rq = task_rq_lock(tsk, &rf); + /* + * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous + * group changes. + */ + group = sched_get_task_group(tsk); + if (group == tsk->sched_task_group) + goto unlock; + update_rq_clock(rq); running = task_current(rq, tsk); @@ -10381,7 +10476,7 @@ void sched_move_task(struct task_struct *tsk) if (running) put_prev_task(rq, tsk); - sched_change_group(tsk); + sched_change_group(tsk, group); if (queued) enqueue_task(rq, tsk, queue_flags); @@ -10395,6 +10490,7 @@ void sched_move_task(struct task_struct *tsk) resched_curr(rq); } +unlock: task_rq_unlock(rq, tsk, &rf); } @@ -11385,45 +11481,524 @@ void call_trace_sched_update_nr_running(struct rq *rq, int count) } #ifdef CONFIG_SCHED_MM_CID -void sched_mm_cid_exit_signals(struct task_struct *t) + +/** + * @cid_lock: Guarantee forward-progress of cid allocation. + * + * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock + * is only used when contention is detected by the lock-free allocation so + * forward progress can be guaranteed. + */ +DEFINE_RAW_SPINLOCK(cid_lock); + +/** + * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. + * + * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is + * detected, it is set to 1 to ensure that all newly coming allocations are + * serialized by @cid_lock until the allocation which detected contention + * completes and sets @use_cid_lock back to 0. This guarantees forward progress + * of a cid allocation. + */ +int use_cid_lock; + +/* + * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid + * concurrently with respect to the execution of the source runqueue context + * switch. + * + * There is one basic properties we want to guarantee here: + * + * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively + * used by a task. That would lead to concurrent allocation of the cid and + * userspace corruption. + * + * Provide this guarantee by introducing a Dekker memory ordering to guarantee + * that a pair of loads observe at least one of a pair of stores, which can be + * shown as: + * + * X = Y = 0 + * + * w[X]=1 w[Y]=1 + * MB MB + * r[Y]=y r[X]=x + * + * Which guarantees that x==0 && y==0 is impossible. But rather than using + * values 0 and 1, this algorithm cares about specific state transitions of the + * runqueue current task (as updated by the scheduler context switch), and the + * per-mm/cpu cid value. + * + * Let's introduce task (Y) which has task->mm == mm and task (N) which has + * task->mm != mm for the rest of the discussion. There are two scheduler state + * transitions on context switch we care about: + * + * (TSA) Store to rq->curr with transition from (N) to (Y) + * + * (TSB) Store to rq->curr with transition from (Y) to (N) + * + * On the remote-clear side, there is one transition we care about: + * + * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag + * + * There is also a transition to UNSET state which can be performed from all + * sides (scheduler, remote-clear). It is always performed with a cmpxchg which + * guarantees that only a single thread will succeed: + * + * (TMB) cmpxchg to *pcpu_cid to mark UNSET + * + * Just to be clear, what we do _not_ want to happen is a transition to UNSET + * when a thread is actively using the cid (property (1)). + * + * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. + * + * Scenario A) (TSA)+(TMA) (from next task perspective) + * + * CPU0 CPU1 + * + * Context switch CS-1 Remote-clear + * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) + * (implied barrier after cmpxchg) + * - switch_mm_cid() + * - memory barrier (see switch_mm_cid() + * comment explaining how this barrier + * is combined with other scheduler + * barriers) + * - mm_cid_get (next) + * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) + * + * This Dekker ensures that either task (Y) is observed by the + * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are + * observed. + * + * If task (Y) store is observed by rcu_dereference(), it means that there is + * still an active task on the cpu. Remote-clear will therefore not transition + * to UNSET, which fulfills property (1). + * + * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), + * it will move its state to UNSET, which clears the percpu cid perhaps + * uselessly (which is not an issue for correctness). Because task (Y) is not + * observed, CPU1 can move ahead to set the state to UNSET. Because moving + * state to UNSET is done with a cmpxchg expecting that the old state has the + * LAZY flag set, only one thread will successfully UNSET. + * + * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 + * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and + * CPU1 will observe task (Y) and do nothing more, which is fine. + * + * What we are effectively preventing with this Dekker is a scenario where + * neither LAZY flag nor store (Y) are observed, which would fail property (1) + * because this would UNSET a cid which is actively used. + */ + +void sched_mm_cid_migrate_from(struct task_struct *t) +{ + t->migrate_from_cpu = task_cpu(t); +} + +static +int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, + struct task_struct *t, + struct mm_cid *src_pcpu_cid) { struct mm_struct *mm = t->mm; - unsigned long flags; + struct task_struct *src_task; + int src_cid, last_mm_cid; + + if (!mm) + return -1; + + last_mm_cid = t->last_mm_cid; + /* + * If the migrated task has no last cid, or if the current + * task on src rq uses the cid, it means the source cid does not need + * to be moved to the destination cpu. + */ + if (last_mm_cid == -1) + return -1; + src_cid = READ_ONCE(src_pcpu_cid->cid); + if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) + return -1; + + /* + * If we observe an active task using the mm on this rq, it means we + * are not the last task to be migrated from this cpu for this mm, so + * there is no need to move src_cid to the destination cpu. + */ + rcu_read_lock(); + src_task = rcu_dereference(src_rq->curr); + if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { + rcu_read_unlock(); + t->last_mm_cid = -1; + return -1; + } + rcu_read_unlock(); + + return src_cid; +} + +static +int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, + struct task_struct *t, + struct mm_cid *src_pcpu_cid, + int src_cid) +{ + struct task_struct *src_task; + struct mm_struct *mm = t->mm; + int lazy_cid; + + if (src_cid == -1) + return -1; + + /* + * Attempt to clear the source cpu cid to move it to the destination + * cpu. + */ + lazy_cid = mm_cid_set_lazy_put(src_cid); + if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) + return -1; + + /* + * The implicit barrier after cmpxchg per-mm/cpu cid before loading + * rq->curr->mm matches the scheduler barrier in context_switch() + * between store to rq->curr and load of prev and next task's + * per-mm/cpu cid. + * + * The implicit barrier after cmpxchg per-mm/cpu cid before loading + * rq->curr->mm_cid_active matches the barrier in + * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and + * sched_mm_cid_after_execve() between store to t->mm_cid_active and + * load of per-mm/cpu cid. + */ + + /* + * If we observe an active task using the mm on this rq after setting + * the lazy-put flag, this task will be responsible for transitioning + * from lazy-put flag set to MM_CID_UNSET. + */ + rcu_read_lock(); + src_task = rcu_dereference(src_rq->curr); + if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { + rcu_read_unlock(); + /* + * We observed an active task for this mm, there is therefore + * no point in moving this cid to the destination cpu. + */ + t->last_mm_cid = -1; + return -1; + } + rcu_read_unlock(); + + /* + * The src_cid is unused, so it can be unset. + */ + if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) + return -1; + return src_cid; +} + +/* + * Migration to dst cpu. Called with dst_rq lock held. + * Interrupts are disabled, which keeps the window of cid ownership without the + * source rq lock held small. + */ +void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) +{ + struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; + struct mm_struct *mm = t->mm; + int src_cid, dst_cid, src_cpu; + struct rq *src_rq; + + lockdep_assert_rq_held(dst_rq); if (!mm) return; + src_cpu = t->migrate_from_cpu; + if (src_cpu == -1) { + t->last_mm_cid = -1; + return; + } + /* + * Move the src cid if the dst cid is unset. This keeps id + * allocation closest to 0 in cases where few threads migrate around + * many cpus. + * + * If destination cid is already set, we may have to just clear + * the src cid to ensure compactness in frequent migrations + * scenarios. + * + * It is not useful to clear the src cid when the number of threads is + * greater or equal to the number of allowed cpus, because user-space + * can expect that the number of allowed cids can reach the number of + * allowed cpus. + */ + dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); + dst_cid = READ_ONCE(dst_pcpu_cid->cid); + if (!mm_cid_is_unset(dst_cid) && + atomic_read(&mm->mm_users) >= t->nr_cpus_allowed) + return; + src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); + src_rq = cpu_rq(src_cpu); + src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); + if (src_cid == -1) + return; + src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, + src_cid); + if (src_cid == -1) + return; + if (!mm_cid_is_unset(dst_cid)) { + __mm_cid_put(mm, src_cid); + return; + } + /* Move src_cid to dst cpu. */ + mm_cid_snapshot_time(dst_rq, mm); + WRITE_ONCE(dst_pcpu_cid->cid, src_cid); +} + +static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, + int cpu) +{ + struct rq *rq = cpu_rq(cpu); + struct task_struct *t; + unsigned long flags; + int cid, lazy_cid; + + cid = READ_ONCE(pcpu_cid->cid); + if (!mm_cid_is_valid(cid)) + return; + + /* + * Clear the cpu cid if it is set to keep cid allocation compact. If + * there happens to be other tasks left on the source cpu using this + * mm, the next task using this mm will reallocate its cid on context + * switch. + */ + lazy_cid = mm_cid_set_lazy_put(cid); + if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) + return; + + /* + * The implicit barrier after cmpxchg per-mm/cpu cid before loading + * rq->curr->mm matches the scheduler barrier in context_switch() + * between store to rq->curr and load of prev and next task's + * per-mm/cpu cid. + * + * The implicit barrier after cmpxchg per-mm/cpu cid before loading + * rq->curr->mm_cid_active matches the barrier in + * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and + * sched_mm_cid_after_execve() between store to t->mm_cid_active and + * load of per-mm/cpu cid. + */ + + /* + * If we observe an active task using the mm on this rq after setting + * the lazy-put flag, that task will be responsible for transitioning + * from lazy-put flag set to MM_CID_UNSET. + */ + rcu_read_lock(); + t = rcu_dereference(rq->curr); + if (READ_ONCE(t->mm_cid_active) && t->mm == mm) { + rcu_read_unlock(); + return; + } + rcu_read_unlock(); + + /* + * The cid is unused, so it can be unset. + * Disable interrupts to keep the window of cid ownership without rq + * lock small. + */ local_irq_save(flags); - mm_cid_put(mm, t->mm_cid); - t->mm_cid = -1; - t->mm_cid_active = 0; + if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) + __mm_cid_put(mm, cid); local_irq_restore(flags); } +static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) +{ + struct rq *rq = cpu_rq(cpu); + struct mm_cid *pcpu_cid; + struct task_struct *curr; + u64 rq_clock; + + /* + * rq->clock load is racy on 32-bit but one spurious clear once in a + * while is irrelevant. + */ + rq_clock = READ_ONCE(rq->clock); + pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); + + /* + * In order to take care of infrequently scheduled tasks, bump the time + * snapshot associated with this cid if an active task using the mm is + * observed on this rq. + */ + rcu_read_lock(); + curr = rcu_dereference(rq->curr); + if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { + WRITE_ONCE(pcpu_cid->time, rq_clock); + rcu_read_unlock(); + return; + } + rcu_read_unlock(); + + if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) + return; + sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); +} + +static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, + int weight) +{ + struct mm_cid *pcpu_cid; + int cid; + + pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); + cid = READ_ONCE(pcpu_cid->cid); + if (!mm_cid_is_valid(cid) || cid < weight) + return; + sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); +} + +static void task_mm_cid_work(struct callback_head *work) +{ + unsigned long now = jiffies, old_scan, next_scan; + struct task_struct *t = current; + struct cpumask *cidmask; + struct mm_struct *mm; + int weight, cpu; + + SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work)); + + work->next = work; /* Prevent double-add */ + if (t->flags & PF_EXITING) + return; + mm = t->mm; + if (!mm) + return; + old_scan = READ_ONCE(mm->mm_cid_next_scan); + next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); + if (!old_scan) { + unsigned long res; + + res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); + if (res != old_scan) + old_scan = res; + else + old_scan = next_scan; + } + if (time_before(now, old_scan)) + return; + if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) + return; + cidmask = mm_cidmask(mm); + /* Clear cids that were not recently used. */ + for_each_possible_cpu(cpu) + sched_mm_cid_remote_clear_old(mm, cpu); + weight = cpumask_weight(cidmask); + /* + * Clear cids that are greater or equal to the cidmask weight to + * recompact it. + */ + for_each_possible_cpu(cpu) + sched_mm_cid_remote_clear_weight(mm, cpu, weight); +} + +void init_sched_mm_cid(struct task_struct *t) +{ + struct mm_struct *mm = t->mm; + int mm_users = 0; + + if (mm) { + mm_users = atomic_read(&mm->mm_users); + if (mm_users == 1) + mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); + } + t->cid_work.next = &t->cid_work; /* Protect against double add */ + init_task_work(&t->cid_work, task_mm_cid_work); +} + +void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) +{ + struct callback_head *work = &curr->cid_work; + unsigned long now = jiffies; + + if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || + work->next != work) + return; + if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) + return; + task_work_add(curr, work, TWA_RESUME); +} + +void sched_mm_cid_exit_signals(struct task_struct *t) +{ + struct mm_struct *mm = t->mm; + struct rq_flags rf; + struct rq *rq; + + if (!mm) + return; + + preempt_disable(); + rq = this_rq(); + rq_lock_irqsave(rq, &rf); + preempt_enable_no_resched(); /* holding spinlock */ + WRITE_ONCE(t->mm_cid_active, 0); + /* + * Store t->mm_cid_active before loading per-mm/cpu cid. + * Matches barrier in sched_mm_cid_remote_clear_old(). + */ + smp_mb(); + mm_cid_put(mm); + t->last_mm_cid = t->mm_cid = -1; + rq_unlock_irqrestore(rq, &rf); +} + void sched_mm_cid_before_execve(struct task_struct *t) { struct mm_struct *mm = t->mm; - unsigned long flags; + struct rq_flags rf; + struct rq *rq; if (!mm) return; - local_irq_save(flags); - mm_cid_put(mm, t->mm_cid); - t->mm_cid = -1; - t->mm_cid_active = 0; - local_irq_restore(flags); + + preempt_disable(); + rq = this_rq(); + rq_lock_irqsave(rq, &rf); + preempt_enable_no_resched(); /* holding spinlock */ + WRITE_ONCE(t->mm_cid_active, 0); + /* + * Store t->mm_cid_active before loading per-mm/cpu cid. + * Matches barrier in sched_mm_cid_remote_clear_old(). + */ + smp_mb(); + mm_cid_put(mm); + t->last_mm_cid = t->mm_cid = -1; + rq_unlock_irqrestore(rq, &rf); } void sched_mm_cid_after_execve(struct task_struct *t) { struct mm_struct *mm = t->mm; - unsigned long flags; + struct rq_flags rf; + struct rq *rq; if (!mm) return; - local_irq_save(flags); - t->mm_cid = mm_cid_get(mm); - t->mm_cid_active = 1; - local_irq_restore(flags); + + preempt_disable(); + rq = this_rq(); + rq_lock_irqsave(rq, &rf); + preempt_enable_no_resched(); /* holding spinlock */ + WRITE_ONCE(t->mm_cid_active, 1); + /* + * Store t->mm_cid_active before loading per-mm/cpu cid. + * Matches barrier in sched_mm_cid_remote_clear_old(). + */ + smp_mb(); + t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm); + rq_unlock_irqrestore(rq, &rf); rseq_set_notify_resume(t); } |