diff options
Diffstat (limited to 'kernel/sched/core.c')
-rw-r--r-- | kernel/sched/core.c | 30 |
1 files changed, 12 insertions, 18 deletions
diff --git a/kernel/sched/core.c b/kernel/sched/core.c index 0c5ec2abdf93..a0065c84e73f 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -412,8 +412,8 @@ void wake_q_add(struct wake_q_head *head, struct task_struct *task) * its already queued (either by us or someone else) and will get the * wakeup due to that. * - * This cmpxchg() implies a full barrier, which pairs with the write - * barrier implied by the wakeup in wake_up_q(). + * This cmpxchg() executes a full barrier, which pairs with the full + * barrier executed by the wakeup in wake_up_q(). */ if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) return; @@ -441,8 +441,8 @@ void wake_up_q(struct wake_q_head *head) task->wake_q.next = NULL; /* - * wake_up_process() implies a wmb() to pair with the queueing - * in wake_q_add() so as not to miss wakeups. + * wake_up_process() executes a full barrier, which pairs with + * the queueing in wake_q_add() so as not to miss wakeups. */ wake_up_process(task); put_task_struct(task); @@ -1879,8 +1879,7 @@ static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) * rq(c1)->lock (if not at the same time, then in that order). * C) LOCK of the rq(c1)->lock scheduling in task * - * Transitivity guarantees that B happens after A and C after B. - * Note: we only require RCpc transitivity. + * Release/acquire chaining guarantees that B happens after A and C after B. * Note: the CPU doing B need not be c0 or c1 * * Example: @@ -1942,16 +1941,9 @@ static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) * UNLOCK rq(0)->lock * * - * However; for wakeups there is a second guarantee we must provide, namely we - * must observe the state that lead to our wakeup. That is, not only must our - * task observe its own prior state, it must also observe the stores prior to - * its wakeup. - * - * This means that any means of doing remote wakeups must order the CPU doing - * the wakeup against the CPU the task is going to end up running on. This, - * however, is already required for the regular Program-Order guarantee above, - * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire). - * + * However, for wakeups there is a second guarantee we must provide, namely we + * must ensure that CONDITION=1 done by the caller can not be reordered with + * accesses to the task state; see try_to_wake_up() and set_current_state(). */ /** @@ -1967,6 +1959,9 @@ static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) * Atomic against schedule() which would dequeue a task, also see * set_current_state(). * + * This function executes a full memory barrier before accessing the task + * state; see set_current_state(). + * * Return: %true if @p->state changes (an actual wakeup was done), * %false otherwise. */ @@ -2141,8 +2136,7 @@ out: * * Return: 1 if the process was woken up, 0 if it was already running. * - * It may be assumed that this function implies a write memory barrier before - * changing the task state if and only if any tasks are woken up. + * This function executes a full memory barrier before accessing the task state. */ int wake_up_process(struct task_struct *p) { |