summaryrefslogtreecommitdiff
path: root/kernel/sched
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched')
-rw-r--r--kernel/sched/fair.c202
1 files changed, 139 insertions, 63 deletions
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index 46d669297b1f..0ef7e0a67089 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -6702,61 +6702,96 @@ static unsigned long cpu_util_without(int cpu, struct task_struct *p)
}
/*
- * compute_energy(): Estimates the energy that @pd would consume if @p was
- * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
- * landscape of @pd's CPUs after the task migration, and uses the Energy Model
- * to compute what would be the energy if we decided to actually migrate that
- * task.
+ * energy_env - Utilization landscape for energy estimation.
+ * @task_busy_time: Utilization contribution by the task for which we test the
+ * placement. Given by eenv_task_busy_time().
+ * @pd_busy_time: Utilization of the whole perf domain without the task
+ * contribution. Given by eenv_pd_busy_time().
+ * @cpu_cap: Maximum CPU capacity for the perf domain.
+ * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
+ */
+struct energy_env {
+ unsigned long task_busy_time;
+ unsigned long pd_busy_time;
+ unsigned long cpu_cap;
+ unsigned long pd_cap;
+};
+
+/*
+ * Compute the task busy time for compute_energy(). This time cannot be
+ * injected directly into effective_cpu_util() because of the IRQ scaling.
+ * The latter only makes sense with the most recent CPUs where the task has
+ * run.
*/
-static long
-compute_energy(struct task_struct *p, int dst_cpu, struct cpumask *cpus,
- struct perf_domain *pd)
+static inline void eenv_task_busy_time(struct energy_env *eenv,
+ struct task_struct *p, int prev_cpu)
{
- unsigned long max_util = 0, sum_util = 0, cpu_cap;
+ unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
+ unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
+
+ if (unlikely(irq >= max_cap))
+ busy_time = max_cap;
+ else
+ busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
+
+ eenv->task_busy_time = busy_time;
+}
+
+/*
+ * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
+ * utilization for each @pd_cpus, it however doesn't take into account
+ * clamping since the ratio (utilization / cpu_capacity) is already enough to
+ * scale the EM reported power consumption at the (eventually clamped)
+ * cpu_capacity.
+ *
+ * The contribution of the task @p for which we want to estimate the
+ * energy cost is removed (by cpu_util_next()) and must be calculated
+ * separately (see eenv_task_busy_time). This ensures:
+ *
+ * - A stable PD utilization, no matter which CPU of that PD we want to place
+ * the task on.
+ *
+ * - A fair comparison between CPUs as the task contribution (task_util())
+ * will always be the same no matter which CPU utilization we rely on
+ * (util_avg or util_est).
+ *
+ * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
+ * exceed @eenv->pd_cap.
+ */
+static inline void eenv_pd_busy_time(struct energy_env *eenv,
+ struct cpumask *pd_cpus,
+ struct task_struct *p)
+{
+ unsigned long busy_time = 0;
int cpu;
- cpu_cap = arch_scale_cpu_capacity(cpumask_first(cpus));
- cpu_cap -= arch_scale_thermal_pressure(cpumask_first(cpus));
+ for_each_cpu(cpu, pd_cpus) {
+ unsigned long util = cpu_util_next(cpu, p, -1);
- /*
- * The capacity state of CPUs of the current rd can be driven by CPUs
- * of another rd if they belong to the same pd. So, account for the
- * utilization of these CPUs too by masking pd with cpu_online_mask
- * instead of the rd span.
- *
- * If an entire pd is outside of the current rd, it will not appear in
- * its pd list and will not be accounted by compute_energy().
- */
- for_each_cpu(cpu, cpus) {
- unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
- unsigned long cpu_util, util_running = util_freq;
- struct task_struct *tsk = NULL;
+ busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
+ }
- /*
- * When @p is placed on @cpu:
- *
- * util_running = max(cpu_util, cpu_util_est) +
- * max(task_util, _task_util_est)
- *
- * while cpu_util_next is: max(cpu_util + task_util,
- * cpu_util_est + _task_util_est)
- */
- if (cpu == dst_cpu) {
- tsk = p;
- util_running =
- cpu_util_next(cpu, p, -1) + task_util_est(p);
- }
+ eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
+}
- /*
- * Busy time computation: utilization clamping is not
- * required since the ratio (sum_util / cpu_capacity)
- * is already enough to scale the EM reported power
- * consumption at the (eventually clamped) cpu_capacity.
- */
- cpu_util = effective_cpu_util(cpu, util_running, ENERGY_UTIL,
- NULL);
+/*
+ * Compute the maximum utilization for compute_energy() when the task @p
+ * is placed on the cpu @dst_cpu.
+ *
+ * Returns the maximum utilization among @eenv->cpus. This utilization can't
+ * exceed @eenv->cpu_cap.
+ */
+static inline unsigned long
+eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
+ struct task_struct *p, int dst_cpu)
+{
+ unsigned long max_util = 0;
+ int cpu;
- sum_util += min(cpu_util, cpu_cap);
+ for_each_cpu(cpu, pd_cpus) {
+ struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
+ unsigned long util = cpu_util_next(cpu, p, dst_cpu);
+ unsigned long cpu_util;
/*
* Performance domain frequency: utilization clamping
@@ -6765,12 +6800,29 @@ compute_energy(struct task_struct *p, int dst_cpu, struct cpumask *cpus,
* NOTE: in case RT tasks are running, by default the
* FREQUENCY_UTIL's utilization can be max OPP.
*/
- cpu_util = effective_cpu_util(cpu, util_freq, FREQUENCY_UTIL,
- tsk);
- max_util = max(max_util, min(cpu_util, cpu_cap));
+ cpu_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
+ max_util = max(max_util, cpu_util);
}
- return em_cpu_energy(pd->em_pd, max_util, sum_util, cpu_cap);
+ return min(max_util, eenv->cpu_cap);
+}
+
+/*
+ * compute_energy(): Use the Energy Model to estimate the energy that @pd would
+ * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
+ * contribution is ignored.
+ */
+static inline unsigned long
+compute_energy(struct energy_env *eenv, struct perf_domain *pd,
+ struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
+{
+ unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
+ unsigned long busy_time = eenv->pd_busy_time;
+
+ if (dst_cpu >= 0)
+ busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
+
+ return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
}
/*
@@ -6816,11 +6868,12 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
{
struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
- struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
int cpu, best_energy_cpu = prev_cpu, target = -1;
- unsigned long cpu_cap, util, base_energy = 0;
+ struct root_domain *rd = this_rq()->rd;
+ unsigned long base_energy = 0;
struct sched_domain *sd;
struct perf_domain *pd;
+ struct energy_env eenv;
rcu_read_lock();
pd = rcu_dereference(rd->pd);
@@ -6843,22 +6896,39 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
if (!task_util_est(p))
goto unlock;
+ eenv_task_busy_time(&eenv, p, prev_cpu);
+
for (; pd; pd = pd->next) {
- unsigned long cur_delta, spare_cap, max_spare_cap = 0;
+ unsigned long cpu_cap, cpu_thermal_cap, util;
+ unsigned long cur_delta, max_spare_cap = 0;
bool compute_prev_delta = false;
unsigned long base_energy_pd;
int max_spare_cap_cpu = -1;
cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
- for_each_cpu_and(cpu, cpus, sched_domain_span(sd)) {
+ if (cpumask_empty(cpus))
+ continue;
+
+ /* Account thermal pressure for the energy estimation */
+ cpu = cpumask_first(cpus);
+ cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
+ cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
+
+ eenv.cpu_cap = cpu_thermal_cap;
+ eenv.pd_cap = 0;
+
+ for_each_cpu(cpu, cpus) {
+ eenv.pd_cap += cpu_thermal_cap;
+
+ if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
+ continue;
+
if (!cpumask_test_cpu(cpu, p->cpus_ptr))
continue;
util = cpu_util_next(cpu, p, cpu);
cpu_cap = capacity_of(cpu);
- spare_cap = cpu_cap;
- lsub_positive(&spare_cap, util);
/*
* Skip CPUs that cannot satisfy the capacity request.
@@ -6871,15 +6941,17 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
if (!fits_capacity(util, cpu_cap))
continue;
+ lsub_positive(&cpu_cap, util);
+
if (cpu == prev_cpu) {
/* Always use prev_cpu as a candidate. */
compute_prev_delta = true;
- } else if (spare_cap > max_spare_cap) {
+ } else if (cpu_cap > max_spare_cap) {
/*
* Find the CPU with the maximum spare capacity
* in the performance domain.
*/
- max_spare_cap = spare_cap;
+ max_spare_cap = cpu_cap;
max_spare_cap_cpu = cpu;
}
}
@@ -6887,13 +6959,16 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
if (max_spare_cap_cpu < 0 && !compute_prev_delta)
continue;
+ eenv_pd_busy_time(&eenv, cpus, p);
/* Compute the 'base' energy of the pd, without @p */
- base_energy_pd = compute_energy(p, -1, cpus, pd);
+ base_energy_pd = compute_energy(&eenv, pd, cpus, p, -1);
base_energy += base_energy_pd;
/* Evaluate the energy impact of using prev_cpu. */
if (compute_prev_delta) {
- prev_delta = compute_energy(p, prev_cpu, cpus, pd);
+ prev_delta = compute_energy(&eenv, pd, cpus, p,
+ prev_cpu);
+ /* CPU utilization has changed */
if (prev_delta < base_energy_pd)
goto unlock;
prev_delta -= base_energy_pd;
@@ -6902,8 +6977,9 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
/* Evaluate the energy impact of using max_spare_cap_cpu. */
if (max_spare_cap_cpu >= 0) {
- cur_delta = compute_energy(p, max_spare_cap_cpu, cpus,
- pd);
+ cur_delta = compute_energy(&eenv, pd, cpus, p,
+ max_spare_cap_cpu);
+ /* CPU utilization has changed */
if (cur_delta < base_energy_pd)
goto unlock;
cur_delta -= base_energy_pd;