summaryrefslogtreecommitdiff
path: root/rust/alloc/raw_vec.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rust/alloc/raw_vec.rs')
-rw-r--r--rust/alloc/raw_vec.rs58
1 files changed, 42 insertions, 16 deletions
diff --git a/rust/alloc/raw_vec.rs b/rust/alloc/raw_vec.rs
index f1b8cec8cc62..98b6abf30af6 100644
--- a/rust/alloc/raw_vec.rs
+++ b/rust/alloc/raw_vec.rs
@@ -27,6 +27,16 @@ enum AllocInit {
Zeroed,
}
+#[repr(transparent)]
+#[cfg_attr(target_pointer_width = "16", rustc_layout_scalar_valid_range_end(0x7fff))]
+#[cfg_attr(target_pointer_width = "32", rustc_layout_scalar_valid_range_end(0x7fff_ffff))]
+#[cfg_attr(target_pointer_width = "64", rustc_layout_scalar_valid_range_end(0x7fff_ffff_ffff_ffff))]
+struct Cap(usize);
+
+impl Cap {
+ const ZERO: Cap = unsafe { Cap(0) };
+}
+
/// A low-level utility for more ergonomically allocating, reallocating, and deallocating
/// a buffer of memory on the heap without having to worry about all the corner cases
/// involved. This type is excellent for building your own data structures like Vec and VecDeque.
@@ -52,7 +62,12 @@ enum AllocInit {
#[allow(missing_debug_implementations)]
pub(crate) struct RawVec<T, A: Allocator = Global> {
ptr: Unique<T>,
- cap: usize,
+ /// Never used for ZSTs; it's `capacity()`'s responsibility to return usize::MAX in that case.
+ ///
+ /// # Safety
+ ///
+ /// `cap` must be in the `0..=isize::MAX` range.
+ cap: Cap,
alloc: A,
}
@@ -121,7 +136,7 @@ impl<T, A: Allocator> RawVec<T, A> {
/// the returned `RawVec`.
pub const fn new_in(alloc: A) -> Self {
// `cap: 0` means "unallocated". zero-sized types are ignored.
- Self { ptr: Unique::dangling(), cap: 0, alloc }
+ Self { ptr: Unique::dangling(), cap: Cap::ZERO, alloc }
}
/// Like `with_capacity`, but parameterized over the choice of
@@ -203,7 +218,7 @@ impl<T, A: Allocator> RawVec<T, A> {
// here should change to `ptr.len() / mem::size_of::<T>()`.
Self {
ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) },
- cap: capacity,
+ cap: unsafe { Cap(capacity) },
alloc,
}
}
@@ -228,7 +243,7 @@ impl<T, A: Allocator> RawVec<T, A> {
// here should change to `ptr.len() / mem::size_of::<T>()`.
Ok(Self {
ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) },
- cap: capacity,
+ cap: unsafe { Cap(capacity) },
alloc,
})
}
@@ -240,12 +255,13 @@ impl<T, A: Allocator> RawVec<T, A> {
/// The `ptr` must be allocated (via the given allocator `alloc`), and with the given
/// `capacity`.
/// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit
- /// systems). ZST vectors may have a capacity up to `usize::MAX`.
+ /// systems). For ZSTs capacity is ignored.
/// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is
/// guaranteed.
#[inline]
pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self {
- Self { ptr: unsafe { Unique::new_unchecked(ptr) }, cap: capacity, alloc }
+ let cap = if T::IS_ZST { Cap::ZERO } else { unsafe { Cap(capacity) } };
+ Self { ptr: unsafe { Unique::new_unchecked(ptr) }, cap, alloc }
}
/// Gets a raw pointer to the start of the allocation. Note that this is
@@ -261,7 +277,7 @@ impl<T, A: Allocator> RawVec<T, A> {
/// This will always be `usize::MAX` if `T` is zero-sized.
#[inline(always)]
pub fn capacity(&self) -> usize {
- if T::IS_ZST { usize::MAX } else { self.cap }
+ if T::IS_ZST { usize::MAX } else { self.cap.0 }
}
/// Returns a shared reference to the allocator backing this `RawVec`.
@@ -270,7 +286,7 @@ impl<T, A: Allocator> RawVec<T, A> {
}
fn current_memory(&self) -> Option<(NonNull<u8>, Layout)> {
- if T::IS_ZST || self.cap == 0 {
+ if T::IS_ZST || self.cap.0 == 0 {
None
} else {
// We could use Layout::array here which ensures the absence of isize and usize overflows
@@ -280,7 +296,7 @@ impl<T, A: Allocator> RawVec<T, A> {
let _: () = const { assert!(mem::size_of::<T>() % mem::align_of::<T>() == 0) };
unsafe {
let align = mem::align_of::<T>();
- let size = mem::size_of::<T>().unchecked_mul(self.cap);
+ let size = mem::size_of::<T>().unchecked_mul(self.cap.0);
let layout = Layout::from_size_align_unchecked(size, align);
Some((self.ptr.cast().into(), layout))
}
@@ -414,12 +430,15 @@ impl<T, A: Allocator> RawVec<T, A> {
additional > self.capacity().wrapping_sub(len)
}
- fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) {
+ /// # Safety:
+ ///
+ /// `cap` must not exceed `isize::MAX`.
+ unsafe fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) {
// Allocators currently return a `NonNull<[u8]>` whose length matches
// the size requested. If that ever changes, the capacity here should
// change to `ptr.len() / mem::size_of::<T>()`.
self.ptr = unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) };
- self.cap = cap;
+ self.cap = unsafe { Cap(cap) };
}
// This method is usually instantiated many times. So we want it to be as
@@ -444,14 +463,15 @@ impl<T, A: Allocator> RawVec<T, A> {
// This guarantees exponential growth. The doubling cannot overflow
// because `cap <= isize::MAX` and the type of `cap` is `usize`.
- let cap = cmp::max(self.cap * 2, required_cap);
+ let cap = cmp::max(self.cap.0 * 2, required_cap);
let cap = cmp::max(Self::MIN_NON_ZERO_CAP, cap);
let new_layout = Layout::array::<T>(cap);
// `finish_grow` is non-generic over `T`.
let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
- self.set_ptr_and_cap(ptr, cap);
+ // SAFETY: finish_grow would have resulted in a capacity overflow if we tried to allocate more than isize::MAX items
+ unsafe { self.set_ptr_and_cap(ptr, cap) };
Ok(())
}
@@ -470,7 +490,10 @@ impl<T, A: Allocator> RawVec<T, A> {
// `finish_grow` is non-generic over `T`.
let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
- self.set_ptr_and_cap(ptr, cap);
+ // SAFETY: finish_grow would have resulted in a capacity overflow if we tried to allocate more than isize::MAX items
+ unsafe {
+ self.set_ptr_and_cap(ptr, cap);
+ }
Ok(())
}
@@ -488,7 +511,7 @@ impl<T, A: Allocator> RawVec<T, A> {
if cap == 0 {
unsafe { self.alloc.deallocate(ptr, layout) };
self.ptr = Unique::dangling();
- self.cap = 0;
+ self.cap = Cap::ZERO;
} else {
let ptr = unsafe {
// `Layout::array` cannot overflow here because it would have
@@ -499,7 +522,10 @@ impl<T, A: Allocator> RawVec<T, A> {
.shrink(ptr, layout, new_layout)
.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })?
};
- self.set_ptr_and_cap(ptr, cap);
+ // SAFETY: if the allocation is valid, then the capacity is too
+ unsafe {
+ self.set_ptr_and_cap(ptr, cap);
+ }
}
Ok(())
}