Age | Commit message (Collapse) | Author |
|
The SGI SN2 (early Altix) is a very non-standard IA64 platform that was
at the very high end of even IA64 hardware, and has been discontinued
a long time ago. Remove it because there no upstream users left, and it
has magic hooks all over the kernel.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lkml.kernel.org/r/20190813072514.23299-16-hch@lst.de
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
Only ia64-sn2 uses this as an optimization, and there it is of
questionable correctness due to the mm_users==1 test.
Remove it entirely.
No change in behavior intended.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
<linux/sched.h>
Update code that relied on sched.h including various MM types for them.
This will allow us to remove the <linux/mm_types.h> include from <linux/sched.h>.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
GCC complains about sn2_global_tlb_purge() because of the large stack
required by the function,
arch/ia64/sn/kernel/sn2/sn2_smp.c: In function 'sn2_global_tlb_purge':
arch/ia64/sn/kernel/sn2/sn2_smp.c:319:1: warning: the frame size of 2176 bytes is larger than 2048 bytes [-Wframe-larger-than=]
2048 bytes of the stack are consumed by the node ID array 'nasids[]'.
But we don't actually need to put the ID array on the stack and can
use nodemask operations.
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Bjorn Helgaas <helgaas@kernel.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: linux-ia64@vger.kernel.org
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
Disintegrate asm/system.h for IA64.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Tony Luck <tony.luck@intel.com>
cc: linux-ia64@vger.kernel.org
|
|
This patch updates percpu related symbols in ia64 such that percpu
symbols are unique and don't clash with local symbols. This serves
two purposes of decreasing the possibility of global percpu symbol
collision and allowing dropping per_cpu__ prefix from percpu symbols.
* arch/ia64/kernel/setup.c: s/cpu_info/ia64_cpu_info/
Partly based on Rusty Russell's "alloc_percpu: rename percpu vars
which cause name clashes" patch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: linux-ia64@vger.kernel.org
|
|
sn2_ptc_init() has what looks like a cut-n-paste error. Fix it.
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
Makes code futureproof against the impending change to mm->cpu_vm_mask.
It's also a chance to use the new cpumask_ ops which take a pointer
(the older ones are deprecated, but there's no hurry for arch code).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
Impact: cleanup, futureproof
In fact, all cpumask ops will only be valid (in general) for bit
numbers < nr_cpu_ids. So use that instead of NR_CPUS in various
places.
This is always safe: no cpu number can be >= nr_cpu_ids, and
nr_cpu_ids is initialized to NR_CPUS at boot.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Mike Travis <travis@sgi.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
|
|
The fix applied in e0c6d97c65e0784aade7e97b9411f245a6c543e7
"security hole in sn2_ptc_proc_write" didn't take into account
the case where count==0 (which results in a buffer underrun
when adding the trailing '\0'). Thanks to Andi Kleen for
pointing this out.
Signed-off-by: Cliff Wickman <cpw@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
Security hole in sn2_ptc_proc_write
It is possible to overrun a buffer with a write to this /proc file.
Signed-off-by: Cliff Wickman <cpw@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
Use proc_create()/proc_create_data() to make sure that ->proc_fops and ->data
be setup before gluing PDE to main tree.
Signed-off-by: Denis V. Lunev <den@openvz.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Signed-off-by: Jan Engelhardt <jengelh@computergmbh.de>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
Add additional support for CPU disable on SN platforms.
Correctly setup the smp_affinity mask for I/O error IRQs.
Restrict the use of the feature to Altix 4000 and 450 systems
running with a CPU disable capable PROM, and do not allow disabling
of CPU 0.
Signed-off-by: John Keller <jpk@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
Spelling and apostrophe fixes in arch/ia64/.
Signed-off-by: Simon Arlott <simon@fire.lp0.eu>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
This patch adds an optional method for purging the TLB on SN IA64 systems.
The change should not affect any non-SN system.
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
Many struct file_operations in the kernel can be "const". Marking them const
moves these to the .rodata section, which avoids false sharing with potential
dirty data. In addition it'll catch accidental writes at compile time to
these shared resources.
[akpm@osdl.org: sparc64 fix]
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Hand-fixed conflicts:
include/asm-ia64/machvec_sn2.h
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
This stuff is all in the generic ia64 kernel, and the new initcall error
reporting complains about them.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
General SN2 code cleanup:
- Do not initialize global variables to zero
- Use kzalloc instead of kmalloc+memset
- Check kmalloc return values
- Do not obfuscate spin lock calls
- Remove some unused code
- Various formatting cleanups
Signed-off-by: Jes Sorensen <jes@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
On SN2, MMIO writes which are issued from separate processors are not
guaranteed to arrive in any particular order at the IO hardware. When
performing such writes from the kernel this is not a problem, as a
kernel thread will not migrate to another CPU during execution, and
mmiowb() calls can guarantee write ordering when control of the IO
resource is allowed to move between threads.
However, when MMIO writes can be performed from user space (e.g. DRM)
there are no such guarantees and mechanisms, as the process may
context-switch at any time, and may migrate to a different CPU as part
of the switch. For such programs/hardware to operate correctly, it is
required that the MMIO writes from the old CPU be accepted by the IO
hardware before subsequent writes from the new CPU can be issued.
The following patch implements this behavior on SN2 by waiting for a
Shub register to indicate that these writes have been accepted. This
is placed in the context switch-in path, and only performs the wait
when the newly scheduled task changes CPUs.
Signed-off-by: Prarit Bhargava <prarit@sgi.com>
Signed-off-by: Brent Casavant <bcasavan@sgi.com>
|
|
This patch finishes support for SHUB2 (the new chipset). Most of the
changes are performance related. A few changes are workarounds for
"interesting" chipset features.
Some temporary debugging code has also been deleted.
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
I see why the problem exists only on SN. SN uses a different hardware
mechanism to purge TLB entries across nodes.
It looks like there is a bug in the SN TLB flushing code. During context switch,
kernel threads inherit the mm of the task that was previously running on the
cpu. This confuses the code in sn2_global_tlb_purge().
The result is a missed TLB purge for the task that owns the "borrowed" mm.
(I hit the problem running heavy stress where kswapd was purging code pages of
a user task that woke kswapd. The user task took a SIGILL fault trying to
execute code in the page that had been ripped out from underneath it).
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
Patch to prevent sn2_ptc_init code from attempting to load on non-sn2 systems
when sn2_smp.c is built-in to generic kernel.
Signed-off-by: Prarit Bhargava <prarit@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
flush_tlb_all() can be a scaling issue on large SGI Altix systems
since it uses the global call_lock and always executes on all cpus.
When a process enters flush_tlb_range() to purge TLBs for another
process, it is possible to avoid flush_tlb_all() and instead allow
sn2_global_tlb_purge() to purge TLBs only where necessary.
This patch modifies flush_tlb_range() so that this case can be handled
by platform TLB purge functions and updates ia64_global_tlb_purge()
accordingly. sn2_global_tlb_purge() now calculates the region register
value from the mm argument introduced with this patch.
Signed-off-by: Dean Roe <roe@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
Shub2 provides a much improved mechanism for issuing internode
TLB purges. Add code to support the newer mechanism. There is also
some debug code (disabled) that is useful for testing.
Collect statistics on the number, type & duration of TLB purges.
This data will be useful for making future improvements in the algorithms.
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
|