Age | Commit message (Collapse) | Author |
|
kvm_vm_create_worker_thread() is meant to be used for kthreads that
can consume significant amounts of CPU time on behalf of a VM or in
response to how the VM behaves (for example how it accesses its memory).
Therefore it wants to charge the CPU time consumed by that work to
the VM's container.
However, because of these threads, cgroups which have kvm instances
inside never complete freezing. This can be trivially reproduced:
root@test ~# mkdir /sys/fs/cgroup/test
root@test ~# echo $$ > /sys/fs/cgroup/test/cgroup.procs
root@test ~# qemu-system-x86_64 -nographic -enable-kvm
and in another terminal:
root@test ~# echo 1 > /sys/fs/cgroup/test/cgroup.freeze
root@test ~# cat /sys/fs/cgroup/test/cgroup.events
populated 1
frozen 0
The cgroup freezing happens in the signal delivery path but
kvm_nx_huge_page_recovery_worker, while joining non-root cgroups, never
calls into the signal delivery path and thus never gets frozen. Because
the cgroup freezer determines whether a given cgroup is frozen by
comparing the number of frozen threads to the total number of threads
in the cgroup, the cgroup never becomes frozen and users waiting for
the state transition may hang indefinitely.
Since the worker kthread is tied to a user process, it's better if
it behaves similarly to user tasks as much as possible, including
being able to send SIGSTOP and SIGCONT. In fact, vhost_task is all
that kvm_vm_create_worker_thread() wanted to be and more: not only it
inherits the userspace process's cgroups, it has other niceties like
being parented properly in the process tree. Use it instead of the
homegrown alternative.
Incidentally, the new code is also better behaved when you flip recovery
back and forth to disabled and back to enabled. If your recovery period
is 1 minute, it will run the next recovery after 1 minute independent
of how many times you flipped the parameter.
(Commit message based on emails from Tejun).
Reported-by: Tejun Heo <tj@kernel.org>
Reported-by: Luca Boccassi <bluca@debian.org>
Acked-by: Tejun Heo <tj@kernel.org>
Tested-by: Luca Boccassi <bluca@debian.org>
Cc: stable@vger.kernel.org
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
KVM x86 misc changes for 6.13
- Clean up and optimize KVM's handling of writes to MSR_IA32_APICBASE.
- Quirk KVM's misguided behavior of initialized certain feature MSRs to
their maximum supported feature set, which can result in KVM creating
invalid vCPU state. E.g. initializing PERF_CAPABILITIES to a non-zero
value results in the vCPU having invalid state if userspace hides PDCM
from the guest, which can lead to save/restore failures.
- Fix KVM's handling of non-canonical checks for vCPUs that support LA57
to better follow the "architecture", in quotes because the actual
behavior is poorly documented. E.g. most MSR writes and descriptor
table loads ignore CR4.LA57 and operate purely on whether the CPU
supports LA57.
- Bypass the register cache when querying CPL from kvm_sched_out(), as
filling the cache from IRQ context is generally unsafe, and harden the
cache accessors to try to prevent similar issues from occuring in the
future.
- Advertise AMD_IBPB_RET to userspace, and fix a related bug where KVM
over-advertises SPEC_CTRL when trying to support cross-vendor VMs.
- Minor cleanups
|
|
Drop the per-VM zapped_obsolete_pages list now that the usage from the
defunct mmu_shrinker is gone, and instead use a local list to track pages
in kvm_zap_obsolete_pages(), the sole remaining user of
zapped_obsolete_pages.
Opportunistically add an assertion to verify and document that slots_lock
must be held, i.e. that there can only be one active instance of
kvm_zap_obsolete_pages() at any given time, and by doing so also prove
that using a local list instead of a per-VM list doesn't change any
functionality (beyond trivialities like list initialization).
Signed-off-by: Vipin Sharma <vipinsh@google.com>
Link: https://lore.kernel.org/r/20241101201437.1604321-2-vipinsh@google.com
[sean: split to separate patch, write changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Recover TDP MMU huge page mappings in-place instead of zapping them when
dirty logging is disabled, and rename functions that recover huge page
mappings when dirty logging is disabled to move away from the "zap
collapsible spte" terminology.
Before KVM flushes TLBs, guest accesses may be translated through either
the (stale) small SPTE or the (new) huge SPTE. This is already possible
when KVM is doing eager page splitting (where TLB flushes are also
batched), and when vCPUs are faulting in huge mappings (where TLBs are
flushed after the new huge SPTE is installed).
Recovering huge pages reduces the number of page faults when dirty
logging is disabled:
$ perf stat -e kvm:kvm_page_fault -- ./dirty_log_perf_test -s anonymous_hugetlb_2mb -v 64 -e -b 4g
Before: 393,599 kvm:kvm_page_fault
After: 262,575 kvm:kvm_page_fault
vCPU throughput and the latency of disabling dirty-logging are about
equal compared to zapping, but avoiding faults can be beneficial to
remove vCPU jitter in extreme scenarios.
Signed-off-by: David Matlack <dmatlack@google.com>
Link: https://lore.kernel.org/r/20240823235648.3236880-5-dmatlack@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add a quirk to control KVM's misguided initialization of select feature
MSRs to KVM's max configuration, as enabling features by default violates
KVM's approach of letting userspace own the vCPU model, and is actively
problematic for MSRs that are conditionally supported, as the vCPU will
end up with an MSR value that userspace can't restore. E.g. if the vCPU
is configured with PDCM=0, userspace will save and attempt to restore a
non-zero PERF_CAPABILITIES, thanks to KVM's meddling.
Link: https://lore.kernel.org/r/20240802185511.305849-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When querying guest CPL to determine if a vCPU was preempted while in
kernel mode, bypass the register cache, i.e. always read SS.AR_BYTES from
the VMCS on Intel CPUs. If the kernel is running with full preemption
enabled, using the register cache in the preemption path can result in
stale and/or uninitialized data being cached in the segment cache.
In particular the following scenario is currently possible:
- vCPU is just created, and the vCPU thread is preempted before
SS.AR_BYTES is written in vmx_vcpu_reset().
- When scheduling out the vCPU task, kvm_arch_vcpu_in_kernel() =>
vmx_get_cpl() reads and caches '0' for SS.AR_BYTES.
- vmx_vcpu_reset() => seg_setup() configures SS.AR_BYTES, but doesn't
invoke vmx_segment_cache_clear() to invalidate the cache.
As a result, KVM retains a stale value in the cache, which can be read,
e.g. via KVM_GET_SREGS. Usually this is not a problem because the VMX
segment cache is reset on each VM-Exit, but if the userspace VMM (e.g KVM
selftests) reads and writes system registers just after the vCPU was
created, _without_ modifying SS.AR_BYTES, userspace will write back the
stale '0' value and ultimately will trigger a VM-Entry failure due to
incorrect SS segment type.
Note, the VM-Enter failure can also be avoided by moving the call to
vmx_segment_cache_clear() until after the vmx_vcpu_reset() initializes all
segments. However, while that change is correct and desirable (and will
come along shortly), it does not address the underlying problem that
accessing KVM's register caches from !task context is generally unsafe.
In addition to fixing the immediate bug, bypassing the cache for this
particular case will allow hardening KVM register caching log to assert
that the caches are accessed only when KVM _knows_ it is safe to do so.
Fixes: de63ad4cf497 ("KVM: X86: implement the logic for spinlock optimization")
Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Closes: https://lore.kernel.org/all/20240716022014.240960-3-mlevitsk@redhat.com
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20241009175002.1118178-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
KVM VMX changes for 6.12:
- Set FINAL/PAGE in the page fault error code for EPT Violations if and only
if the GVA is valid. If the GVA is NOT valid, there is no guest-side page
table walk and so stuffing paging related metadata is nonsensical.
- Fix a bug where KVM would incorrectly synthesize a nested VM-Exit instead of
emulating posted interrupt delivery to L2.
- Add a lockdep assertion to detect unsafe accesses of vmcs12 structures.
- Harden eVMCS loading against an impossible NULL pointer deref (really truly
should be impossible).
- Minor SGX fix and a cleanup.
|
|
KVM x86 MMU changes for 6.12:
- Overhaul the "unprotect and retry" logic to more precisely identify cases
where retrying is actually helpful, and to harden all retry paths against
putting the guest into an infinite retry loop.
- Add support for yielding, e.g. to honor NEED_RESCHED, when zapping rmaps in
the shadow MMU.
- Refactor pieces of the shadow MMU related to aging SPTEs in prepartion for
adding MGLRU support in KVM.
- Misc cleanups
|
|
KVM x86 misc changes for 6.12
- Advertise AVX10.1 to userspace (effectively prep work for the "real" AVX10
functionality that is on the horizon).
- Rework common MSR handling code to suppress errors on userspace accesses to
unsupported-but-advertised MSRs. This will allow removing (almost?) all of
KVM's exemptions for userspace access to MSRs that shouldn't exist based on
the vCPU model (the actual cleanup is non-trivial future work).
- Rework KVM's handling of x2APIC ICR, again, because AMD (x2AVIC) splits the
64-bit value into the legacy ICR and ICR2 storage, whereas Intel (APICv)
stores the entire 64-bit value a the ICR offset.
- Fix a bug where KVM would fail to exit to userspace if one was triggered by
a fastpath exit handler.
- Add fastpath handling of HLT VM-Exit to expedite re-entering the guest when
there's already a pending wake event at the time of the exit.
- Finally fix the RSM vs. nested VM-Enter WARN by forcing the vCPU out of
guest mode prior to signalling SHUTDOWN (architecturally, the SHUTDOWN is
supposed to hit L1, not L2).
|
|
Fold kvm_mmu_unprotect_page() into kvm_mmu_unprotect_gfn_and_retry() now
that all other direct usage is gone.
No functional change intended.
Link: https://lore.kernel.org/r/20240831001538.336683-21-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When retrying the faulting instruction after emulation failure, refresh
the infinite loop protection fields even if no shadow pages were zapped,
i.e. avoid hitting an infinite loop even when retrying the instruction as
a last-ditch effort to avoid terminating the guest.
Link: https://lore.kernel.org/r/20240831001538.336683-19-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move the anti-infinite-loop protection provided by last_retry_{eip,addr}
into kvm_mmu_write_protect_fault() so that it guards unprotect+retry that
never hits the emulator, as well as reexecute_instruction(), which is the
last ditch "might as well try it" logic that kicks in when emulation fails
on an instruction that faulted on a write-protected gfn.
Add a new helper, kvm_mmu_unprotect_gfn_and_retry(), to set the retry
fields and deduplicate other code (with more to come).
Link: https://lore.kernel.org/r/20240831001538.336683-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop the globally visible PFERR_NESTED_GUEST_PAGE and replace it with a
more appropriately named is_write_to_guest_page_table(). The macro name
is misleading, because while all nNPT walks match PAGE|WRITE|PRESENT, the
reverse is not true.
No functional change intended.
Link: https://lore.kernel.org/r/20240831001538.336683-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move the logic to get the to-be-acknowledge IRQ for a nested VM-Exit from
nested_vmx_vmexit() to vmx_check_nested_events(), which is subtly the one
and only path where KVM invokes nested_vmx_vmexit() with
EXIT_REASON_EXTERNAL_INTERRUPT. A future fix will perform a last-minute
check on L2's nested posted interrupt notification vector, just before
injecting a nested VM-Exit. To handle that scenario correctly, KVM needs
to get the interrupt _before_ injecting VM-Exit, as simply querying the
highest priority interrupt, via kvm_cpu_has_interrupt(), would result in
TOCTOU bug, as a new, higher priority interrupt could arrive between
kvm_cpu_has_interrupt() and kvm_cpu_get_interrupt().
Unfortunately, simply moving the call to kvm_cpu_get_interrupt() doesn't
suffice, as a VMWRITE to GUEST_INTERRUPT_STATUS.SVI is hiding in
kvm_get_apic_interrupt(), and acknowledging the interrupt before nested
VM-Exit would cause the VMWRITE to hit vmcs02 instead of vmcs01.
Open code a rough equivalent to kvm_cpu_get_interrupt() so that the IRQ
is acknowledged after emulating VM-Exit, taking care to avoid the TOCTOU
issue described above.
Opportunistically convert the WARN_ON() to a WARN_ON_ONCE(). If KVM has
a bug that results in a false positive from kvm_cpu_has_interrupt(),
spamming dmesg won't help the situation.
Note, nested_vmx_reflect_vmexit() can never reflect external interrupts as
they are always "wanted" by L0.
Link: https://lore.kernel.org/r/20240906043413.1049633-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Register the "disable virtualization in an emergency" callback just
before KVM enables virtualization in hardware, as there is no functional
need to keep the callbacks registered while KVM happens to be loaded, but
is inactive, i.e. if KVM hasn't enabled virtualization.
Note, unregistering the callback every time the last VM is destroyed could
have measurable latency due to the synchronize_rcu() needed to ensure all
references to the callback are dropped before KVM is unloaded. But the
latency should be a small fraction of the total latency of disabling
virtualization across all CPUs, and userspace can set enable_virt_at_load
to completely eliminate the runtime overhead.
Add a pointer in kvm_x86_ops to allow vendor code to provide its callback.
There is no reason to force vendor code to do the registration, and either
way KVM would need a new kvm_x86_ops hook.
Suggested-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Acked-by: Kai Huang <kai.huang@intel.com>
Tested-by: Farrah Chen <farrah.chen@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240830043600.127750-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Rename x86's the per-CPU vendor hooks used to enable virtualization in
hardware to align with the recently renamed arch hooks.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-ID: <20240830043600.127750-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Exit to userspace if a fastpath handler triggers such an exit, which can
happen when skipping the instruction, e.g. due to userspace
single-stepping the guest via KVM_GUESTDBG_SINGLESTEP or because of an
emulation failure.
Fixes: 404d5d7bff0d ("KVM: X86: Introduce more exit_fastpath_completion enum values")
Link: https://lore.kernel.org/r/20240802195120.325560-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Re-introduce the "split" x2APIC ICR storage that KVM used prior to Intel's
IPI virtualization support, but only for AMD. While not stated anywhere
in the APM, despite stating the ICR is a single 64-bit register, AMD CPUs
store the 64-bit ICR as two separate 32-bit values in ICR and ICR2. When
IPI virtualization (IPIv on Intel, all AVIC flavors on AMD) is enabled,
KVM needs to match CPU behavior as some ICR ICR writes will be handled by
the CPU, not by KVM.
Add a kvm_x86_ops knob to control the underlying format used by the CPU to
store the x2APIC ICR, and tune it to AMD vs. Intel regardless of whether
or not x2AVIC is enabled. If KVM is handling all ICR writes, the storage
format for x2APIC mode doesn't matter, and having the behavior follow AMD
versus Intel will provide better test coverage and ease debugging.
Fixes: 4d1d7942e36a ("KVM: SVM: Introduce logic to (de)activate x2AVIC mode")
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Link: https://lore.kernel.org/r/20240719235107.3023592-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Rename all APIs related to feature MSRs from get_msr_feature() to
get_feature_msr(). The APIs get "feature MSRs", not "MSR features".
And unlike kvm_{g,s}et_msr_common(), the "feature" adjective doesn't
describe the helper itself.
No functional change intended.
Link: https://lore.kernel.org/r/20240802181935.292540-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Refactor get_msr_feature() to take the index and data pointer as distinct
parameters in anticipation of eliminating "struct kvm_msr_entry" usage
further up the primary callchain.
No functional change intended.
Link: https://lore.kernel.org/r/20240802181935.292540-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Synthesize a consistency check VM-Exit (VM-Enter) or VM-Abort (VM-Exit) if
L1 attempts to load/store an MSR via the VMCS MSR lists that userspace has
disallowed access to via an MSR filter. Intel already disallows including
a handful of "special" MSRs in the VMCS lists, so denying access isn't
completely without precedent.
More importantly, the behavior is well-defined _and_ can be communicated
the end user, e.g. to the customer that owns a VM running as L1 on top of
KVM. On the other hand, ignoring userspace MSR filters is all but
guaranteed to result in unexpected behavior as the access will hit KVM's
internal state, which is likely not up-to-date.
Unlike KVM-internal accesses, instruction emulation, and dedicated VMCS
fields, the MSRs in the VMCS load/store lists are 100% guest controlled,
thus making it all but impossible to reason about the correctness of
ignoring the MSR filter. And if userspace *really* wants to deny access
to MSRs via the aforementioned scenarios, userspace can hide the
associated feature from the guest, e.g. by disabling the PMU to prevent
accessing PERF_GLOBAL_CTRL via its VMCS field. But for the MSR lists, KVM
is blindly processing MSRs; the MSR filters are the _only_ way for
userspace to deny access.
This partially reverts commit ac8d6cad3c7b ("KVM: x86: Only do MSR
filtering when access MSR by rdmsr/wrmsr").
Cc: Hou Wenlong <houwenlong.hwl@antgroup.com>
Cc: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20240722235922.3351122-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Introduce the quirk KVM_X86_QUIRK_SLOT_ZAP_ALL to allow users to select
KVM's behavior when a memslot is moved or deleted for KVM_X86_DEFAULT_VM
VMs. Make sure KVM behave as if the quirk is always disabled for
non-KVM_X86_DEFAULT_VM VMs.
The KVM_X86_QUIRK_SLOT_ZAP_ALL quirk offers two behavior options:
- when enabled: Invalidate/zap all SPTEs ("zap-all"),
- when disabled: Precisely zap only the leaf SPTEs within the range of the
moving/deleting memory slot ("zap-slot-leafs-only").
"zap-all" is today's KVM behavior to work around a bug [1] where the
changing the zapping behavior of memslot move/deletion would cause VM
instability for VMs with an Nvidia GPU assigned; while
"zap-slot-leafs-only" allows for more precise zapping of SPTEs within the
memory slot range, improving performance in certain scenarios [2], and
meeting the functional requirements for TDX.
Previous attempts to select "zap-slot-leafs-only" include a per-VM
capability approach [3] (which was not preferred because the root cause of
the bug remained unidentified) and a per-memslot flag approach [4]. Sean
and Paolo finally recommended the implementation of this quirk and
explained that it's the least bad option [5].
By default, the quirk is enabled on KVM_X86_DEFAULT_VM VMs to use
"zap-all". Users have the option to disable the quirk to select
"zap-slot-leafs-only" for specific KVM_X86_DEFAULT_VM VMs that are
unaffected by this bug.
For non-KVM_X86_DEFAULT_VM VMs, the "zap-slot-leafs-only" behavior is
always selected without user's opt-in, regardless of if the user opts for
"zap-all".
This is because it is assumed until proven otherwise that non-
KVM_X86_DEFAULT_VM VMs will not be exposed to the bug [1], and most
importantly, it's because TDX must have "zap-slot-leafs-only" always
selected. In TDX's case a memslot's GPA range can be a mixture of "private"
or "shared" memory. Shared is roughly analogous to how EPT is handled for
normal VMs, but private GPAs need lots of special treatment:
1) "zap-all" would require to zap private root page or non-leaf entries or
at least leaf-entries beyond the deleting memslot scope. However, TDX
demands that the root page of the private page table remains unchanged,
with leaf entries being zapped before non-leaf entries, and any dropped
private guest pages must be re-accepted by the guest.
2) if "zap-all" zaps only shared page tables, it would result in private
pages still being mapped when the memslot is gone. This may affect even
other processes if later the gmem fd was whole punched, causing the
pages being freed on the host while still mapped in the TD, because
there's no pgoff to the gfn information to zap the private page table
after memslot is gone.
So, simply go "zap-slot-leafs-only" as if the quirk is always disabled for
non-KVM_X86_DEFAULT_VM VMs to avoid manual opt-in for every VM type [6] or
complicating quirk disabling interface (current quirk disabling interface
is limited, no way to query quirks, or force them to be disabled).
Add a new function kvm_mmu_zap_memslot_leafs() to implement
"zap-slot-leafs-only". This function does not call kvm_unmap_gfn_range(),
bypassing special handling to APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, as
1) The APIC_ACCESS_PAGE_PRIVATE_MEMSLOT cannot be created by users, nor can
it be moved. It is only deleted by KVM when APICv is permanently
inhibited.
2) kvm_vcpu_reload_apic_access_page() effectively does nothing when
APIC_ACCESS_PAGE_PRIVATE_MEMSLOT is deleted.
3) Avoid making all cpus request of KVM_REQ_APIC_PAGE_RELOAD can save on
costly IPIs.
Suggested-by: Kai Huang <kai.huang@intel.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://patchwork.kernel.org/project/kvm/patch/20190205210137.1377-11-sean.j.christopherson@intel.com [1]
Link: https://patchwork.kernel.org/project/kvm/patch/20190205210137.1377-11-sean.j.christopherson@intel.com/#25054908 [2]
Link: https://lore.kernel.org/kvm/20200713190649.GE29725@linux.intel.com/T/#mabc0119583dacf621025e9d873c85f4fbaa66d5c [3]
Link: https://lore.kernel.org/all/20240515005952.3410568-3-rick.p.edgecombe@intel.com [4]
Link: https://lore.kernel.org/all/7df9032d-83e4-46a1-ab29-6c7973a2ab0b@redhat.com [5]
Link: https://lore.kernel.org/all/ZnGa550k46ow2N3L@google.com [6]
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Message-ID: <20240703021043.13881-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Disallow read-only memslots for SEV-{ES,SNP} VM types, as KVM can't
directly emulate instructions for ES/SNP, and instead the guest must
explicitly request emulation. Unless the guest explicitly requests
emulation without accessing memory, ES/SNP relies on KVM creating an MMIO
SPTE, with the subsequent #NPF being reflected into the guest as a #VC.
But for read-only memslots, KVM deliberately doesn't create MMIO SPTEs,
because except for ES/SNP, doing so requires setting reserved bits in the
SPTE, i.e. the SPTE can't be readable while also generating a #VC on
writes. Because KVM never creates MMIO SPTEs and jumps directly to
emulation, the guest never gets a #VC. And since KVM simply resumes the
guest if ES/SNP guests trigger emulation, KVM effectively puts the vCPU
into an infinite #NPF loop if the vCPU attempts to write read-only memory.
Disallow read-only memory for all VMs with protected state, i.e. for
upcoming TDX VMs as well as ES/SNP VMs. For TDX, it's actually possible
to support read-only memory, as TDX uses EPT Violation #VE to reflect the
fault into the guest, e.g. KVM could configure read-only SPTEs with RX
protections and SUPPRESS_VE=0. But there is no strong use case for
supporting read-only memslots on TDX, e.g. the main historical usage is
to emulate option ROMs, but TDX disallows executing from shared memory.
And if someone comes along with a legitimate, strong use case, the
restriction can always be lifted for TDX.
Don't bother trying to retroactively apply the restriction to SEV-ES
VMs that are created as type KVM_X86_DEFAULT_VM. Read-only memslots can't
possibly work for SEV-ES, i.e. disallowing such memslots is really just
means reporting an error to userspace instead of silently hanging vCPUs.
Trying to deal with the ordering between KVM_SEV_INIT and memslot creation
isn't worth the marginal benefit it would provide userspace.
Fixes: 26c44aa9e076 ("KVM: SEV: define VM types for SEV and SEV-ES")
Fixes: 1dfe571c12cf ("KVM: SEV: Add initial SEV-SNP support")
Cc: Peter Gonda <pgonda@google.com>
Cc: Michael Roth <michael.roth@amd.com>
Cc: Vishal Annapurve <vannapurve@google.com>
Cc: Ackerly Tng <ackerleytng@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240809190319.1710470-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
KVM_PRE_FAULT_MEMORY for an SNP guest can race with
sev_gmem_post_populate() in bad ways. The following sequence for
instance can potentially trigger an RMP fault:
thread A, sev_gmem_post_populate: called
thread B, sev_gmem_prepare: places below 'pfn' in a private state in RMP
thread A, sev_gmem_post_populate: *vaddr = kmap_local_pfn(pfn + i);
thread A, sev_gmem_post_populate: copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE);
RMP #PF
Fix this by only allowing KVM_PRE_FAULT_MEMORY to run after a guest's
initial private memory contents have been finalized via
KVM_SEV_SNP_LAUNCH_FINISH.
Beyond fixing this issue, it just sort of makes sense to enforce this,
since the KVM_PRE_FAULT_MEMORY documentation states:
"KVM maps memory as if the vCPU generated a stage-2 read page fault"
which sort of implies we should be acting on the same guest state that a
vCPU would see post-launch after the initial guest memory is all set up.
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Similar to kvm_x86_call(), kvm_pmu_call() is added to streamline the usage
of static calls of kvm_pmu_ops, which improves code readability.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Link: https://lore.kernel.org/r/20240507133103.15052-4-wei.w.wang@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Introduces kvm_x86_call(), to streamline the usage of static calls of
kvm_x86_ops. The current implementation of these calls is verbose and
could lead to alignment challenges. This makes the code susceptible to
exceeding the "80 columns per single line of code" limit as defined in
the coding-style document. Another issue with the existing implementation
is that the addition of kvm_x86_ prefix to hooks at the static_call sites
hinders code readability and navigation. kvm_x86_call() is added to
improve code readability and maintainability, while adhering to the coding
style guidelines.
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Link: https://lore.kernel.org/r/20240507133103.15052-3-wei.w.wang@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The use of static_call_cond() is essentially the same as static_call() on
x86 (e.g. static_call() now handles a NULL pointer as a NOP), so replace
it with static_call() to simplify the code.
Link: https://lore.kernel.org/all/3916caa1dcd114301a49beafa5030eca396745c1.1679456900.git.jpoimboe@kernel.org/
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Link: https://lore.kernel.org/r/20240507133103.15052-2-wei.w.wang@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
KVM VMX changes for 6.11
- Remove an unnecessary EPT TLB flush when enabling hardware.
- Fix a series of bugs that cause KVM to fail to detect nested pending posted
interrupts as valid wake eents for a vCPU executing HLT in L2 (with
HLT-exiting disable by L1).
- Misc cleanups
|
|
KVM x86/pmu changes for 6.11
- Don't advertise IA32_PERF_GLOBAL_OVF_CTRL as an MSR-to-be-saved, as it reads
'0' and writes from userspace are ignored.
- Update to the newfangled Intel CPU FMS infrastructure.
- Use macros instead of open-coded literals to clean up KVM's manipulation of
FIXED_CTR_CTRL MSRs.
|
|
KVM x86 MTRR virtualization removal
Remove support for virtualizing MTRRs on Intel CPUs, along with a nasty CR0.CD
hack, and instead always honor guest PAT on CPUs that support self-snoop.
|
|
KVM x86 misc changes for 6.11
- Add a global struct to consolidate tracking of host values, e.g. EFER, and
move "shadow_phys_bits" into the structure as "maxphyaddr".
- Add KVM_CAP_X86_APIC_BUS_CYCLES_NS to allow configuring the effective APIC
bus frequency, because TDX.
- Print the name of the APICv/AVIC inhibits in the relevant tracepoint.
- Clean up KVM's handling of vendor specific emulation to consistently act on
"compatible with Intel/AMD", versus checking for a specific vendor.
- Misc cleanups
|
|
KVM generic changes for 6.11
- Enable halt poll shrinking by default, as Intel found it to be a clear win.
- Setup empty IRQ routing when creating a VM to avoid having to synchronize
SRCU when creating a split IRQCHIP on x86.
- Rework the sched_in/out() paths to replace kvm_arch_sched_in() with a flag
that arch code can use for hooking both sched_in() and sched_out().
- Take the vCPU @id as an "unsigned long" instead of "u32" to avoid
truncating a bogus value from userspace, e.g. to help userspace detect bugs.
- Mark a vCPU as preempted if and only if it's scheduled out while in the
KVM_RUN loop, e.g. to avoid marking it preempted and thus writing guest
memory when retrieving guest state during live migration blackout.
- A few minor cleanups
|
|
Refine the macros which define maximum General Purpose (GP) and fixed
counter numbers.
Currently the macro KVM_INTEL_PMC_MAX_GENERIC is used to represent the
maximum supported General Purpose (GP) counter number ambiguously across
Intel and AMD platforms. This would cause issues if AMD begins to support
more GP counters than Intel.
Thus a bunch of new macros including vendor specific and vendor
independent are introduced to replace the old macros. The vendor
independent macros are used in x86 common code to hide vendor difference
and eliminate the ambiguity.
No logic changes are introduced in this patch.
Signed-off-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240627021756.144815-1-dapeng1.mi@linux.intel.com
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Check for a Requested Virtual Interrupt, i.e. a virtual interrupt that is
pending delivery, in vmx_has_nested_events() and drop the one-off
kvm_x86_ops.guest_apic_has_interrupt() hook.
In addition to dropping a superfluous hook, this fixes a bug where KVM
would incorrectly treat virtual interrupts _for L2_ as always enabled due
to kvm_arch_interrupt_allowed(), by way of vmx_interrupt_blocked(),
treating IRQs as enabled if L2 is active and vmcs12 is configured to exit
on IRQs, i.e. KVM would treat a virtual interrupt for L2 as a valid wake
event based on L1's IRQ blocking status.
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240607172609.3205077-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When requesting an immediate exit from L2 in order to inject a pending
event, do so only if the pending event actually requires manual injection,
i.e. if and only if KVM actually needs to regain control in order to
deliver the event.
Avoiding the "immediate exit" isn't simply an optimization, it's necessary
to make forward progress, as the "already expired" VMX preemption timer
trick that KVM uses to force a VM-Exit has higher priority than events
that aren't directly injected.
At present time, this is a glorified nop as all events processed by
vmx_has_nested_events() require injection, but that will not hold true in
the future, e.g. if there's a pending virtual interrupt in vmcs02.RVI.
I.e. if KVM is trying to deliver a virtual interrupt to L2, the expired
VMX preemption timer will trigger VM-Exit before the virtual interrupt is
delivered, and KVM will effectively hang the vCPU in an endless loop of
forced immediate VM-Exits (because the pending virtual interrupt never
goes away).
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240607172609.3205077-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Fold the guts of kvm_arch_sched_in() into kvm_arch_vcpu_load(), keying
off the recently added kvm_vcpu.scheduled_out as appropriate.
Note, there is a very slight functional change, as PLE shrink updates will
now happen after blasting WBINVD, but that is quite uninteresting as the
two operations do not interact in any way.
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20240522014013.1672962-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
The check_apicv_inhibit_reasons() callback implementation was dropped in
the commit b3f257a84696 ("KVM: x86: Track required APICv inhibits with
variable, not callback"), but the definition removal was missed in the
final version patch (it was removed in the v4). Therefore, it should be
dropped, and the vmx_check_apicv_inhibit_reasons() function declaration
should also be removed.
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Reviewed-by: Alejandro Jimenez <alejandro.j.jimenez@oracle.com>
Link: https://lore.kernel.org/r/54abd1d0ccaba4d532f81df61259b9c0e021fbde.1714977229.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Remove KVM's support for virtualizing guest MTRR memtypes, as full MTRR
adds no value, negatively impacts guest performance, and is a maintenance
burden due to it's complexity and oddities.
KVM's approach to virtualizating MTRRs make no sense, at all. KVM *only*
honors guest MTRR memtypes if EPT is enabled *and* the guest has a device
that may perform non-coherent DMA access. From a hardware virtualization
perspective of guest MTRRs, there is _nothing_ special about EPT. Legacy
shadowing paging doesn't magically account for guest MTRRs, nor does NPT.
Unwinding and deciphering KVM's murky history, the MTRR virtualization
code appears to be the result of misdiagnosed issues when EPT + VT-d with
passthrough devices was enabled years and years ago. And importantly, the
underlying bugs that were fudged around by honoring guest MTRR memtypes
have since been fixed (though rather poorly in some cases).
The zapping GFNs logic in the MTRR virtualization code came from:
commit efdfe536d8c643391e19d5726b072f82964bfbdb
Author: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Date: Wed May 13 14:42:27 2015 +0800
KVM: MMU: fix MTRR update
Currently, whenever guest MTRR registers are changed
kvm_mmu_reset_context is called to switch to the new root shadow page
table, however, it's useless since:
1) the cache type is not cached into shadow page's attribute so that
the original root shadow page will be reused
2) the cache type is set on the last spte, that means we should sync
the last sptes when MTRR is changed
This patch fixs this issue by drop all the spte in the gfn range which
is being updated by MTRR
which was a fix for:
commit 0bed3b568b68e5835ef5da888a372b9beabf7544
Author: Sheng Yang <sheng@linux.intel.com>
AuthorDate: Thu Oct 9 16:01:54 2008 +0800
Commit: Avi Kivity <avi@redhat.com>
CommitDate: Wed Dec 31 16:51:44 2008 +0200
KVM: Improve MTRR structure
As well as reset mmu context when set MTRR.
which was part of a "MTRR/PAT support for EPT" series that also added:
+ if (mt_mask) {
+ mt_mask = get_memory_type(vcpu, gfn) <<
+ kvm_x86_ops->get_mt_mask_shift();
+ spte |= mt_mask;
+ }
where get_memory_type() was a truly gnarly helper to retrieve the guest
MTRR memtype for a given memtype. And *very* subtly, at the time of that
change, KVM *always* set VMX_EPT_IGMT_BIT,
kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
VMX_EPT_WRITABLE_MASK |
VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT |
VMX_EPT_IGMT_BIT);
which came in via:
commit 928d4bf747e9c290b690ff515d8f81e8ee226d97
Author: Sheng Yang <sheng@linux.intel.com>
AuthorDate: Thu Nov 6 14:55:45 2008 +0800
Commit: Avi Kivity <avi@redhat.com>
CommitDate: Tue Nov 11 21:00:37 2008 +0200
KVM: VMX: Set IGMT bit in EPT entry
There is a potential issue that, when guest using pagetable without vmexit when
EPT enabled, guest would use PAT/PCD/PWT bits to index PAT msr for it's memory,
which would be inconsistent with host side and would cause host MCE due to
inconsistent cache attribute.
The patch set IGMT bit in EPT entry to ignore guest PAT and use WB as default
memory type to protect host (notice that all memory mapped by KVM should be WB).
Note the CommitDates! The AuthorDates strongly suggests Sheng Yang added
the whole "ignoreIGMT things as a bug fix for issues that were detected
during EPT + VT-d + passthrough enabling, but it was applied earlier
because it was a generic fix.
Jumping back to 0bed3b568b68 ("KVM: Improve MTRR structure"), the other
relevant code, or rather lack thereof, is the handling of *host* MMIO.
That fix came in a bit later, but given the author and timing, it's safe
to say it was all part of the same EPT+VT-d enabling mess.
commit 2aaf69dcee864f4fb6402638dd2f263324ac839f
Author: Sheng Yang <sheng@linux.intel.com>
AuthorDate: Wed Jan 21 16:52:16 2009 +0800
Commit: Avi Kivity <avi@redhat.com>
CommitDate: Sun Feb 15 02:47:37 2009 +0200
KVM: MMU: Map device MMIO as UC in EPT
Software are not allow to access device MMIO using cacheable memory type, the
patch limit MMIO region with UC and WC(guest can select WC using PAT and
PCD/PWT).
In addition to the host MMIO and IGMT issues, KVM's MTRR virtualization
was obviously never tested on NPT until much later, which lends further
credence to the theory/argument that this was all the result of
misdiagnosed issues.
Discussion from the EPT+MTRR enabling thread[*] more or less confirms that
Sheng Yang was trying to resolve issues with passthrough MMIO.
* Sheng Yang
: Do you mean host(qemu) would access this memory and if we set it to guest
: MTRR, host access would be broken? We would cover this in our shadow MTRR
: patch, for we encountered this in video ram when doing some experiment with
: VGA assignment.
And in the same thread, there's also what appears to be confirmation of
Intel running into issues with Windows XP related to a guest device driver
mapping DMA with WC in the PAT.
* Avi Kavity
: Sheng Yang wrote:
: > Yes... But it's easy to do with assigned devices' mmio, but what if guest
: > specific some non-mmio memory's memory type? E.g. we have met one issue in
: > Xen, that a assigned-device's XP driver specific one memory region as buffer,
: > and modify the memory type then do DMA.
: >
: > Only map MMIO space can be first step, but I guess we can modify assigned
: > memory region memory type follow guest's?
: >
:
: With ept/npt, we can't, since the memory type is in the guest's
: pagetable entries, and these are not accessible.
[*] https://lore.kernel.org/all/1223539317-32379-1-git-send-email-sheng@linux.intel.com
So, for the most part, what likely happened is that 15 years ago, a few
engineers (a) fixed a #MC problem by ignoring guest PAT and (b) initially
"fixed" passthrough device MMIO by emulating *guest* MTRRs. Except for
the below case, everything since then has been a result of those two
intertwined changes.
The one exception, which is actually yet more confirmation of all of the
above, is the revert of Paolo's attempt at "full" virtualization of guest
MTRRs:
commit 606decd67049217684e3cb5a54104d51ddd4ef35
Author: Paolo Bonzini <pbonzini@redhat.com>
Date: Thu Oct 1 13:12:47 2015 +0200
Revert "KVM: x86: apply guest MTRR virtualization on host reserved pages"
This reverts commit fd717f11015f673487ffc826e59b2bad69d20fe5.
It was reported to cause Machine Check Exceptions (bug 104091).
...
commit fd717f11015f673487ffc826e59b2bad69d20fe5
Author: Paolo Bonzini <pbonzini@redhat.com>
Date: Tue Jul 7 14:38:13 2015 +0200
KVM: x86: apply guest MTRR virtualization on host reserved pages
Currently guest MTRR is avoided if kvm_is_reserved_pfn returns true.
However, the guest could prefer a different page type than UC for
such pages. A good example is that pass-throughed VGA frame buffer is
not always UC as host expected.
This patch enables full use of virtual guest MTRRs.
I.e. Paolo tried to add back KVM's behavior before "Map device MMIO as UC
in EPT" and got the same result: machine checks, likely due to the guest
MTRRs not being trustworthy/sane at all times.
Note, Paolo also tried to enable MTRR virtualization on SVM+NPT, but that
too got reverted. Unfortunately, it doesn't appear that anyone ever found
a smoking gun, i.e. exactly why emulating guest MTRRs via NPT PAT caused
extremely slow boot times doesn't appear to have a definitive root cause.
commit fc07e76ac7ffa3afd621a1c3858a503386a14281
Author: Paolo Bonzini <pbonzini@redhat.com>
Date: Thu Oct 1 13:20:22 2015 +0200
Revert "KVM: SVM: use NPT page attributes"
This reverts commit 3c2e7f7de3240216042b61073803b61b9b3cfb22.
Initializing the mapping from MTRR to PAT values was reported to
fail nondeterministically, and it also caused extremely slow boot
(due to caching getting disabled---bug 103321) with assigned devices.
...
commit 3c2e7f7de3240216042b61073803b61b9b3cfb22
Author: Paolo Bonzini <pbonzini@redhat.com>
Date: Tue Jul 7 14:32:17 2015 +0200
KVM: SVM: use NPT page attributes
Right now, NPT page attributes are not used, and the final page
attribute depends solely on gPAT (which however is not synced
correctly), the guest MTRRs and the guest page attributes.
However, we can do better by mimicking what is done for VMX.
In the absence of PCI passthrough, the guest PAT can be ignored
and the page attributes can be just WB. If passthrough is being
used, instead, keep respecting the guest PAT, and emulate the guest
MTRRs through the PAT field of the nested page tables.
The only snag is that WP memory cannot be emulated correctly,
because Linux's default PAT setting only includes the other types.
In short, honoring guest MTRRs for VMX was initially a workaround of
sorts for KVM ignoring guest PAT *and* for KVM not forcing UC for host
MMIO. And while there *are* known cases where honoring guest MTRRs is
desirable, e.g. passthrough VGA frame buffers, the desired behavior in
that case is to get WC instead of UC, i.e. at this point it's for
performance, not correctness.
Furthermore, the complete absence of MTRR virtualization on NPT and
shadow paging proves that, while KVM theoretically can do better, it's
by no means necessary for correctnesss.
Lastly, since kernels mostly rely on firmware to do MTRR setup, and the
host typically provides guest firmware, honoring guest MTRRs is effectively
honoring *host* userspace memtypes, which is also backwards. I.e. it
would be far better for host userspace to communicate its desired memtype
directly to KVM (or perhaps indirectly via VMAs in the host kernel), not
through guest MTRRs.
Tested-by: Xiangfei Ma <xiangfeix.ma@intel.com>
Tested-by: Yongwei Ma <yongwei.ma@intel.com>
Link: https://lore.kernel.org/r/20240309010929.1403984-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Keep kvm_apicv_inhibit enum naming consistent with the current pattern by
renaming the reason/enumerator defined as APICV_INHIBIT_REASON_DISABLE to
APICV_INHIBIT_REASON_DISABLED.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Alejandro Jimenez <alejandro.j.jimenez@oracle.com>
Link: https://lore.kernel.org/r/20240506225321.3440701-3-alejandro.j.jimenez@oracle.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Use the tracing infrastructure helper __print_flags() for printing flag
bitfields, to enhance the trace output by displaying a string describing
each of the inhibit reasons set.
The kvm_apicv_inhibit_changed tracepoint currently shows the raw bitmap
value, requiring the user to consult the source file where the inhibit
reasons are defined to decode the trace output.
Signed-off-by: Alejandro Jimenez <alejandro.j.jimenez@oracle.com>
Reviewed-by: Vasant Hegde <vasant.hegde@amd.com>
Link: https://lore.kernel.org/r/20240506225321.3440701-2-alejandro.j.jimenez@oracle.com
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Introduce the VM variable "nanoseconds per APIC bus cycle" in
preparation to make the APIC bus frequency configurable.
The TDX architecture hard-codes the core crystal clock frequency to
25MHz and mandates exposing it via CPUID leaf 0x15. The TDX architecture
does not allow the VMM to override the value.
In addition, per Intel SDM:
"The APIC timer frequency will be the processor’s bus clock or core
crystal clock frequency (when TSC/core crystal clock ratio is
enumerated in CPUID leaf 0x15) divided by the value specified in
the divide configuration register."
The resulting 25MHz APIC bus frequency conflicts with the KVM hardcoded
APIC bus frequency of 1GHz.
Introduce the VM variable "nanoseconds per APIC bus cycle" to prepare
for allowing userspace to tell KVM to use the frequency that TDX mandates
instead of the default 1Ghz. Doing so ensures that the guest doesn't have
a conflicting view of the APIC bus frequency.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
[reinette: rework changelog]
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/ae75ce37c6c38bb4efd10a0a41932984c40b24ac.1714081726.git.reinette.chatre@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Several '_mask' suffixed variables such as, global_ctrl_mask, are
defined in kvm_pmu structure. However the _mask suffix is ambiguous and
misleading since it's not a real mask with positive logic. On the contrary
it represents the reserved bits of corresponding MSRs and these bits
should not be accessed.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240430005239.13527-2-dapeng1.mi@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Pull base x86 KVM support for running SEV-SNP guests from Michael Roth:
* add some basic infrastructure and introduces a new KVM_X86_SNP_VM
vm_type to handle differences versus the existing KVM_X86_SEV_VM and
KVM_X86_SEV_ES_VM types.
* implement the KVM API to handle the creation of a cryptographic
launch context, encrypt/measure the initial image into guest memory,
and finalize it before launching it.
* implement handling for various guest-generated events such as page
state changes, onlining of additional vCPUs, etc.
* implement the gmem/mmu hooks needed to prepare gmem-allocated pages
before mapping them into guest private memory ranges as well as
cleaning them up prior to returning them to the host for use as
normal memory. Because those cleanup hooks supplant certain
activities like issuing WBINVDs during KVM MMU invalidations, avoid
duplicating that work to avoid unecessary overhead.
This merge leaves out support support for attestation guest requests
and for loading the signing keys to be used for attestation requests.
|
|
Add "struct kvm_host_values kvm_host" to hold the various host values
that KVM snapshots during initialization. Bundling the host values into
a single struct simplifies adding new MSRs and other features with host
state/values that KVM cares about, and provides a one-stop shop. E.g.
adding a new value requires one line, whereas tracking each value
individual often requires three: declaration, definition, and export.
No functional change intended.
Link: https://lore.kernel.org/r/20240423221521.2923759-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Print the SPTEs that correspond to the faulting GPA on an unexpected EPT
Violation #VE to help the user debug failures, e.g. to pinpoint which SPTE
didn't have SUPPRESS_VE set.
Opportunistically assert that the underlying exit reason was indeed an EPT
Violation, as the CPU has *really* gone off the rails if a #VE occurs due
to a completely unexpected exit reason.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240518000430.1118488-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add support for the SEV-SNP AP Creation NAE event. This allows SEV-SNP
guests to alter the register state of the APs on their own. This allows
the guest a way of simulating INIT-SIPI.
A new event, KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, is created and used
so as to avoid updating the VMSA pointer while the vCPU is running.
For CREATE
The guest supplies the GPA of the VMSA to be used for the vCPU with
the specified APIC ID. The GPA is saved in the svm struct of the
target vCPU, the KVM_REQ_UPDATE_PROTECTED_GUEST_STATE event is added
to the vCPU and then the vCPU is kicked.
For CREATE_ON_INIT:
The guest supplies the GPA of the VMSA to be used for the vCPU with
the specified APIC ID the next time an INIT is performed. The GPA is
saved in the svm struct of the target vCPU.
For DESTROY:
The guest indicates it wishes to stop the vCPU. The GPA is cleared
from the svm struct, the KVM_REQ_UPDATE_PROTECTED_GUEST_STATE event is
added to vCPU and then the vCPU is kicked.
The KVM_REQ_UPDATE_PROTECTED_GUEST_STATE event handler will be invoked
as a result of the event or as a result of an INIT. If a new VMSA is to
be installed, the VMSA guest page is set as the VMSA in the vCPU VMCB
and the vCPU state is set to KVM_MP_STATE_RUNNABLE. If a new VMSA is not
to be installed, the VMSA is cleared in the vCPU VMCB and the vCPU state
is set to KVM_MP_STATE_HALTED to prevent it from being run.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-ID: <20240501085210.2213060-13-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When SEV-SNP is enabled in the guest, the hardware places restrictions
on all memory accesses based on the contents of the RMP table. When
hardware encounters RMP check failure caused by the guest memory access
it raises the #NPF. The error code contains additional information on
the access type. See the APM volume 2 for additional information.
When using gmem, RMP faults resulting from mismatches between the state
in the RMP table vs. what the guest expects via its page table result
in KVM_EXIT_MEMORY_FAULTs being forwarded to userspace to handle. This
means the only expected case that needs to be handled in the kernel is
when the page size of the entry in the RMP table is larger than the
mapping in the nested page table, in which case a PSMASH instruction
needs to be issued to split the large RMP entry into individual 4K
entries so that subsequent accesses can succeed.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-ID: <20240501085210.2213060-12-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Common patches for the target-independent functionality and hooks
that are needed by SEV-SNP and TDX.
|
|
KVM VMX changes for 6.10:
- Clear vmcs.EXIT_QUALIFICATION when synthesizing an EPT Misconfig VM-Exit to
L1, as per the SDM.
- Move kvm_vcpu_arch's exit_qualification into x86_exception, as the field is
used only when synthesizing nested EPT violation, i.e. it's not the vCPU's
"real" exit_qualification, which is tracked elsewhere.
- Add a sanity check to assert that EPT Violations are the only sources of
nested PML Full VM-Exits.
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson into HEAD
LoongArch KVM changes for v6.10
1. Add ParaVirt IPI support.
2. Add software breakpoint support.
3. Add mmio trace events support.
|