Age | Commit message (Collapse) | Author |
|
An update to the inode ctime typically requires the latest clock
value possible. The exception to this rule is when there is a nfsd write
delegation and the server is proxying timestamps from the client.
When nfsd gets a CB_GETATTR response, update the timestamp value in the
inode to the values that the client is tracking. The client doesn't send
a ctime value (since that's always determined by the exported
filesystem), but it can send a mtime value. In the case where it does,
update the ctime to a value commensurate with that instead of the
current time.
If ATTR_DELEG is set, then use ia_ctime value instead of setting the
timestamp to the current time.
With the addition of delegated timestamps, the server may receive a
request to update only the atime, which doesn't involve a ctime update.
Trust the ATTR_CTIME flag in the update and only update the ctime when
it's set.
Tested-by: Randy Dunlap <rdunlap@infradead.org> # documentation bits
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20241002-mgtime-v10-5-d1c4717f5284@kernel.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
The setattr codepath is still using coarse-grained timestamps, even on
multigrain filesystems. To fix this, fetch the timestamp for ctime
updates later, at the point where the assignment occurs in setattr_copy.
On a multigrain inode, ignore the ia_ctime in the attrs, and always
update the ctime to the current clock value. Update the atime and mtime
with the same value (if needed) unless they are being set to other
specific values, a'la utimes().
Do not do this universally however, as some filesystems (e.g. most
networked fs) want to do an explicit update elsewhere before updating
the local inode.
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Tested-by: Randy Dunlap <rdunlap@infradead.org> # documentation bits
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20241002-mgtime-v10-4-d1c4717f5284@kernel.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/cel/linux
Pull nfsd fixes from Chuck Lever:
- Fix a number of crashers
- Update email address for an NFSD reviewer
* tag 'nfsd-6.11-2' of git://git.kernel.org/pub/scm/linux/kernel/git/cel/linux:
fs/nfsd: fix update of inode attrs in CB_GETATTR
nfsd: fix potential UAF in nfsd4_cb_getattr_release
nfsd: hold reference to delegation when updating it for cb_getattr
MAINTAINERS: Update Olga Kornievskaia's email address
nfsd: prevent panic for nfsv4.0 closed files in nfs4_show_open
nfsd: ensure that nfsd4_fattr_args.context is zeroed out
|
|
Currently, we copy the mtime and ctime to the in-core inode and then
mark the inode dirty. This is fine for certain types of filesystems, but
not all. Some require a real setattr to properly change these values
(e.g. ceph or reexported NFS).
Fix this code to call notify_change() instead, which is the proper way
to effect a setattr. There is one problem though:
In this case, the client is holding a write delegation and has sent us
attributes to update our cache. We don't want to break the delegation
for this since that would defeat the purpose. Add a new ATTR_DELEG flag
that makes notify_change bypass the try_break_deleg call.
Fixes: c5967721e106 ("NFSD: handle GETATTR conflict with write delegation")
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
Export in_group_or_capable() as a VFS helper function.
Signed-off-by: Youling Tang <tangyouling@kylinos.cn>
Link: https://lore.kernel.org/r/20240620032335.147136-1-youling.tang@linux.dev
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/lsm
Pull lsm updates from Paul Moore:
- Promote IMA/EVM to a proper LSM
This is the bulk of the diffstat, and the source of all the changes
in the VFS code. Prior to the start of the LSM stacking work it was
important that IMA/EVM were separate from the rest of the LSMs,
complete with their own hooks, infrastructure, etc. as it was the
only way to enable IMA/EVM at the same time as a LSM.
However, now that the bulk of the LSM infrastructure supports
multiple simultaneous LSMs, we can simplify things greatly by
bringing IMA/EVM into the LSM infrastructure as proper LSMs. This is
something I've wanted to see happen for quite some time and Roberto
was kind enough to put in the work to make it happen.
- Use the LSM hook default values to simplify the call_int_hook() macro
Previously the call_int_hook() macro required callers to supply a
default return value, despite a default value being specified when
the LSM hook was defined.
This simplifies the macro by using the defined default return value
which makes life easier for callers and should also reduce the number
of return value bugs in the future (we've had a few pop up recently,
hence this work).
- Use the KMEM_CACHE() macro instead of kmem_cache_create()
The guidance appears to be to use the KMEM_CACHE() macro when
possible and there is no reason why we can't use the macro, so let's
use it.
- Fix a number of comment typos in the LSM hook comment blocks
Not much to say here, we fixed some questionable grammar decisions in
the LSM hook comment blocks.
* tag 'lsm-pr-20240312' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/lsm: (28 commits)
cred: Use KMEM_CACHE() instead of kmem_cache_create()
lsm: use default hook return value in call_int_hook()
lsm: fix typos in security/security.c comment headers
integrity: Remove LSM
ima: Make it independent from 'integrity' LSM
evm: Make it independent from 'integrity' LSM
evm: Move to LSM infrastructure
ima: Move IMA-Appraisal to LSM infrastructure
ima: Move to LSM infrastructure
integrity: Move integrity_kernel_module_request() to IMA
security: Introduce key_post_create_or_update hook
security: Introduce inode_post_remove_acl hook
security: Introduce inode_post_set_acl hook
security: Introduce inode_post_create_tmpfile hook
security: Introduce path_post_mknod hook
security: Introduce file_release hook
security: Introduce file_post_open hook
security: Introduce inode_post_removexattr hook
security: Introduce inode_post_setattr hook
security: Align inode_setattr hook definition with EVM
...
|
|
As for IMA, move hardcoded EVM function calls from various places in the
kernel to the LSM infrastructure, by introducing a new LSM named 'evm'
(last and always enabled like 'ima'). The order in the Makefile ensures
that 'evm' hooks are executed after 'ima' ones.
Make EVM functions as static (except for evm_inode_init_security(), which
is exported), and register them as hook implementations in init_evm_lsm().
Also move the inline functions evm_inode_remove_acl(),
evm_inode_post_remove_acl(), and evm_inode_post_set_acl() from the public
evm.h header to evm_main.c.
Unlike before (see commit to move IMA to the LSM infrastructure),
evm_inode_post_setattr(), evm_inode_post_set_acl(),
evm_inode_post_remove_acl(), and evm_inode_post_removexattr() are not
executed for private inodes.
Finally, add the LSM_ID_EVM case in lsm_list_modules_test.c
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Reviewed-by: Casey Schaufler <casey@schaufler-ca.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Reviewed-by: Stefan Berger <stefanb@linux.ibm.com>
Reviewed-by: Mimi Zohar <zohar@linux.ibm.com>
Acked-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
|
|
A few additional IMA hooks are needed to reset the cached appraisal
status, causing the file's integrity to be re-evaluated on next access.
Register these IMA-appraisal only functions separately from the rest of IMA
functions, as appraisal is a separate feature not necessarily enabled in
the kernel configuration.
Reuse the same approach as for other IMA functions, move hardcoded calls
from various places in the kernel to the LSM infrastructure. Declare the
functions as static and register them as hook implementations in
init_ima_appraise_lsm(), called by init_ima_lsm().
Also move the inline function ima_inode_remove_acl() from the public ima.h
header to ima_appraise.c.
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Reviewed-by: Stefan Berger <stefanb@linux.ibm.com>
Reviewed-by: Mimi Zohar <zohar@linux.ibm.com>
Reviewed-by: Casey Schaufler <casey@schaufler-ca.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Acked-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
|
|
In preparation for moving IMA and EVM to the LSM infrastructure, introduce
the inode_post_setattr hook.
At inode_setattr hook, EVM verifies the file's existing HMAC value. At
inode_post_setattr, EVM re-calculates the file's HMAC based on the modified
file attributes and other file metadata.
Other LSMs could similarly take some action after successful file attribute
change.
The new hook cannot return an error and cannot cause the operation to be
reverted.
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Reviewed-by: Stefan Berger <stefanb@linux.ibm.com>
Reviewed-by: Mimi Zohar <zohar@linux.ibm.com>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Paul Moore <paul@paul-moore.com>
|
|
Change evm_inode_post_setattr() definition, so that it can be registered as
implementation of the inode_post_setattr hook (to be introduced).
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Reviewed-by: Stefan Berger <stefanb@linux.ibm.com>
Reviewed-by: Casey Schaufler <casey@schaufler-ca.com>
Reviewed-by: Mimi Zohar <zohar@linux.ibm.com>
Acked-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
|
|
Change ima_inode_post_setattr() definition, so that it can be registered as
implementation of the inode_post_setattr hook (to be introduced).
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Reviewed-by: Stefan Berger <stefanb@linux.ibm.com>
Reviewed-by: Casey Schaufler <casey@schaufler-ca.com>
Reviewed-by: Mimi Zohar <zohar@linux.ibm.com>
Acked-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
|
|
The word "filesytem" should be "filesystem"
Signed-off-by: Jay <merqqcury@gmail.com>
Link: https://lore.kernel.org/r/20240109072927.29626-1-merqqcury@gmail.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
Do the replacement:
s/simply passs @nop_mnt_idmap/simply pass @nop_mnt_idmap/
in the fs/ tree.
Found by chance while working on support for idmapped mounts in fuse.
Cc: Jan Kara <jack@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: <linux-fsdevel@vger.kernel.org>
Cc: <linux-kernel@vger.kernel.org>
Signed-off-by: Alexander Mikhalitsyn <aleksandr.mikhalitsyn@canonical.com>
Link: https://lore.kernel.org/r/20231215130927.136917-1-aleksandr.mikhalitsyn@canonical.com
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
Convert the core vfs code to use the new timestamp accessor functions.
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20231004185239.80830-2-jlayton@kernel.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull misc vfs updates from Christian Brauner:
"This contains the usual miscellaneous features, cleanups, and fixes
for vfs and individual filesystems.
Features:
- Block mode changes on symlinks and rectify our broken semantics
- Report file modifications via fsnotify() for splice
- Allow specifying an explicit timeout for the "rootwait" kernel
command line option. This allows to timeout and reboot instead of
always waiting indefinitely for the root device to show up
- Use synchronous fput for the close system call
Cleanups:
- Get rid of open-coded lockdep workarounds for async io submitters
and replace it all with a single consolidated helper
- Simplify epoll allocation helper
- Convert simple_write_begin and simple_write_end to use a folio
- Convert page_cache_pipe_buf_confirm() to use a folio
- Simplify __range_close to avoid pointless locking
- Disable per-cpu buffer head cache for isolated cpus
- Port ecryptfs to kmap_local_page() api
- Remove redundant initialization of pointer buf in pipe code
- Unexport the d_genocide() function which is only used within core
vfs
- Replace printk(KERN_ERR) and WARN_ON() with WARN()
Fixes:
- Fix various kernel-doc issues
- Fix refcount underflow for eventfds when used as EFD_SEMAPHORE
- Fix a mainly theoretical issue in devpts
- Check the return value of __getblk() in reiserfs
- Fix a racy assert in i_readcount_dec
- Fix integer conversion issues in various functions
- Fix LSM security context handling during automounts that prevented
NFS superblock sharing"
* tag 'v6.6-vfs.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (39 commits)
cachefiles: use kiocb_{start,end}_write() helpers
ovl: use kiocb_{start,end}_write() helpers
aio: use kiocb_{start,end}_write() helpers
io_uring: use kiocb_{start,end}_write() helpers
fs: create kiocb_{start,end}_write() helpers
fs: add kerneldoc to file_{start,end}_write() helpers
io_uring: rename kiocb_end_write() local helper
splice: Convert page_cache_pipe_buf_confirm() to use a folio
libfs: Convert simple_write_begin and simple_write_end to use a folio
fs/dcache: Replace printk and WARN_ON by WARN
fs/pipe: remove redundant initialization of pointer buf
fs: Fix kernel-doc warnings
devpts: Fix kernel-doc warnings
doc: idmappings: fix an error and rephrase a paragraph
init: Add support for rootwait timeout parameter
vfs: fix up the assert in i_readcount_dec
fs: Fix one kernel-doc comment
docs: filesystems: idmappings: clarify from where idmappings are taken
fs/buffer.c: disable per-CPU buffer_head cache for isolated CPUs
vfs, security: Fix automount superblock LSM init problem, preventing NFS sb sharing
...
|
|
Changing the mode of symlinks is meaningless as the vfs doesn't take the
mode of a symlink into account during path lookup permission checking.
However, the vfs doesn't block mode changes on symlinks. This however,
has lead to an untenable mess roughly classifiable into the following
two categories:
(1) Filesystems that don't implement a i_op->setattr() for symlinks.
Such filesystems may or may not know that without i_op->setattr()
defined, notify_change() falls back to simple_setattr() causing the
inode's mode in the inode cache to be changed.
That's a generic issue as this will affect all non-size changing
inode attributes including ownership changes.
Example: afs
(2) Filesystems that fail with EOPNOTSUPP but change the mode of the
symlink nonetheless.
Some filesystems will happily update the mode of a symlink but still
return EOPNOTSUPP. This is the biggest source of confusion for
userspace.
The EOPNOTSUPP in this case comes from POSIX ACLs. Specifically it
comes from filesystems that call posix_acl_chmod(), e.g., btrfs via
if (!err && attr->ia_valid & ATTR_MODE)
err = posix_acl_chmod(idmap, dentry, inode->i_mode);
Filesystems including btrfs don't implement i_op->set_acl() so
posix_acl_chmod() will report EOPNOTSUPP.
When posix_acl_chmod() is called, most filesystems will have
finished updating the inode.
Perversely, this has the consequences that this behavior may depend
on two kconfig options and mount options:
* CONFIG_POSIX_ACL={y,n}
* CONFIG_${FSTYPE}_POSIX_ACL={y,n}
* Opt_acl, Opt_noacl
Example: btrfs, ext4, xfs
The only way to change the mode on a symlink currently involves abusing
an O_PATH file descriptor in the following manner:
fd = openat(-1, "/path/to/link", O_CLOEXEC | O_PATH | O_NOFOLLOW);
char path[PATH_MAX];
snprintf(path, sizeof(path), "/proc/self/fd/%d", fd);
chmod(path, 0000);
But for most major filesystems with POSIX ACL support such as btrfs,
ext4, ceph, tmpfs, xfs and others this will fail with EOPNOTSUPP with
the mode still updated due to the aforementioned posix_acl_chmod()
nonsense.
So, given that for all major filesystems this would fail with EOPNOTSUPP
and that both glibc (cf. [1]) and musl (cf. [2]) outright block mode
changes on symlinks we should just try and block mode changes on
symlinks directly in the vfs and have a clean break with this nonsense.
If this causes any regressions, we do the next best thing and fix up all
filesystems that do return EOPNOTSUPP with the mode updated to not call
posix_acl_chmod() on symlinks.
But as usual, let's try the clean cut solution first. It's a simple
patch that can be easily reverted. Not marking this for backport as I'll
do that manually if we're reasonably sure that this works and there are
no strong objections.
We could block this in chmod_common() but it's more appropriate to do it
notify_change() as it will also mean that we catch filesystems that
change symlink permissions explicitly or accidently.
Similar proposals were floated in the past as in [3] and [4] and again
recently in [5]. There's also a couple of bugs about this inconsistency
as in [6] and [7].
Link: https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/fchmodat.c;h=99527a3727e44cb8661ee1f743068f108ec93979;hb=HEAD [1]
Link: https://git.musl-libc.org/cgit/musl/tree/src/stat/fchmodat.c [2]
Link: https://lore.kernel.org/all/20200911065733.GA31579@infradead.org [3]
Link: https://sourceware.org/legacy-ml/libc-alpha/2020-02/msg00518.html [4]
Link: https://lore.kernel.org/lkml/87lefmbppo.fsf@oldenburg.str.redhat.com [5]
Link: https://sourceware.org/legacy-ml/libc-alpha/2020-02/msg00467.html [6]
Link: https://sourceware.org/bugzilla/show_bug.cgi?id=14578#c17 [7]
Reviewed-by: Aleksa Sarai <cyphar@cyphar.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: stable@vger.kernel.org # please backport to all LTSes but not before v6.6-rc2 is tagged
Suggested-by: Christoph Hellwig <hch@lst.de>
Suggested-by: Florian Weimer <fweimer@redhat.com>
Message-Id: <20230712-vfs-chmod-symlinks-v2-1-08cfb92b61dd@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
In later patches, we're going to change how the inode's ctime field is
used. Switch to using accessor functions instead of raw accesses of
inode->i_ctime.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Message-Id: <20230705190309.579783-23-jlayton@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
We've aligned setgid behavior over multiple kernel releases. The details
can be found in the following two merge messages:
cf619f891971 ("Merge tag 'fs.ovl.setgid.v6.2')
426b4ca2d6a5 ("Merge tag 'fs.setgid.v6.0')
Consistent setgid stripping behavior is now encapsulated in the
setattr_should_drop_sgid() helper which is used by all filesystems that
strip setgid bits outside of vfs proper. Switch nfs to rely on this
helper as well. Without this patch the setgid stripping tests in
xfstests will fail.
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Message-Id: <20230313-fs-nfs-setgid-v2-1-9a59f436cfc0@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping
Pull vfs idmapping updates from Christian Brauner:
- Last cycle we introduced the dedicated struct mnt_idmap type for
mount idmapping and the required infrastucture in 256c8aed2b42 ("fs:
introduce dedicated idmap type for mounts"). As promised in last
cycle's pull request message this converts everything to rely on
struct mnt_idmap.
Currently we still pass around the plain namespace that was attached
to a mount. This is in general pretty convenient but it makes it easy
to conflate namespaces that are relevant on the filesystem with
namespaces that are relevant on the mount level. Especially for
non-vfs developers without detailed knowledge in this area this was a
potential source for bugs.
This finishes the conversion. Instead of passing the plain namespace
around this updates all places that currently take a pointer to a
mnt_userns with a pointer to struct mnt_idmap.
Now that the conversion is done all helpers down to the really
low-level helpers only accept a struct mnt_idmap argument instead of
two namespace arguments.
Conflating mount and other idmappings will now cause the compiler to
complain loudly thus eliminating the possibility of any bugs. This
makes it impossible for filesystem developers to mix up mount and
filesystem idmappings as they are two distinct types and require
distinct helpers that cannot be used interchangeably.
Everything associated with struct mnt_idmap is moved into a single
separate file. With that change no code can poke around in struct
mnt_idmap. It can only be interacted with through dedicated helpers.
That means all filesystems are and all of the vfs is completely
oblivious to the actual implementation of idmappings.
We are now also able to extend struct mnt_idmap as we see fit. For
example, we can decouple it completely from namespaces for users that
don't require or don't want to use them at all. We can also extend
the concept of idmappings so we can cover filesystem specific
requirements.
In combination with the vfs{g,u}id_t work we finished in v6.2 this
makes this feature substantially more robust and thus difficult to
implement wrong by a given filesystem and also protects the vfs.
- Enable idmapped mounts for tmpfs and fulfill a longstanding request.
A long-standing request from users had been to make it possible to
create idmapped mounts for tmpfs. For example, to share the host's
tmpfs mount between multiple sandboxes. This is a prerequisite for
some advanced Kubernetes cases. Systemd also has a range of use-cases
to increase service isolation. And there are more users of this.
However, with all of the other work going on this was way down on the
priority list but luckily someone other than ourselves picked this
up.
As usual the patch is tiny as all the infrastructure work had been
done multiple kernel releases ago. In addition to all the tests that
we already have I requested that Rodrigo add a dedicated tmpfs
testsuite for idmapped mounts to xfstests. It is to be included into
xfstests during the v6.3 development cycle. This should add a slew of
additional tests.
* tag 'fs.idmapped.v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping: (26 commits)
shmem: support idmapped mounts for tmpfs
fs: move mnt_idmap
fs: port vfs{g,u}id helpers to mnt_idmap
fs: port fs{g,u}id helpers to mnt_idmap
fs: port i_{g,u}id_into_vfs{g,u}id() to mnt_idmap
fs: port i_{g,u}id_{needs_}update() to mnt_idmap
quota: port to mnt_idmap
fs: port privilege checking helpers to mnt_idmap
fs: port inode_owner_or_capable() to mnt_idmap
fs: port inode_init_owner() to mnt_idmap
fs: port acl to mnt_idmap
fs: port xattr to mnt_idmap
fs: port ->permission() to pass mnt_idmap
fs: port ->fileattr_set() to pass mnt_idmap
fs: port ->set_acl() to pass mnt_idmap
fs: port ->get_acl() to pass mnt_idmap
fs: port ->tmpfile() to pass mnt_idmap
fs: port ->rename() to pass mnt_idmap
fs: port ->mknod() to pass mnt_idmap
fs: port ->mkdir() to pass mnt_idmap
...
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Remove legacy file_mnt_user_ns() and mnt_user_ns().
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
The file locking definitions have lived in fs.h since the dawn of time,
but they are only used by a small subset of the source files that
include it.
Move the file locking definitions to a new header file, and add the
appropriate #include directives to the source files that need them. By
doing this we trim down fs.h a bit and limit the amount of rebuilding
that has to be done when we make changes to the file locking APIs.
Reviewed-by: Xiubo Li <xiubli@redhat.com>
Reviewed-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Howells <dhowells@redhat.com>
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Acked-by: Chuck Lever <chuck.lever@oracle.com>
Acked-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Acked-by: Steve French <stfrench@microsoft.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
|
|
Currently setgid stripping in file_remove_privs()'s should_remove_suid()
helper is inconsistent with other parts of the vfs. Specifically, it only
raises ATTR_KILL_SGID if the inode is S_ISGID and S_IXGRP but not if the
inode isn't in the caller's groups and the caller isn't privileged over the
inode although we require this already in setattr_prepare() and
setattr_copy() and so all filesystem implement this requirement implicitly
because they have to use setattr_{prepare,copy}() anyway.
But the inconsistency shows up in setgid stripping bugs for overlayfs in
xfstests (e.g., generic/673, generic/683, generic/685, generic/686,
generic/687). For example, we test whether suid and setgid stripping works
correctly when performing various write-like operations as an unprivileged
user (fallocate, reflink, write, etc.):
echo "Test 1 - qa_user, non-exec file $verb"
setup_testfile
chmod a+rws $junk_file
commit_and_check "$qa_user" "$verb" 64k 64k
The test basically creates a file with 6666 permissions. While the file has
the S_ISUID and S_ISGID bits set it does not have the S_IXGRP set. On a
regular filesystem like xfs what will happen is:
sys_fallocate()
-> vfs_fallocate()
-> xfs_file_fallocate()
-> file_modified()
-> __file_remove_privs()
-> dentry_needs_remove_privs()
-> should_remove_suid()
-> __remove_privs()
newattrs.ia_valid = ATTR_FORCE | kill;
-> notify_change()
-> setattr_copy()
In should_remove_suid() we can see that ATTR_KILL_SUID is raised
unconditionally because the file in the test has S_ISUID set.
But we also see that ATTR_KILL_SGID won't be set because while the file
is S_ISGID it is not S_IXGRP (see above) which is a condition for
ATTR_KILL_SGID being raised.
So by the time we call notify_change() we have attr->ia_valid set to
ATTR_KILL_SUID | ATTR_FORCE. Now notify_change() sees that
ATTR_KILL_SUID is set and does:
ia_valid = attr->ia_valid |= ATTR_MODE
attr->ia_mode = (inode->i_mode & ~S_ISUID);
which means that when we call setattr_copy() later we will definitely
update inode->i_mode. Note that attr->ia_mode still contains S_ISGID.
Now we call into the filesystem's ->setattr() inode operation which will
end up calling setattr_copy(). Since ATTR_MODE is set we will hit:
if (ia_valid & ATTR_MODE) {
umode_t mode = attr->ia_mode;
vfsgid_t vfsgid = i_gid_into_vfsgid(mnt_userns, inode);
if (!vfsgid_in_group_p(vfsgid) &&
!capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID))
mode &= ~S_ISGID;
inode->i_mode = mode;
}
and since the caller in the test is neither capable nor in the group of the
inode the S_ISGID bit is stripped.
But assume the file isn't suid then ATTR_KILL_SUID won't be raised which
has the consequence that neither the setgid nor the suid bits are stripped
even though it should be stripped because the inode isn't in the caller's
groups and the caller isn't privileged over the inode.
If overlayfs is in the mix things become a bit more complicated and the bug
shows up more clearly. When e.g., ovl_setattr() is hit from
ovl_fallocate()'s call to file_remove_privs() then ATTR_KILL_SUID and
ATTR_KILL_SGID might be raised but because the check in notify_change() is
questioning the ATTR_KILL_SGID flag again by requiring S_IXGRP for it to be
stripped the S_ISGID bit isn't removed even though it should be stripped:
sys_fallocate()
-> vfs_fallocate()
-> ovl_fallocate()
-> file_remove_privs()
-> dentry_needs_remove_privs()
-> should_remove_suid()
-> __remove_privs()
newattrs.ia_valid = ATTR_FORCE | kill;
-> notify_change()
-> ovl_setattr()
// TAKE ON MOUNTER'S CREDS
-> ovl_do_notify_change()
-> notify_change()
// GIVE UP MOUNTER'S CREDS
// TAKE ON MOUNTER'S CREDS
-> vfs_fallocate()
-> xfs_file_fallocate()
-> file_modified()
-> __file_remove_privs()
-> dentry_needs_remove_privs()
-> should_remove_suid()
-> __remove_privs()
newattrs.ia_valid = attr_force | kill;
-> notify_change()
The fix for all of this is to make file_remove_privs()'s
should_remove_suid() helper to perform the same checks as we already
require in setattr_prepare() and setattr_copy() and have notify_change()
not pointlessly requiring S_IXGRP again. It doesn't make any sense in the
first place because the caller must calculate the flags via
should_remove_suid() anyway which would raise ATTR_KILL_SGID.
While we're at it we move should_remove_suid() from inode.c to attr.c
where it belongs with the rest of the iattr helpers. Especially since it
returns ATTR_KILL_S{G,U}ID flags. We also rename it to
setattr_should_drop_suidgid() to better reflect that it indicates both
setuid and setgid bit removal and also that it returns attr flags.
Running xfstests with this doesn't report any regressions. We should really
try and use consistent checks.
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
The current setgid stripping logic during write and ownership change
operations is inconsistent and strewn over multiple places. In order to
consolidate it and make more consistent we'll add a new helper
setattr_should_drop_sgid(). The function retains the old behavior where
we remove the S_ISGID bit unconditionally when S_IXGRP is set but also
when it isn't set and the caller is neither in the group of the inode
nor privileged over the inode.
We will use this helper both in write operation permission removal such
as file_remove_privs() as well as in ownership change operations.
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Move the helper from inode.c to attr.c. This keeps the the core of the
set{g,u}id stripping logic in one place when we add follow-up changes.
It is the better place anyway, since should_remove_suid() returns
ATTR_KILL_S{G,U}ID flags.
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
In setattr_{copy,prepare}() we need to perform the same permission
checks to determine whether we need to drop the setgid bit or not.
Instead of open-coding it twice add a simple helper the encapsulates the
logic. We will reuse this helpers to make dropping the setgid bit during
write operations more consistent in a follow up patch.
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
If something manages to set the maximum file size to MAX_OFFSET+1, this
can cause the xfs and ext4 filesystems at least to become corrupt.
Ordinarily, the kernel protects against userspace trying this by
checking the value early in the truncate() and ftruncate() system calls
calls - but there are at least two places that this check is bypassed:
(1) Cachefiles will round up the EOF of the backing file to DIO block
size so as to allow DIO on the final block - but this might push
the offset negative. It then calls notify_change(), but this
inadvertently bypasses the checking. This can be triggered if
someone puts an 8EiB-1 file on a server for someone else to try and
access by, say, nfs.
(2) ksmbd doesn't check the value it is given in set_end_of_file_info()
and then calls vfs_truncate() directly - which also bypasses the
check.
In both cases, it is potentially possible for a network filesystem to
cause a disk filesystem to be corrupted: cachefiles in the client's
cache filesystem; ksmbd in the server's filesystem.
nfsd is okay as it checks the value, but we can then remove this check
too.
Fix this by adding a check to inode_newsize_ok(), as called from
setattr_prepare(), thereby catching the issue as filesystems set up to
perform the truncate with minimal opportunity for bypassing the new
check.
Fixes: 1f08c925e7a3 ("cachefiles: Implement backing file wrangling")
Fixes: f44158485826 ("cifsd: add file operations")
Signed-off-by: David Howells <dhowells@redhat.com>
Reported-by: Jeff Layton <jlayton@kernel.org>
Tested-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Namjae Jeon <linkinjeon@kernel.org>
Cc: stable@kernel.org
Acked-by: Alexander Viro <viro@zeniv.linux.org.uk>
cc: Steve French <sfrench@samba.org>
cc: Hyunchul Lee <hyc.lee@gmail.com>
cc: Chuck Lever <chuck.lever@oracle.com>
cc: Dave Wysochanski <dwysocha@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When building kernel documentation new warnings were generated because
the name in the parameter documentation didn't match the parameter name.
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Now that we introduced new infrastructure to increase the type safety
for filesystems supporting idmapped mounts port the first part of the
vfs over to them.
This ports the attribute changes codepaths to rely on the new better
helpers using a dedicated type.
Before this change we used to take a shortcut and place the actual
values that would be written to inode->i_{g,u}id into struct iattr. This
had the advantage that we moved idmappings mostly out of the picture
early on but it made reasoning about changes more difficult than it
should be.
The filesystem was never explicitly told that it dealt with an idmapped
mount. The transition to the value that needed to be stored in
inode->i_{g,u}id appeared way too early and increased the probability of
bugs in various codepaths.
We know place the same value in struct iattr no matter if this is an
idmapped mount or not. The vfs will only deal with type safe
vfs{g,u}id_t. This makes it massively safer to perform permission checks
as the type will tell us what checks we need to perform and what helpers
we need to use.
Fileystems raising FS_ALLOW_IDMAP can't simply write ia_vfs{g,u}id to
inode->i_{g,u}id since they are different types. Instead they need to
use the dedicated vfs{g,u}id_to_k{g,u}id() helpers that map the
vfs{g,u}id into the filesystem.
The other nice effect is that filesystems like overlayfs don't need to
care about idmappings explicitly anymore and can simply set up struct
iattr accordingly directly.
Link: https://lore.kernel.org/lkml/CAHk-=win6+ahs1EwLkcq8apqLi_1wXFWbrPf340zYEhObpz4jA@mail.gmail.com [1]
Link: https://lore.kernel.org/r/20220621141454.2914719-9-brauner@kernel.org
Cc: Seth Forshee <sforshee@digitalocean.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
CC: linux-fsdevel@vger.kernel.org
Reviewed-by: Seth Forshee <sforshee@digitalocean.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Before this change we used to take a shortcut and place the actual
values that would be written to inode->i_{g,u}id into struct iattr. This
had the advantage that we moved idmappings mostly out of the picture
early on but it made reasoning about changes more difficult than it
should be.
The filesystem was never explicitly told that it dealt with an idmapped
mount. The transition to the value that needed to be stored in
inode->i_{g,u}id appeared way too early and increased the probability of
bugs in various codepaths.
We know place the same value in struct iattr no matter if this is an
idmapped mount or not. The vfs will only deal with type safe
vfs{g,u}id_t. This makes it massively safer to perform permission checks
as the type will tell us what checks we need to perform and what helpers
we need to use.
Adapt the security_inode_setattr() helper to pass down the mount's
idmapping to account for that change.
Link: https://lore.kernel.org/r/20220621141454.2914719-8-brauner@kernel.org
Cc: Seth Forshee <sforshee@digitalocean.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
CC: linux-fsdevel@vger.kernel.org
Reviewed-by: Seth Forshee <sforshee@digitalocean.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Earlier we introduced new helpers to abstract ownership update and
remove code duplication. This converts all filesystems supporting
idmapped mounts to make use of these new helpers.
For now we always pass the initial idmapping which makes the idmapping
functions these helpers call nops.
This is done because we currently always pass the actual value to be
written to i_{g,u}id via struct iattr. While this allowed us to treat
the {g,u}id values in struct iattr as values that can be directly
written to inode->i_{g,u}id it also increases the potential for
confusion for filesystems.
Now that we are have dedicated types to prevent this confusion we will
ultimately only map the value from the idmapped mount into a filesystem
value that can be written to inode->i_{g,u}id when the filesystem
actually updates the inode. So pass down the initial idmapping until we
finished that conversion at which point we pass down the mount's
idmapping.
No functional changes intended.
Link: https://lore.kernel.org/r/20220621141454.2914719-6-brauner@kernel.org
Cc: Seth Forshee <sforshee@digitalocean.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
CC: linux-fsdevel@vger.kernel.org
Reviewed-by: Seth Forshee <sforshee@digitalocean.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
When calling setattr_prepare() to determine the validity of the
attributes the ia_{g,u}id fields contain the value that will be written
to inode->i_{g,u}id. This is exactly the same for idmapped and
non-idmapped mounts and allows callers to pass in the values they want
to see written to inode->i_{g,u}id.
When group ownership is changed a caller whose fsuid owns the inode can
change the group of the inode to any group they are a member of. When
searching through the caller's groups we need to use the gid mapped
according to the idmapped mount otherwise we will fail to change
ownership for unprivileged users.
Consider a caller running with fsuid and fsgid 1000 using an idmapped
mount that maps id 65534 to 1000 and 65535 to 1001. Consequently, a file
owned by 65534:65535 in the filesystem will be owned by 1000:1001 in the
idmapped mount.
The caller now requests the gid of the file to be changed to 1000 going
through the idmapped mount. In the vfs we will immediately map the
requested gid to the value that will need to be written to inode->i_gid
and place it in attr->ia_gid. Since this idmapped mount maps 65534 to
1000 we place 65534 in attr->ia_gid.
When we check whether the caller is allowed to change group ownership we
first validate that their fsuid matches the inode's uid. The
inode->i_uid is 65534 which is mapped to uid 1000 in the idmapped mount.
Since the caller's fsuid is 1000 we pass the check.
We now check whether the caller is allowed to change inode->i_gid to the
requested gid by calling in_group_p(). This will compare the passed in
gid to the caller's fsgid and search the caller's additional groups.
Since we're dealing with an idmapped mount we need to pass in the gid
mapped according to the idmapped mount. This is akin to checking whether
a caller is privileged over the future group the inode is owned by. And
that needs to take the idmapped mount into account. Note, all helpers
are nops without idmapped mounts.
New regression test sent to xfstests.
Link: https://github.com/lxc/lxd/issues/10537
Link: https://lore.kernel.org/r/20220613111517.2186646-1-brauner@kernel.org
Fixes: 2f221d6f7b88 ("attr: handle idmapped mounts")
Cc: Seth Forshee <sforshee@digitalocean.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: stable@vger.kernel.org # 5.15+
CC: linux-fsdevel@vger.kernel.org
Reviewed-by: Seth Forshee <sforshee@digitalocean.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
When calling setattr_prepare() to determine the validity of the attributes the
ia_{g,u}id fields contain the value that will be written to inode->i_{g,u}id.
When the {g,u}id attribute of the file isn't altered and the caller's fs{g,u}id
matches the current {g,u}id attribute the attribute change is allowed.
The value in ia_{g,u}id does already account for idmapped mounts and will have
taken the relevant idmapping into account. So in order to verify that the
{g,u}id attribute isn't changed we simple need to compare the ia_{g,u}id value
against the inode's i_{g,u}id value.
This only has any meaning for idmapped mounts as idmapping helpers are
idempotent without them. And for idmapped mounts this really only has a meaning
when circular idmappings are used, i.e. mappings where e.g. id 1000 is mapped
to id 1001 and id 1001 is mapped to id 1000. Such ciruclar mappings can e.g. be
useful when sharing the same home directory between multiple users at the same
time.
As an example consider a directory with two files: /source/file1 owned by
{g,u}id 1000 and /source/file2 owned by {g,u}id 1001. Assume we create an
idmapped mount at /target with an idmapping that maps files owned by {g,u}id
1000 to being owned by {g,u}id 1001 and files owned by {g,u}id 1001 to being
owned by {g,u}id 1000. In effect, the idmapped mount at /target switches the
ownership of /source/file1 and source/file2, i.e. /target/file1 will be owned
by {g,u}id 1001 and /target/file2 will be owned by {g,u}id 1000.
This means that a user with fs{g,u}id 1000 must be allowed to setattr
/target/file2 from {g,u}id 1000 to {g,u}id 1000. Similar, a user with fs{g,u}id
1001 must be allowed to setattr /target/file1 from {g,u}id 1001 to {g,u}id
1001. Conversely, a user with fs{g,u}id 1000 must fail to setattr /target/file1
from {g,u}id 1001 to {g,u}id 1000. And a user with fs{g,u}id 1001 must fail to
setattr /target/file2 from {g,u}id 1000 to {g,u}id 1000. Both cases must fail
with EPERM for non-capable callers.
Before this patch we could end up denying legitimate attribute changes and
allowing invalid attribute changes when circular mappings are used. To even get
into this situation the caller must've been privileged both to create that
mapping and to create that idmapped mount.
This hasn't been seen in the wild anywhere but came up when expanding the
testsuite during work on a series of hardening patches. All idmapped fstests
pass without any regressions and we add new tests to verify the behavior of
circular mappings.
Link: https://lore.kernel.org/r/20211109145713.1868404-1-brauner@kernel.org
Fixes: 2f221d6f7b88 ("attr: handle idmapped mounts")
Cc: Seth Forshee <seth.forshee@digitalocean.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: stable@vger.kernel.org
CC: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Seth Forshee <sforshee@digitalocean.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
|
|
Move the permission checks in notify_change into a separate function to
make them available to filesystems.
When notify_change is called, the vfs performs those checks before
calling into iop->setattr. However, a filesystem like gfs2 can only
lock and revalidate the inode inside ->setattr, and it must then repeat
those checks to err on the safe side.
It would be nice to get rid of the double checking, but moving the
permission check into iop->setattr altogether isn't really an option.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
IMA does sometimes access the inode's i_uid and compares it against the
rules' fowner. Enable IMA to handle idmapped mounts by passing down the
mount's user namespace. We simply make use of the helpers we introduced
before. If the initial user namespace is passed nothing changes so
non-idmapped mounts will see identical behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-27-christian.brauner@ubuntu.com
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
|
|
Extend some inode methods with an additional user namespace argument. A
filesystem that is aware of idmapped mounts will receive the user
namespace the mount has been marked with. This can be used for
additional permission checking and also to enable filesystems to
translate between uids and gids if they need to. We have implemented all
relevant helpers in earlier patches.
As requested we simply extend the exisiting inode method instead of
introducing new ones. This is a little more code churn but it's mostly
mechanical and doesnt't leave us with additional inode methods.
Link: https://lore.kernel.org/r/20210121131959.646623-25-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
|
|
When interacting with user namespace and non-user namespace aware
filesystem capabilities the vfs will perform various security checks to
determine whether or not the filesystem capabilities can be used by the
caller, whether they need to be removed and so on. The main
infrastructure for this resides in the capability codepaths but they are
called through the LSM security infrastructure even though they are not
technically an LSM or optional. This extends the existing security hooks
security_inode_removexattr(), security_inode_killpriv(),
security_inode_getsecurity() to pass down the mount's user namespace and
makes them aware of idmapped mounts.
In order to actually get filesystem capabilities from disk the
capability infrastructure exposes the get_vfs_caps_from_disk() helper.
For user namespace aware filesystem capabilities a root uid is stored
alongside the capabilities.
In order to determine whether the caller can make use of the filesystem
capability or whether it needs to be ignored it is translated according
to the superblock's user namespace. If it can be translated to uid 0
according to that id mapping the caller can use the filesystem
capabilities stored on disk. If we are accessing the inode that holds
the filesystem capabilities through an idmapped mount we map the root
uid according to the mount's user namespace. Afterwards the checks are
identical to non-idmapped mounts: reading filesystem caps from disk
enforces that the root uid associated with the filesystem capability
must have a mapping in the superblock's user namespace and that the
caller is either in the same user namespace or is a descendant of the
superblock's user namespace. For filesystems that are mountable inside
user namespace the caller can just mount the filesystem and won't
usually need to idmap it. If they do want to idmap it they can create an
idmapped mount and mark it with a user namespace they created and which
is thus a descendant of s_user_ns. For filesystems that are not
mountable inside user namespaces the descendant rule is trivially true
because the s_user_ns will be the initial user namespace.
If the initial user namespace is passed nothing changes so non-idmapped
mounts will see identical behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-11-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: James Morris <jamorris@linux.microsoft.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
|
|
When file attributes are changed most filesystems rely on the
setattr_prepare(), setattr_copy(), and notify_change() helpers for
initialization and permission checking. Let them handle idmapped mounts.
If the inode is accessed through an idmapped mount map it into the
mount's user namespace. Afterwards the checks are identical to
non-idmapped mounts. If the initial user namespace is passed nothing
changes so non-idmapped mounts will see identical behavior as before.
Helpers that perform checks on the ia_uid and ia_gid fields in struct
iattr assume that ia_uid and ia_gid are intended values and have already
been mapped correctly at the userspace-kernelspace boundary as we
already do today. If the initial user namespace is passed nothing
changes so non-idmapped mounts will see identical behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-8-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
|
|
The inode_owner_or_capable() helper determines whether the caller is the
owner of the inode or is capable with respect to that inode. Allow it to
handle idmapped mounts. If the inode is accessed through an idmapped
mount it according to the mount's user namespace. Afterwards the checks
are identical to non-idmapped mounts. If the initial user namespace is
passed nothing changes so non-idmapped mounts will see identical
behavior as before.
Similarly, allow the inode_init_owner() helper to handle idmapped
mounts. It initializes a new inode on idmapped mounts by mapping the
fsuid and fsgid of the caller from the mount's user namespace. If the
initial user namespace is passed nothing changes so non-idmapped mounts
will see identical behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-7-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
|
|
The two helpers inode_permission() and generic_permission() are used by
the vfs to perform basic permission checking by verifying that the
caller is privileged over an inode. In order to handle idmapped mounts
we extend the two helpers with an additional user namespace argument.
On idmapped mounts the two helpers will make sure to map the inode
according to the mount's user namespace and then peform identical
permission checks to inode_permission() and generic_permission(). If the
initial user namespace is passed nothing changes so non-idmapped mounts
will see identical behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-6-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Acked-by: Serge Hallyn <serge@hallyn.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
|
|
In order to determine whether a caller holds privilege over a given
inode the capability framework exposes the two helpers
privileged_wrt_inode_uidgid() and capable_wrt_inode_uidgid(). The former
verifies that the inode has a mapping in the caller's user namespace and
the latter additionally verifies that the caller has the requested
capability in their current user namespace.
If the inode is accessed through an idmapped mount map it into the
mount's user namespace. Afterwards the checks are identical to
non-idmapped inodes. If the initial user namespace is passed all
operations are a nop so non-idmapped mounts will not see a change in
behavior.
Link: https://lore.kernel.org/r/20210121131959.646623-5-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Acked-by: Serge Hallyn <serge@hallyn.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
|
|
Push clamping timestamps into notify_change(), so in-kernel
callers like nfsd and overlayfs will get similar timestamp
set behavior as utimes.
AV: get rid of clamping in ->setattr() instances; we don't need
to bother with that there, with notify_change() doing normalization
in all cases now (it already did for implicit case, since current_time()
clamps).
Suggested-by: Miklos Szeredi <mszeredi@redhat.com>
Fixes: 42e729b9ddbb ("utimes: Clamp the timestamps before update")
Cc: stable@vger.kernel.org # v5.4
Cc: Deepa Dinamani <deepa.kernel@gmail.com>
Cc: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Update the inode timestamp updates to use timestamp_truncate()
instead of timespec64_trunc().
The change was mostly generated by the following coccinelle
script.
virtual context
virtual patch
@r1 depends on patch forall@
struct inode *inode;
identifier i_xtime =~ "^i_[acm]time$";
expression e;
@@
inode->i_xtime =
- timespec64_trunc(
+ timestamp_truncate(
...,
- e);
+ inode);
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Jeff Layton <jlayton@kernel.org>
Cc: adrian.hunter@intel.com
Cc: dedekind1@gmail.com
Cc: gregkh@linuxfoundation.org
Cc: hch@lst.de
Cc: jaegeuk@kernel.org
Cc: jlbec@evilplan.org
Cc: richard@nod.at
Cc: tj@kernel.org
Cc: yuchao0@huawei.com
Cc: linux-f2fs-devel@lists.sourceforge.net
Cc: linux-ntfs-dev@lists.sourceforge.net
Cc: linux-mtd@lists.infradead.org
|