summaryrefslogtreecommitdiff
path: root/kernel/sched
AgeCommit message (Collapse)Author
2020-04-07mm/vma: make vma_is_accessible() available for general useAnshuman Khandual
Lets move vma_is_accessible() helper to include/linux/mm.h which makes it available for general use. While here, this replaces all remaining open encodings for VMA access check with vma_is_accessible(). Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Acked-by: Guo Ren <guoren@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Guo Ren <guoren@kernel.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paul Burton <paulburton@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Rich Felker <dalias@libc.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Nick Piggin <npiggin@gmail.com> Cc: Paul Mackerras <paulus@ozlabs.org> Cc: Will Deacon <will@kernel.org> Link: http://lkml.kernel.org/r/1582520593-30704-3-git-send-email-anshuman.khandual@arm.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-03-30Merge tag 'smp-core-2020-03-30' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull core SMP updates from Thomas Gleixner: "CPU (hotplug) updates: - Support for locked CSD objects in smp_call_function_single_async() which allows to simplify callsites in the scheduler core and MIPS - Treewide consolidation of CPU hotplug functions which ensures the consistency between the sysfs interface and kernel state. The low level functions cpu_up/down() are now confined to the core code and not longer accessible from random code" * tag 'smp-core-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (22 commits) cpu/hotplug: Ignore pm_wakeup_pending() for disable_nonboot_cpus() cpu/hotplug: Hide cpu_up/down() cpu/hotplug: Move bringup of secondary CPUs out of smp_init() torture: Replace cpu_up/down() with add/remove_cpu() firmware: psci: Replace cpu_up/down() with add/remove_cpu() xen/cpuhotplug: Replace cpu_up/down() with device_online/offline() parisc: Replace cpu_up/down() with add/remove_cpu() sparc: Replace cpu_up/down() with add/remove_cpu() powerpc: Replace cpu_up/down() with add/remove_cpu() x86/smp: Replace cpu_up/down() with add/remove_cpu() arm64: hibernate: Use bringup_hibernate_cpu() cpu/hotplug: Provide bringup_hibernate_cpu() arm64: Use reboot_cpu instead of hardconding it to 0 arm64: Don't use disable_nonboot_cpus() ARM: Use reboot_cpu instead of hardcoding it to 0 ARM: Don't use disable_nonboot_cpus() ia64: Replace cpu_down() with smp_shutdown_nonboot_cpus() cpu/hotplug: Create a new function to shutdown nonboot cpus cpu/hotplug: Add new {add,remove}_cpu() functions sched/core: Remove rq.hrtick_csd_pending ...
2020-03-30Merge branch 'sched-core-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: "The main changes in this cycle are: - Various NUMA scheduling updates: harmonize the load-balancer and NUMA placement logic to not work against each other. The intended result is better locality, better utilization and fewer migrations. - Introduce Thermal Pressure tracking and optimizations, to improve task placement on thermally overloaded systems. - Implement frequency invariant scheduler accounting on (some) x86 CPUs. This is done by observing and sampling the 'recent' CPU frequency average at ~tick boundaries. The CPU provides this data via the APERF/MPERF MSRs. This hopefully makes our capacity estimates more precise and keeps tasks on the same CPU better even if it might seem overloaded at a lower momentary frequency. (As usual, turbo mode is a complication that we resolve by observing the maximum frequency and renormalizing to it.) - Add asymmetric CPU capacity wakeup scan to improve capacity utilization on asymmetric topologies. (big.LITTLE systems) - PSI fixes and optimizations. - RT scheduling capacity awareness fixes & improvements. - Optimize the CONFIG_RT_GROUP_SCHED constraints code. - Misc fixes, cleanups and optimizations - see the changelog for details" * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (62 commits) threads: Update PID limit comment according to futex UAPI change sched/fair: Fix condition of avg_load calculation sched/rt: cpupri_find: Trigger a full search as fallback kthread: Do not preempt current task if it is going to call schedule() sched/fair: Improve spreading of utilization sched: Avoid scale real weight down to zero psi: Move PF_MEMSTALL out of task->flags MAINTAINERS: Add maintenance information for psi psi: Optimize switching tasks inside shared cgroups psi: Fix cpu.pressure for cpu.max and competing cgroups sched/core: Distribute tasks within affinity masks sched/fair: Fix enqueue_task_fair warning thermal/cpu-cooling, sched/core: Move the arch_set_thermal_pressure() API to generic scheduler code sched/rt: Remove unnecessary push for unfit tasks sched/rt: Allow pulling unfitting task sched/rt: Optimize cpupri_find() on non-heterogenous systems sched/rt: Re-instate old behavior in select_task_rq_rt() sched/rt: cpupri_find: Implement fallback mechanism for !fit case sched/fair: Fix reordering of enqueue/dequeue_task_fair() sched/fair: Fix runnable_avg for throttled cfs ...
2020-03-30Merge branch 'locking-core-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull locking updates from Ingo Molnar: "The main changes in this cycle were: - Continued user-access cleanups in the futex code. - percpu-rwsem rewrite that uses its own waitqueue and atomic_t instead of an embedded rwsem. This addresses a couple of weaknesses, but the primary motivation was complications on the -rt kernel. - Introduce raw lock nesting detection on lockdep (CONFIG_PROVE_RAW_LOCK_NESTING=y), document the raw_lock vs. normal lock differences. This too originates from -rt. - Reuse lockdep zapped chain_hlocks entries, to conserve RAM footprint on distro-ish kernels running into the "BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!" depletion of the lockdep chain-entries pool. - Misc cleanups, smaller fixes and enhancements - see the changelog for details" * 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (55 commits) fs/buffer: Make BH_Uptodate_Lock bit_spin_lock a regular spinlock_t thermal/x86_pkg_temp: Make pkg_temp_lock a raw_spinlock_t Documentation/locking/locktypes: Minor copy editor fixes Documentation/locking/locktypes: Further clarifications and wordsmithing m68knommu: Remove mm.h include from uaccess_no.h x86: get rid of user_atomic_cmpxchg_inatomic() generic arch_futex_atomic_op_inuser() doesn't need access_ok() x86: don't reload after cmpxchg in unsafe_atomic_op2() loop x86: convert arch_futex_atomic_op_inuser() to user_access_begin/user_access_end() objtool: whitelist __sanitizer_cov_trace_switch() [parisc, s390, sparc64] no need for access_ok() in futex handling sh: no need of access_ok() in arch_futex_atomic_op_inuser() futex: arch_futex_atomic_op_inuser() calling conventions change completion: Use lockdep_assert_RT_in_threaded_ctx() in complete_all() lockdep: Add posixtimer context tracing bits lockdep: Annotate irq_work lockdep: Add hrtimer context tracing bits lockdep: Introduce wait-type checks completion: Use simple wait queues sched/swait: Prepare usage in completions ...
2020-03-23completion: Use lockdep_assert_RT_in_threaded_ctx() in complete_all()Sebastian Siewior
The warning was intended to spot complete_all() users from hardirq context on PREEMPT_RT. The warning as-is will also trigger in interrupt handlers, which are threaded on PREEMPT_RT, which was not intended. Use lockdep_assert_RT_in_threaded_ctx() which triggers in non-preemptive context on PREEMPT_RT. Fixes: a5c6234e1028 ("completion: Use simple wait queues") Reported-by: kernel test robot <rong.a.chen@intel.com> Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200323152019.4qjwluldohuh3by5@linutronix.de
2020-03-21completion: Use simple wait queuesThomas Gleixner
completion uses a wait_queue_head_t to enqueue waiters. wait_queue_head_t contains a spinlock_t to protect the list of waiters which excludes it from being used in truly atomic context on a PREEMPT_RT enabled kernel. The spinlock in the wait queue head cannot be replaced by a raw_spinlock because: - wait queues can have custom wakeup callbacks, which acquire other spinlock_t locks and have potentially long execution times - wake_up() walks an unbounded number of list entries during the wake up and may wake an unbounded number of waiters. For simplicity and performance reasons complete() should be usable on PREEMPT_RT enabled kernels. completions do not use custom wakeup callbacks and are usually single waiter, except for a few corner cases. Replace the wait queue in the completion with a simple wait queue (swait), which uses a raw_spinlock_t for protecting the waiter list and therefore is safe to use inside truly atomic regions on PREEMPT_RT. There is no semantical or functional change: - completions use the exclusive wait mode which is what swait provides - complete() wakes one exclusive waiter - complete_all() wakes all waiters while holding the lock which protects the wait queue against newly incoming waiters. The conversion to swait preserves this behaviour. complete_all() might cause unbound latencies with a large number of waiters being woken at once, but most complete_all() usage sites are either in testing or initialization code or have only a really small number of concurrent waiters which for now does not cause a latency problem. Keep it simple for now. The fixup of the warning check in the USB gadget driver is just a straight forward conversion of the lockless waiter check from one waitqueue type to the other. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Davidlohr Bueso <dbueso@suse.de> Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lkml.kernel.org/r/20200321113242.317954042@linutronix.de
2020-03-21sched/swait: Prepare usage in completionsThomas Gleixner
As a preparation to use simple wait queues for completions: - Provide swake_up_all_locked() to support complete_all() - Make __prepare_to_swait() public available This is done to enable the usage of complete() within truly atomic contexts on a PREEMPT_RT enabled kernel. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200321113242.228481202@linutronix.de
2020-03-20sched/fair: Fix condition of avg_load calculationTao Zhou
In update_sg_wakeup_stats(), the comment says: Computing avg_load makes sense only when group is fully busy or overloaded. But, the code below this comment does not check like this. From reading the code about avg_load in other functions, I confirm that avg_load should be calculated in fully busy or overloaded case. The comment is correct and the checking condition is wrong. So, change that condition. Fixes: 57abff067a08 ("sched/fair: Rework find_idlest_group()") Signed-off-by: Tao Zhou <ouwen210@hotmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Acked-by: Mel Gorman <mgorman@suse.de> Link: https://lkml.kernel.org/r/Message-ID:
2020-03-20sched/rt: cpupri_find: Trigger a full search as fallbackQais Yousef
If we failed to find a fitting CPU, in cpupri_find(), we only fallback to the level we found a hit at. But Steve suggested to fallback to a second full scan instead as this could be a better effort. https://lore.kernel.org/lkml/20200304135404.146c56eb@gandalf.local.home/ We trigger the 2nd search unconditionally since the argument about triggering a full search is that the recorded fall back level might have become empty by then. Which means storing any data about what happened would be meaningless and stale. I had a humble try at timing it and it seemed okay for the small 6 CPUs system I was running on https://lore.kernel.org/lkml/20200305124324.42x6ehjxbnjkklnh@e107158-lin.cambridge.arm.com/ On large system this second full scan could be expensive. But there are no users outside capacity awareness for this fitness function at the moment. Heterogeneous systems tend to be small with 8cores in total. Suggested-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Link: https://lkml.kernel.org/r/20200310142219.syxzn5ljpdxqtbgx@e107158-lin.cambridge.arm.com
2020-03-20sched/fair: Improve spreading of utilizationVincent Guittot
During load_balancing, a group with spare capacity will try to pull some utilizations from an overloaded group. In such case, the load balance looks for the runqueue with the highest utilization. Nevertheless, it should also ensure that there are some pending tasks to pull otherwise the load balance will fail to pull a task and the spread of the load will be delayed. This situation is quite transient but it's possible to highlight the effect with a short run of sysbench test so the time to spread task impacts the global result significantly. Below are the average results for 15 iterations on an arm64 octo core: sysbench --test=cpu --num-threads=8 --max-requests=1000 run tip/sched/core +patchset total time: 172ms 158ms per-request statistics: avg: 1.337ms 1.244ms max: 21.191ms 10.753ms The average max doesn't fully reflect the wide spread of the value which ranges from 1.350ms to more than 41ms for the tip/sched/core and from 1.350ms to 21ms with the patch. Other factors like waiting for an idle load balance or cache hotness can delay the spreading of the tasks which explains why we can still have up to 21ms with the patch. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200312165429.990-1-vincent.guittot@linaro.org
2020-03-20sched: Avoid scale real weight down to zeroMichael Wang
During our testing, we found a case that shares no longer working correctly, the cgroup topology is like: /sys/fs/cgroup/cpu/A (shares=102400) /sys/fs/cgroup/cpu/A/B (shares=2) /sys/fs/cgroup/cpu/A/B/C (shares=1024) /sys/fs/cgroup/cpu/D (shares=1024) /sys/fs/cgroup/cpu/D/E (shares=1024) /sys/fs/cgroup/cpu/D/E/F (shares=1024) The same benchmark is running in group C & F, no other tasks are running, the benchmark is capable to consumed all the CPUs. We suppose the group C will win more CPU resources since it could enjoy all the shares of group A, but it's F who wins much more. The reason is because we have group B with shares as 2, since A->cfs_rq.load.weight == B->se.load.weight == B->shares/nr_cpus, so A->cfs_rq.load.weight become very small. And in calc_group_shares() we calculate shares as: load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); shares = (tg_shares * load) / tg_weight; Since the 'cfs_rq->load.weight' is too small, the load become 0 after scale down, although 'tg_shares' is 102400, shares of the se which stand for group A on root cfs_rq become 2. While the se of D on root cfs_rq is far more bigger than 2, so it wins the battle. Thus when scale_load_down() scale real weight down to 0, it's no longer telling the real story, the caller will have the wrong information and the calculation will be buggy. This patch add check in scale_load_down(), so the real weight will be >= MIN_SHARES after scale, after applied the group C wins as expected. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Michael Wang <yun.wang@linux.alibaba.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/38e8e212-59a1-64b2-b247-b6d0b52d8dc1@linux.alibaba.com
2020-03-20psi: Move PF_MEMSTALL out of task->flagsYafang Shao
The task->flags is a 32-bits flag, in which 31 bits have already been consumed. So it is hardly to introduce other new per process flag. Currently there're still enough spaces in the bit-field section of task_struct, so we can define the memstall state as a single bit in task_struct instead. This patch also removes an out-of-date comment pointed by Matthew. Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lkml.kernel.org/r/1584408485-1921-1-git-send-email-laoar.shao@gmail.com
2020-03-20psi: Optimize switching tasks inside shared cgroupsJohannes Weiner
When switching tasks running on a CPU, the psi state of a cgroup containing both of these tasks does not change. Right now, we don't exploit that, and can perform many unnecessary state changes in nested hierarchies, especially when most activity comes from one leaf cgroup. This patch implements an optimization where we only update cgroups whose state actually changes during a task switch. These are all cgroups that contain one task but not the other, up to the first shared ancestor. When both tasks are in the same group, we don't need to update anything at all. We can identify the first shared ancestor by walking the groups of the incoming task until we see TSK_ONCPU set on the local CPU; that's the first group that also contains the outgoing task. The new psi_task_switch() is similar to psi_task_change(). To allow code reuse, move the task flag maintenance code into a new function and the poll/avg worker wakeups into the shared psi_group_change(). Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200316191333.115523-3-hannes@cmpxchg.org
2020-03-20psi: Fix cpu.pressure for cpu.max and competing cgroupsJohannes Weiner
For simplicity, cpu pressure is defined as having more than one runnable task on a given CPU. This works on the system-level, but it has limitations in a cgrouped reality: When cpu.max is in use, it doesn't capture the time in which a task is not executing on the CPU due to throttling. Likewise, it doesn't capture the time in which a competing cgroup is occupying the CPU - meaning it only reflects cgroup-internal competitive pressure, not outside pressure. Enable tracking of currently executing tasks, and then change the definition of cpu pressure in a cgroup from NR_RUNNING > 1 to NR_RUNNING > ON_CPU which will capture the effects of cpu.max as well as competition from outside the cgroup. After this patch, a cgroup running `stress -c 1` with a cpu.max setting of 5000 10000 shows ~50% continuous CPU pressure. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200316191333.115523-2-hannes@cmpxchg.org
2020-03-20sched/core: Distribute tasks within affinity masksPaul Turner
Currently, when updating the affinity of tasks via either cpusets.cpus, or, sched_setaffinity(); tasks not currently running within the newly specified mask will be arbitrarily assigned to the first CPU within the mask. This (particularly in the case that we are restricting masks) can result in many tasks being assigned to the first CPUs of their new masks. This: 1) Can induce scheduling delays while the load-balancer has a chance to spread them between their new CPUs. 2) Can antogonize a poor load-balancer behavior where it has a difficult time recognizing that a cross-socket imbalance has been forced by an affinity mask. This change adds a new cpumask interface to allow iterated calls to distribute within the intersection of the provided masks. The cases that this mainly affects are: - modifying cpuset.cpus - when tasks join a cpuset - when modifying a task's affinity via sched_setaffinity(2) Signed-off-by: Paul Turner <pjt@google.com> Signed-off-by: Josh Don <joshdon@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Qais Yousef <qais.yousef@arm.com> Tested-by: Qais Yousef <qais.yousef@arm.com> Link: https://lkml.kernel.org/r/20200311010113.136465-1-joshdon@google.com
2020-03-20sched/fair: Fix enqueue_task_fair warningVincent Guittot
When a cfs rq is throttled, the latter and its child are removed from the leaf list but their nr_running is not changed which includes staying higher than 1. When a task is enqueued in this throttled branch, the cfs rqs must be added back in order to ensure correct ordering in the list but this can only happens if nr_running == 1. When cfs bandwidth is used, we call unconditionnaly list_add_leaf_cfs_rq() when enqueuing an entity to make sure that the complete branch will be added. Similarly unthrottle_cfs_rq() can stop adding cfs in the list when a parent is throttled. Iterate the remaining entity to ensure that the complete branch will be added in the list. Reported-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Tested-by: Christian Borntraeger <borntraeger@de.ibm.com> Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: stable@vger.kernel.org Cc: stable@vger.kernel.org #v5.1+ Link: https://lkml.kernel.org/r/20200306135257.25044-1-vincent.guittot@linaro.org
2020-03-06thermal/cpu-cooling, sched/core: Move the arch_set_thermal_pressure() API to ↵Ingo Molnar
generic scheduler code drivers/base/arch_topology.c is only built if CONFIG_GENERIC_ARCH_TOPOLOGY=y, resulting in such build failures: cpufreq_cooling.c:(.text+0x1e7): undefined reference to `arch_set_thermal_pressure' Move it to sched/core.c instead, and keep it enabled on x86 despite us not having a arch_scale_thermal_pressure() facility there, to build-test this thing. Cc: Thara Gopinath <thara.gopinath@linaro.org> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-03-06sched/core: Remove rq.hrtick_csd_pendingPeter Xu
Now smp_call_function_single_async() provides the protection that we'll return with -EBUSY if the csd object is still pending, then we don't need the rq.hrtick_csd_pending any more. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20191216213125.9536-4-peterx@redhat.com
2020-03-06sched/rt: Remove unnecessary push for unfit tasksQais Yousef
In task_woken_rt() and switched_to_rto() we try trigger push-pull if the task is unfit. But the logic is found lacking because if the task was the only one running on the CPU, then rt_rq is not in overloaded state and won't trigger a push. The necessity of this logic was under a debate as well, a summary of the discussion can be found in the following thread: https://lore.kernel.org/lkml/20200226160247.iqvdakiqbakk2llz@e107158-lin.cambridge.arm.com/ Remove the logic for now until a better approach is agreed upon. Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Fixes: 804d402fb6f6 ("sched/rt: Make RT capacity-aware") Link: https://lkml.kernel.org/r/20200302132721.8353-6-qais.yousef@arm.com
2020-03-06sched/rt: Allow pulling unfitting taskQais Yousef
When implemented RT Capacity Awareness; the logic was done such that if a task was running on a fitting CPU, then it was sticky and we would try our best to keep it there. But as Steve suggested, to adhere to the strict priority rules of RT class; allow pulling an RT task to unfitting CPU to ensure it gets a chance to run ASAP. LINK: https://lore.kernel.org/lkml/20200203111451.0d1da58f@oasis.local.home/ Suggested-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Fixes: 804d402fb6f6 ("sched/rt: Make RT capacity-aware") Link: https://lkml.kernel.org/r/20200302132721.8353-5-qais.yousef@arm.com
2020-03-06sched/rt: Optimize cpupri_find() on non-heterogenous systemsQais Yousef
By introducing a new cpupri_find_fitness() function that takes the fitness_fn as an argument and only called when asym_system static key is enabled. cpupri_find() is now a wrapper function that calls cpupri_find_fitness() passing NULL as a fitness_fn, hence disabling the logic that handles fitness by default. LINK: https://lore.kernel.org/lkml/c0772fca-0a4b-c88d-fdf2-5715fcf8447b@arm.com/ Reported-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Fixes: 804d402fb6f6 ("sched/rt: Make RT capacity-aware") Link: https://lkml.kernel.org/r/20200302132721.8353-4-qais.yousef@arm.com
2020-03-06sched/rt: Re-instate old behavior in select_task_rq_rt()Qais Yousef
When RT Capacity Aware support was added, the logic in select_task_rq_rt was modified to force a search for a fitting CPU if the task currently doesn't run on one. But if the search failed, and the search was only triggered to fulfill the fitness request; we could end up selecting a new CPU unnecessarily. Fix this and re-instate the original behavior by ensuring we bail out in that case. This behavior change only affected asymmetric systems that are using util_clamp to implement capacity aware. None asymmetric systems weren't affected. LINK: https://lore.kernel.org/lkml/20200218041620.GD28029@codeaurora.org/ Reported-by: Pavan Kondeti <pkondeti@codeaurora.org> Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Fixes: 804d402fb6f6 ("sched/rt: Make RT capacity-aware") Link: https://lkml.kernel.org/r/20200302132721.8353-3-qais.yousef@arm.com
2020-03-06sched/rt: cpupri_find: Implement fallback mechanism for !fit caseQais Yousef
When searching for the best lowest_mask with a fitness_fn passed, make sure we record the lowest_level that returns a valid lowest_mask so that we can use that as a fallback in case we fail to find a fitting CPU at all levels. The intention in the original patch was not to allow a down migration to unfitting CPU. But this missed the case where we are already running on unfitting one. With this change now RT tasks can still move between unfitting CPUs when they're already running on such CPU. And as Steve suggested; to adhere to the strict priority rules of RT, if a task is already running on a fitting CPU but due to priority it can't run on it, allow it to downmigrate to unfitting CPU so it can run. Reported-by: Pavan Kondeti <pkondeti@codeaurora.org> Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Fixes: 804d402fb6f6 ("sched/rt: Make RT capacity-aware") Link: https://lkml.kernel.org/r/20200302132721.8353-2-qais.yousef@arm.com Link: https://lore.kernel.org/lkml/20200203142712.a7yvlyo2y3le5cpn@e107158-lin/
2020-03-06sched/fair: Fix reordering of enqueue/dequeue_task_fair()Vincent Guittot
Even when a cgroup is throttled, the group se of a child cgroup can still be enqueued and its gse->on_rq stays true. When a task is enqueued on such child, we still have to update the load_avg and increase h_nr_running of the throttled cfs. Nevertheless, the 1st for_each_sched_entity() loop is skipped because of gse->on_rq == true and the 2nd loop because the cfs is throttled whereas we have to update both load_avg with the old h_nr_running and increase h_nr_running in such case. The same sequence can happen during dequeue when se moves to parent before breaking in the 1st loop. Note that the update of load_avg will effectively happen only once in order to sync up to the throttled time. Next call for updating load_avg will stop early because the clock stays unchanged. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Fixes: 6d4d22468dae ("sched/fair: Reorder enqueue/dequeue_task_fair path") Link: https://lkml.kernel.org/r/20200306084208.12583-1-vincent.guittot@linaro.org
2020-03-06sched/fair: Fix runnable_avg for throttled cfsVincent Guittot
When a cfs_rq is throttled, its group entity is dequeued and its running tasks are removed. We must update runnable_avg with the old h_nr_running and update group_se->runnable_weight with the new h_nr_running at each level of the hierarchy. Reviewed-by: Ben Segall <bsegall@google.com> Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Fixes: 9f68395333ad ("sched/pelt: Add a new runnable average signal") Link: https://lkml.kernel.org/r/20200227154115.8332-1-vincent.guittot@linaro.org
2020-03-06sched/deadline: Make two functions staticYu Chen
Since commit 06a76fe08d4 ("sched/deadline: Move DL related code from sched/core.c to sched/deadline.c"), DL related code moved to deadline.c. Make the following two functions static since they're only used in deadline.c: dl_change_utilization() init_dl_rq_bw_ratio() Signed-off-by: Yu Chen <chen.yu@easystack.cn> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20200228100329.16927-1-chen.yu@easystack.cn
2020-03-06sched/topology: Don't enable EAS on SMT systemsValentin Schneider
EAS already requires asymmetric CPU capacities to be enabled, and mixing this with SMT is an aberration, but better be safe than sorry. Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Acked-by: Quentin Perret <qperret@google.com> Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20200227191433.31994-2-valentin.schneider@arm.com
2020-03-06sched/numa: Acquire RCU lock for checking idle cores during NUMA balancingMel Gorman
Qian Cai reported the following bug: The linux-next commit ff7db0bf24db ("sched/numa: Prefer using an idle CPU as a migration target instead of comparing tasks") introduced a boot warning, [ 86.520534][ T1] WARNING: suspicious RCU usage [ 86.520540][ T1] 5.6.0-rc3-next-20200227 #7 Not tainted [ 86.520545][ T1] ----------------------------- [ 86.520551][ T1] kernel/sched/fair.c:5914 suspicious rcu_dereference_check() usage! [ 86.520555][ T1] [ 86.520555][ T1] other info that might help us debug this: [ 86.520555][ T1] [ 86.520561][ T1] [ 86.520561][ T1] rcu_scheduler_active = 2, debug_locks = 1 [ 86.520567][ T1] 1 lock held by systemd/1: [ 86.520571][ T1] #0: ffff8887f4b14848 (&mm->mmap_sem#2){++++}, at: do_page_fault+0x1d2/0x998 [ 86.520594][ T1] [ 86.520594][ T1] stack backtrace: [ 86.520602][ T1] CPU: 1 PID: 1 Comm: systemd Not tainted 5.6.0-rc3-next-20200227 #7 task_numa_migrate() checks for idle cores when updating NUMA-related statistics. This relies on reading a RCU-protected structure in test_idle_cores() via this call chain task_numa_migrate -> update_numa_stats -> numa_idle_core -> test_idle_cores While the locking could be fine-grained, it is more appropriate to acquire the RCU lock for the entire scan of the domain. This patch removes the warning triggered at boot time. Reported-by: Qian Cai <cai@lca.pw> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Fixes: ff7db0bf24db ("sched/numa: Prefer using an idle CPU as a migration target instead of comparing tasks") Link: https://lkml.kernel.org/r/20200227191804.GJ3818@techsingularity.net
2020-03-06sched/fair: Fix kernel build warning in test_idle_cores() for !SMT NUMAValentin Schneider
Building against the tip/sched/core as ff7db0bf24db ("sched/numa: Prefer using an idle CPU as a migration target instead of comparing tasks") with the arm64 defconfig (which doesn't have CONFIG_SCHED_SMT set) leads to: kernel/sched/fair.c:1525:20: warning: 'test_idle_cores' declared 'static' but never defined [-Wunused-function] static inline bool test_idle_cores(int cpu, bool def); ^~~~~~~~~~~~~~~ Rather than define it in its own CONFIG_SCHED_SMT #define island, bunch it up with test_idle_cores(). Reported-by: Anshuman Khandual <anshuman.khandual@arm.com> Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Reviewed-by: Lukasz Luba <lukasz.luba@arm.com> [mgorman@techsingularity.net: Edit changelog, minor style change] Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Fixes: ff7db0bf24db ("sched/numa: Prefer using an idle CPU as a migration target instead of comparing tasks") Link: https://lkml.kernel.org/r/20200303110258.1092-3-mgorman@techsingularity.net
2020-03-06sched/fair: Enable tuning of decay periodThara Gopinath
Thermal pressure follows pelt signals which means the decay period for thermal pressure is the default pelt decay period. Depending on SoC characteristics and thermal activity, it might be beneficial to decay thermal pressure slower, but still in-tune with the pelt signals. One way to achieve this is to provide a command line parameter to set a decay shift parameter to an integer between 0 and 10. Signed-off-by: Thara Gopinath <thara.gopinath@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20200222005213.3873-10-thara.gopinath@linaro.org
2020-03-06sched/fair: Update cpu_capacity to reflect thermal pressureThara Gopinath
cpu_capacity initially reflects the maximum possible capacity of a CPU. Thermal pressure on a CPU means this maximum possible capacity is unavailable due to thermal events. This patch subtracts the average thermal pressure for a CPU from its maximum possible capacity so that cpu_capacity reflects the remaining maximum capacity. Signed-off-by: Thara Gopinath <thara.gopinath@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20200222005213.3873-8-thara.gopinath@linaro.org
2020-03-06sched/fair: Enable periodic update of average thermal pressureThara Gopinath
Introduce support in scheduler periodic tick and other CFS bookkeeping APIs to trigger the process of computing average thermal pressure for a CPU. Also consider avg_thermal.load_avg in others_have_blocked which allows for decay of pelt signals. Signed-off-by: Thara Gopinath <thara.gopinath@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20200222005213.3873-7-thara.gopinath@linaro.org
2020-03-06sched/pelt: Add support to track thermal pressureThara Gopinath
Extrapolating on the existing framework to track rt/dl utilization using pelt signals, add a similar mechanism to track thermal pressure. The difference here from rt/dl utilization tracking is that, instead of tracking time spent by a CPU running a RT/DL task through util_avg, the average thermal pressure is tracked through load_avg. This is because thermal pressure signal is weighted time "delta" capacity unlike util_avg which is binary. "delta capacity" here means delta between the actual capacity of a CPU and the decreased capacity a CPU due to a thermal event. In order to track average thermal pressure, a new sched_avg variable avg_thermal is introduced. Function update_thermal_load_avg can be called to do the periodic bookkeeping (accumulate, decay and average) of the thermal pressure. Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Thara Gopinath <thara.gopinath@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20200222005213.3873-2-thara.gopinath@linaro.org
2020-03-06sched/vtime: Prevent unstable evaluation of WARN(vtime->state)Chris Wilson
As the vtime is sampled under loose seqcount protection by kcpustat, the vtime fields may change as the code flows. Where logic dictates a field has a static value, use a READ_ONCE. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Fixes: 74722bb223d0 ("sched/vtime: Bring up complete kcpustat accessor") Link: https://lkml.kernel.org/r/20200123180849.28486-1-frederic@kernel.org
2020-03-06Merge branch 'linus' into sched/core, to pick up fixesIngo Molnar
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-02-27sched/fair: Fix statistics for find_idlest_group()Vincent Guittot
sgs->group_weight is not set while gathering statistics in update_sg_wakeup_stats(). This means that a group can be classified as fully busy with 0 running tasks if utilization is high enough. This path is mainly used for fork and exec. Fixes: 57abff067a08 ("sched/fair: Rework find_idlest_group()") Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Mel Gorman <mgorman@techsingularity.net> Link: https://lore.kernel.org/r/20200218144534.4564-1-vincent.guittot@linaro.org
2020-02-24sched/numa: Stop an exhastive search if a reasonable swap candidate or idle ↵Mel Gorman
CPU is found When domains are imbalanced or overloaded a search of all CPUs on the target domain is searched and compared with task_numa_compare. In some circumstances, a candidate is found that is an obvious win. o A task can move to an idle CPU and an idle CPU is found o A swap candidate is found that would move to its preferred domain This patch terminates the search when either condition is met. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-14-mgorman@techsingularity.net
2020-02-24sched/numa: Bias swapping tasks based on their preferred nodeMel Gorman
When swapping tasks for NUMA balancing, it is preferred that tasks move to or remain on their preferred node. When considering an imbalance, encourage tasks to move to their preferred node and discourage tasks from moving away from their preferred node. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-13-mgorman@techsingularity.net
2020-02-24sched/numa: Find an alternative idle CPU if the CPU is part of an active ↵Mel Gorman
NUMA balance Multiple tasks can attempt to select and idle CPU but fail because numa_migrate_on is already set and the migration fails. Instead of failing, scan for an alternative idle CPU. select_idle_sibling is not used because it requires IRQs to be disabled and it ignores numa_migrate_on allowing multiple tasks to stack. This scan may still fail if there are idle candidate CPUs due to races but if this occurs, it's best that a task stay on an available CPU that move to a contended one. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-12-mgorman@techsingularity.net
2020-02-24sched/numa: Prefer using an idle CPU as a migration target instead of ↵Mel Gorman
comparing tasks task_numa_find_cpu() can scan a node multiple times. Minimally it scans to gather statistics and later to find a suitable target. In some cases, the second scan will simply pick an idle CPU if the load is not imbalanced. This patch caches information on an idle core while gathering statistics and uses it immediately if load is not imbalanced to avoid a second scan of the node runqueues. Preference is given to an idle core rather than an idle SMT sibling to avoid packing HT siblings due to linearly scanning the node cpumask. As a side-effect, even when the second scan is necessary, the importance of using select_idle_sibling is much reduced because information on idle CPUs is cached and can be reused. Note that this patch actually makes is harder to move to an idle CPU as multiple tasks can race for the same idle CPU due to a race checking numa_migrate_on. This is addressed in the next patch. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-11-mgorman@techsingularity.net
2020-02-24sched/fair: Take into account runnable_avg to classify groupVincent Guittot
Take into account the new runnable_avg signal to classify a group and to mitigate the volatility of util_avg in face of intensive migration or new task with random utilization. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: "Dietmar Eggemann <dietmar.eggemann@arm.com>" Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-10-mgorman@techsingularity.net
2020-02-24sched/pelt: Add a new runnable average signalVincent Guittot
Now that runnable_load_avg has been removed, we can replace it by a new signal that will highlight the runnable pressure on a cfs_rq. This signal track the waiting time of tasks on rq and can help to better define the state of rqs. At now, only util_avg is used to define the state of a rq: A rq with more that around 80% of utilization and more than 1 tasks is considered as overloaded. But the util_avg signal of a rq can become temporaly low after that a task migrated onto another rq which can bias the classification of the rq. When tasks compete for the same rq, their runnable average signal will be higher than util_avg as it will include the waiting time and we can use this signal to better classify cfs_rqs. The new runnable_avg will track the runnable time of a task which simply adds the waiting time to the running time. The runnable _avg of cfs_rq will be the /Sum of se's runnable_avg and the runnable_avg of group entity will follow the one of the rq similarly to util_avg. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: "Dietmar Eggemann <dietmar.eggemann@arm.com>" Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-9-mgorman@techsingularity.net
2020-02-24sched/pelt: Remove unused runnable load averageVincent Guittot
Now that runnable_load_avg is no more used, we can remove it to make space for a new signal. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: "Dietmar Eggemann <dietmar.eggemann@arm.com>" Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-8-mgorman@techsingularity.net
2020-02-24sched/numa: Use similar logic to the load balancer for moving between ↵Mel Gorman
domains with spare capacity The standard load balancer generally tries to keep the number of running tasks or idle CPUs balanced between NUMA domains. The NUMA balancer allows tasks to move if there is spare capacity but this causes a conflict and utilisation between NUMA nodes gets badly skewed. This patch uses similar logic between the NUMA balancer and load balancer when deciding if a task migrating to its preferred node can use an idle CPU. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-7-mgorman@techsingularity.net
2020-02-24sched/numa: Replace runnable_load_avg by load_avgVincent Guittot
Similarly to what has been done for the normal load balancer, we can replace runnable_load_avg by load_avg in numa load balancing and track the other statistics like the utilization and the number of running tasks to get to better view of the current state of a node. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: "Dietmar Eggemann <dietmar.eggemann@arm.com>" Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-6-mgorman@techsingularity.net
2020-02-24sched/fair: Reorder enqueue/dequeue_task_fair pathVincent Guittot
The walk through the cgroup hierarchy during the enqueue/dequeue of a task is split in 2 distinct parts for throttled cfs_rq without any added value but making code less readable. Change the code ordering such that everything related to a cfs_rq (throttled or not) will be done in the same loop. In addition, the same steps ordering is used when updating a cfs_rq: - update_load_avg - update_cfs_group - update *h_nr_running This reordering enables the use of h_nr_running in PELT algorithm. No functional and performance changes are expected and have been noticed during tests. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: "Dietmar Eggemann <dietmar.eggemann@arm.com>" Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-5-mgorman@techsingularity.net
2020-02-24sched/numa: Distinguish between the different task_numa_migrate() failure casesMel Gorman
sched:sched_stick_numa is meant to fire when a task is unable to migrate to the preferred node but from the trace, it's possibile to tell the difference between "no CPU found", "migration to idle CPU failed" and "tasks could not be swapped". Extend the tracepoint accordingly. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> [ Minor edits. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-4-mgorman@techsingularity.net
2020-02-24sched/numa: Trace when no candidate CPU was found on the preferred nodeMel Gorman
sched:sched_stick_numa is meant to fire when a task is unable to migrate to the preferred node. The case where no candidate CPU could be found is not traced which is an important gap. The tracepoint is not fired when the task is not allowed to run on any CPU on the preferred node or the task is already running on the target CPU but neither are interesting corner cases. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-3-mgorman@techsingularity.net
2020-02-24Merge tag 'v5.6-rc3' into sched/core, to pick up fixes and dependent patchesIngo Molnar
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-02-20sched/fair: Remove wake_cap()Morten Rasmussen
Capacity-awareness in the wake-up path previously involved disabling wake_affine in certain scenarios. We have just made select_idle_sibling() capacity-aware, so this isn't needed anymore. Remove wake_cap() entirely. Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com> [Changelog tweaks] Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> [Changelog tweaks] Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20200206191957.12325-5-valentin.schneider@arm.com