summaryrefslogtreecommitdiff
path: root/Documentation/admin-guide/pm/suspend-flows.rst
blob: c479d7462647b3dca2a2d1367d2ca9d8b5e37b92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
.. SPDX-License-Identifier: GPL-2.0
.. include:: <isonum.txt>

=========================
System Suspend Code Flows
=========================

:Copyright: |copy| 2020 Intel Corporation

:Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>

At least one global system-wide transition needs to be carried out for the
system to get from the working state into one of the supported
:doc:`sleep states <sleep-states>`.  Hibernation requires more than one
transition to occur for this purpose, but the other sleep states, commonly
referred to as *system-wide suspend* (or simply *system suspend*) states, need
only one.

For those sleep states, the transition from the working state of the system into
the target sleep state is referred to as *system suspend* too (in the majority
of cases, whether this means a transition or a sleep state of the system should
be clear from the context) and the transition back from the sleep state into the
working state is referred to as *system resume*.

The kernel code flows associated with the suspend and resume transitions for
different sleep states of the system are quite similar, but there are some
significant differences between the :ref:`suspend-to-idle <s2idle>` code flows
and the code flows related to the :ref:`suspend-to-RAM <s2ram>` and
:ref:`standby <standby>` sleep states.

The :ref:`suspend-to-RAM <s2ram>` and :ref:`standby <standby>` sleep states
cannot be implemented without platform support and the difference between them
boils down to the platform-specific actions carried out by the suspend and
resume hooks that need to be provided by the platform driver to make them
available.  Apart from that, the suspend and resume code flows for these sleep
states are mostly identical, so they both together will be referred to as
*platform-dependent suspend* states in what follows.


.. _s2idle_suspend:

Suspend-to-idle Suspend Code Flow
=================================

The following steps are taken in order to transition the system from the working
state to the :ref:`suspend-to-idle <s2idle>` sleep state:

 1. Invoking system-wide suspend notifiers.

    Kernel subsystems can register callbacks to be invoked when the suspend
    transition is about to occur and when the resume transition has finished.

    That allows them to prepare for the change of the system state and to clean
    up after getting back to the working state.

 2. Freezing tasks.

    Tasks are frozen primarily in order to avoid unchecked hardware accesses
    from user space through MMIO regions or I/O registers exposed directly to
    it and to prevent user space from entering the kernel while the next step
    of the transition is in progress (which might have been problematic for
    various reasons).

    All user space tasks are intercepted as though they were sent a signal and
    put into uninterruptible sleep until the end of the subsequent system resume
    transition.

    The kernel threads that choose to be frozen during system suspend for
    specific reasons are frozen subsequently, but they are not intercepted.
    Instead, they are expected to periodically check whether or not they need
    to be frozen and to put themselves into uninterruptible sleep if so.  [Note,
    however, that kernel threads can use locking and other concurrency controls
    available in kernel space to synchronize themselves with system suspend and
    resume, which can be much more precise than the freezing, so the latter is
    not a recommended option for kernel threads.]

 3. Suspending devices and reconfiguring IRQs.

    Devices are suspended in four phases called *prepare*, *suspend*,
    *late suspend* and *noirq suspend* (see :ref:`driverapi_pm_devices` for more
    information on what exactly happens in each phase).

    Every device is visited in each phase, but typically it is not physically
    accessed in more than two of them.

    The runtime PM API is disabled for every device during the *late* suspend
    phase and high-level ("action") interrupt handlers are prevented from being
    invoked before the *noirq* suspend phase.

    Interrupts are still handled after that, but they are only acknowledged to
    interrupt controllers without performing any device-specific actions that
    would be triggered in the working state of the system (those actions are
    deferred till the subsequent system resume transition as described
    `below <s2idle_resume_>`_).

    IRQs associated with system wakeup devices are "armed" so that the resume
    transition of the system is started when one of them signals an event.

 4. Freezing the scheduler tick and suspending timekeeping.

    When all devices have been suspended, CPUs enter the idle loop and are put
    into the deepest available idle state.  While doing that, each of them
    "freezes" its own scheduler tick so that the timer events associated with
    the tick do not occur until the CPU is woken up by another interrupt source.

    The last CPU to enter the idle state also stops the timekeeping which
    (among other things) prevents high resolution timers from triggering going
    forward until the first CPU that is woken up restarts the timekeeping.
    That allows the CPUs to stay in the deep idle state relatively long in one
    go.

    From this point on, the CPUs can only be woken up by non-timer hardware
    interrupts.  If that happens, they go back to the idle state unless the
    interrupt that woke up one of them comes from an IRQ that has been armed for
    system wakeup, in which case the system resume transition is started.


.. _s2idle_resume:

Suspend-to-idle Resume Code Flow
================================

The following steps are taken in order to transition the system from the
:ref:`suspend-to-idle <s2idle>` sleep state into the working state:

 1. Resuming timekeeping and unfreezing the scheduler tick.

    When one of the CPUs is woken up (by a non-timer hardware interrupt), it
    leaves the idle state entered in the last step of the preceding suspend
    transition, restarts the timekeeping (unless it has been restarted already
    by another CPU that woke up earlier) and the scheduler tick on that CPU is
    unfrozen.

    If the interrupt that has woken up the CPU was armed for system wakeup,
    the system resume transition begins.

 2. Resuming devices and restoring the working-state configuration of IRQs.

    Devices are resumed in four phases called *noirq resume*, *early resume*,
    *resume* and *complete* (see :ref:`driverapi_pm_devices` for more
    information on what exactly happens in each phase).

    Every device is visited in each phase, but typically it is not physically
    accessed in more than two of them.

    The working-state configuration of IRQs is restored after the *noirq* resume
    phase and the runtime PM API is re-enabled for every device whose driver
    supports it during the *early* resume phase.

 3. Thawing tasks.

    Tasks frozen in step 2 of the preceding `suspend <s2idle_suspend_>`_
    transition are "thawed", which means that they are woken up from the
    uninterruptible sleep that they went into at that time and user space tasks
    are allowed to exit the kernel.

 4. Invoking system-wide resume notifiers.

    This is analogous to step 1 of the `suspend <s2idle_suspend_>`_ transition
    and the same set of callbacks is invoked at this point, but a different
    "notification type" parameter value is passed to them.


Platform-dependent Suspend Code Flow
====================================

The following steps are taken in order to transition the system from the working
state to platform-dependent suspend state:

 1. Invoking system-wide suspend notifiers.

    This step is the same as step 1 of the suspend-to-idle suspend transition
    described `above <s2idle_suspend_>`_.

 2. Freezing tasks.

    This step is the same as step 2 of the suspend-to-idle suspend transition
    described `above <s2idle_suspend_>`_.

 3. Suspending devices and reconfiguring IRQs.

    This step is analogous to step 3 of the suspend-to-idle suspend transition
    described `above <s2idle_suspend_>`_, but the arming of IRQs for system
    wakeup generally does not have any effect on the platform.

    There are platforms that can go into a very deep low-power state internally
    when all CPUs in them are in sufficiently deep idle states and all I/O
    devices have been put into low-power states.  On those platforms,
    suspend-to-idle can reduce system power very effectively.

    On the other platforms, however, low-level components (like interrupt
    controllers) need to be turned off in a platform-specific way (implemented
    in the hooks provided by the platform driver) to achieve comparable power
    reduction.

    That usually prevents in-band hardware interrupts from waking up the system,
    which must be done in a special platform-dependent way.  Then, the
    configuration of system wakeup sources usually starts when system wakeup
    devices are suspended and is finalized by the platform suspend hooks later
    on.

 4. Disabling non-boot CPUs.

    On some platforms the suspend hooks mentioned above must run in a one-CPU
    configuration of the system (in particular, the hardware cannot be accessed
    by any code running in parallel with the platform suspend hooks that may,
    and often do, trap into the platform firmware in order to finalize the
    suspend transition).

    For this reason, the CPU offline/online (CPU hotplug) framework is used
    to take all of the CPUs in the system, except for one (the boot CPU),
    offline (typically, the CPUs that have been taken offline go into deep idle
    states).

    This means that all tasks are migrated away from those CPUs and all IRQs are
    rerouted to the only CPU that remains online.

 5. Suspending core system components.

    This prepares the core system components for (possibly) losing power going
    forward and suspends the timekeeping.

 6. Platform-specific power removal.

    This is expected to remove power from all of the system components except
    for the memory controller and RAM (in order to preserve the contents of the
    latter) and some devices designated for system wakeup.

    In many cases control is passed to the platform firmware which is expected
    to finalize the suspend transition as needed.


Platform-dependent Resume Code Flow
===================================

The following steps are taken in order to transition the system from a
platform-dependent suspend state into the working state:

 1. Platform-specific system wakeup.

    The platform is woken up by a signal from one of the designated system
    wakeup devices (which need not be an in-band hardware interrupt)  and
    control is passed back to the kernel (the working configuration of the
    platform may need to be restored by the platform firmware before the
    kernel gets control again).

 2. Resuming core system components.

    The suspend-time configuration of the core system components is restored and
    the timekeeping is resumed.

 3. Re-enabling non-boot CPUs.

    The CPUs disabled in step 4 of the preceding suspend transition are taken
    back online and their suspend-time configuration is restored.

 4. Resuming devices and restoring the working-state configuration of IRQs.

    This step is the same as step 2 of the suspend-to-idle suspend transition
    described `above <s2idle_resume_>`_.

 5. Thawing tasks.

    This step is the same as step 3 of the suspend-to-idle suspend transition
    described `above <s2idle_resume_>`_.

 6. Invoking system-wide resume notifiers.

    This step is the same as step 4 of the suspend-to-idle suspend transition
    described `above <s2idle_resume_>`_.