summaryrefslogtreecommitdiff
path: root/Documentation/trace/coresight/coresight.rst
blob: 4a71ea6cb390763083ace1d6eaac5baa9d0413e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
======================================
Coresight - HW Assisted Tracing on ARM
======================================

   :Author:   Mathieu Poirier <mathieu.poirier@linaro.org>
   :Date:     September 11th, 2014

Introduction
------------

Coresight is an umbrella of technologies allowing for the debugging of ARM
based SoC.  It includes solutions for JTAG and HW assisted tracing.  This
document is concerned with the latter.

HW assisted tracing is becoming increasingly useful when dealing with systems
that have many SoCs and other components like GPU and DMA engines.  ARM has
developed a HW assisted tracing solution by means of different components, each
being added to a design at synthesis time to cater to specific tracing needs.
Components are generally categorised as source, link and sinks and are
(usually) discovered using the AMBA bus.

"Sources" generate a compressed stream representing the processor instruction
path based on tracing scenarios as configured by users.  From there the stream
flows through the coresight system (via ATB bus) using links that are connecting
the emanating source to a sink(s).  Sinks serve as endpoints to the coresight
implementation, either storing the compressed stream in a memory buffer or
creating an interface to the outside world where data can be transferred to a
host without fear of filling up the onboard coresight memory buffer.

At typical coresight system would look like this::

  *****************************************************************
 **************************** AMBA AXI  ****************************===||
  *****************************************************************    ||
        ^                    ^                            |            ||
        |                    |                            *            **
     0000000    :::::     0000000    :::::    :::::    @@@@@@@    ||||||||||||
     0 CPU 0<-->: C :     0 CPU 0<-->: C :    : C :    @ STM @    || System ||
  |->0000000    : T :  |->0000000    : T :    : T :<--->@@@@@     || Memory ||
  |  #######<-->: I :  |  #######<-->: I :    : I :      @@@<-|   ||||||||||||
  |  # ETM #    :::::  |  # PTM #    :::::    :::::       @   |
  |   #####      ^ ^   |   #####      ^ !      ^ !        .   |   |||||||||
  | |->###       | !   | |->###       | !      | !        .   |   || DAP ||
  | |   #        | !   | |   #        | !      | !        .   |   |||||||||
  | |   .        | !   | |   .        | !      | !        .   |      |  |
  | |   .        | !   | |   .        | !      | !        .   |      |  *
  | |   .        | !   | |   .        | !      | !        .   |      | SWD/
  | |   .        | !   | |   .        | !      | !        .   |      | JTAG
  *****************************************************************<-|
 *************************** AMBA Debug APB ************************
  *****************************************************************
   |    .          !         .          !        !        .    |
   |    .          *         .          *        *        .    |
  *****************************************************************
 ******************** Cross Trigger Matrix (CTM) *******************
  *****************************************************************
   |    .     ^              .                            .    |
   |    *     !              *                            *    |
  *****************************************************************
 ****************** AMBA Advanced Trace Bus (ATB) ******************
  *****************************************************************
   |          !                        ===============         |
   |          *                         ===== F =====<---------|
   |   :::::::::                         ==== U ====
   |-->:: CTI ::<!!                       === N ===
   |   :::::::::  !                        == N ==
   |    ^         *                        == E ==
   |    !  &&&&&&&&&       IIIIIII         == L ==
   |------>&& ETB &&<......II     I        =======
   |    !  &&&&&&&&&       II     I           .
   |    !                    I     I          .
   |    !                    I REP I<..........
   |    !                    I     I
   |    !!>&&&&&&&&&       II     I           *Source: ARM ltd.
   |------>& TPIU  &<......II    I            DAP = Debug Access Port
           &&&&&&&&&       IIIIIII            ETM = Embedded Trace Macrocell
               ;                              PTM = Program Trace Macrocell
               ;                              CTI = Cross Trigger Interface
               *                              ETB = Embedded Trace Buffer
          To trace port                       TPIU= Trace Port Interface Unit
                                              SWD = Serial Wire Debug

While on target configuration of the components is done via the APB bus,
all trace data are carried out-of-band on the ATB bus.  The CTM provides
a way to aggregate and distribute signals between CoreSight components.

The coresight framework provides a central point to represent, configure and
manage coresight devices on a platform.  This first implementation centers on
the basic tracing functionality, enabling components such ETM/PTM, funnel,
replicator, TMC, TPIU and ETB.  Future work will enable more
intricate IP blocks such as STM and CTI.


Acronyms and Classification
---------------------------

Acronyms:

PTM:
    Program Trace Macrocell
ETM:
    Embedded Trace Macrocell
STM:
    System trace Macrocell
ETB:
    Embedded Trace Buffer
ITM:
    Instrumentation Trace Macrocell
TPIU:
     Trace Port Interface Unit
TMC-ETR:
        Trace Memory Controller, configured as Embedded Trace Router
TMC-ETF:
        Trace Memory Controller, configured as Embedded Trace FIFO
CTI:
    Cross Trigger Interface

Classification:

Source:
   ETMv3.x ETMv4, PTMv1.0, PTMv1.1, STM, STM500, ITM
Link:
   Funnel, replicator (intelligent or not), TMC-ETR
Sinks:
   ETBv1.0, ETB1.1, TPIU, TMC-ETF
Misc:
   CTI


Device Tree Bindings
--------------------

See Documentation/devicetree/bindings/arm/arm,coresight-\*.yaml for details.

As of this writing drivers for ITM, STMs and CTIs are not provided but are
expected to be added as the solution matures.


Framework and implementation
----------------------------

The coresight framework provides a central point to represent, configure and
manage coresight devices on a platform.  Any coresight compliant device can
register with the framework for as long as they use the right APIs:

.. c:function:: struct coresight_device *coresight_register(struct coresight_desc *desc);
.. c:function:: void coresight_unregister(struct coresight_device *csdev);

The registering function is taking a ``struct coresight_desc *desc`` and
register the device with the core framework. The unregister function takes
a reference to a ``struct coresight_device *csdev`` obtained at registration time.

If everything goes well during the registration process the new devices will
show up under /sys/bus/coresight/devices, as showns here for a TC2 platform::

    root:~# ls /sys/bus/coresight/devices/
    replicator  20030000.tpiu    2201c000.ptm  2203c000.etm  2203e000.etm
    20010000.etb         20040000.funnel  2201d000.ptm  2203d000.etm
    root:~#

The functions take a ``struct coresight_device``, which looks like this::

    struct coresight_desc {
            enum coresight_dev_type type;
            struct coresight_dev_subtype subtype;
            const struct coresight_ops *ops;
            struct coresight_platform_data *pdata;
            struct device *dev;
            const struct attribute_group **groups;
    };


The "coresight_dev_type" identifies what the device is, i.e, source link or
sink while the "coresight_dev_subtype" will characterise that type further.

The ``struct coresight_ops`` is mandatory and will tell the framework how to
perform base operations related to the components, each component having
a different set of requirement. For that ``struct coresight_ops_sink``,
``struct coresight_ops_link`` and ``struct coresight_ops_source`` have been
provided.

The next field ``struct coresight_platform_data *pdata`` is acquired by calling
``of_get_coresight_platform_data()``, as part of the driver's _probe routine and
``struct device *dev`` gets the device reference embedded in the ``amba_device``::

    static int etm_probe(struct amba_device *adev, const struct amba_id *id)
    {
     ...
     ...
     drvdata->dev = &adev->dev;
     ...
    }

Specific class of device (source, link, or sink) have generic operations
that can be performed on them (see ``struct coresight_ops``). The ``**groups``
is a list of sysfs entries pertaining to operations
specific to that component only.  "Implementation defined" customisations are
expected to be accessed and controlled using those entries.

Device Naming scheme
--------------------

The devices that appear on the "coresight" bus were named the same as their
parent devices, i.e, the real devices that appears on AMBA bus or the platform bus.
Thus the names were based on the Linux Open Firmware layer naming convention,
which follows the base physical address of the device followed by the device
type. e.g::

    root:~# ls /sys/bus/coresight/devices/
     20010000.etf  20040000.funnel      20100000.stm     22040000.etm
     22140000.etm  230c0000.funnel      23240000.etm     20030000.tpiu
     20070000.etr  20120000.replicator  220c0000.funnel
     23040000.etm  23140000.etm         23340000.etm

However, with the introduction of ACPI support, the names of the real
devices are a bit cryptic and non-obvious. Thus, a new naming scheme was
introduced to use more generic names based on the type of the device. The
following rules apply::

  1) Devices that are bound to CPUs, are named based on the CPU logical
     number.

     e.g, ETM bound to CPU0 is named "etm0"

  2) All other devices follow a pattern, "<device_type_prefix>N", where :

	<device_type_prefix> 	- A prefix specific to the type of the device
	N			- a sequential number assigned based on the order
				  of probing.

	e.g, tmc_etf0, tmc_etr0, funnel0, funnel1

Thus, with the new scheme the devices could appear as ::

    root:~# ls /sys/bus/coresight/devices/
     etm0     etm1     etm2         etm3  etm4      etm5      funnel0
     funnel1  funnel2  replicator0  stm0  tmc_etf0  tmc_etr0  tpiu0

Some of the examples below might refer to old naming scheme and some
to the newer scheme, to give a confirmation that what you see on your
system is not unexpected. One must use the "names" as they appear on
the system under specified locations.

Topology Representation
-----------------------

Each CoreSight component has a ``connections`` directory which will contain
links to other CoreSight components. This allows the user to explore the trace
topology and for larger systems, determine the most appropriate sink for a
given source. The connection information can also be used to establish
which CTI devices are connected to a given component. This directory contains a
``nr_links`` attribute detailing the number of links in the directory.

For an ETM source, in this case ``etm0`` on a Juno platform, a typical
arrangement will be::

  linaro-developer:~# ls - l /sys/bus/coresight/devices/etm0/connections
  <file details>  cti_cpu0 -> ../../../23020000.cti/cti_cpu0
  <file details>  nr_links
  <file details>  out:0 -> ../../../230c0000.funnel/funnel2

Following the out port to ``funnel2``::

  linaro-developer:~# ls -l /sys/bus/coresight/devices/funnel2/connections
  <file details> in:0 -> ../../../23040000.etm/etm0
  <file details> in:1 -> ../../../23140000.etm/etm3
  <file details> in:2 -> ../../../23240000.etm/etm4
  <file details> in:3 -> ../../../23340000.etm/etm5
  <file details> nr_links
  <file details> out:0 -> ../../../20040000.funnel/funnel0

And again to ``funnel0``::

  linaro-developer:~# ls -l /sys/bus/coresight/devices/funnel0/connections
  <file details> in:0 -> ../../../220c0000.funnel/funnel1
  <file details> in:1 -> ../../../230c0000.funnel/funnel2
  <file details> nr_links
  <file details> out:0 -> ../../../20010000.etf/tmc_etf0

Finding the first sink ``tmc_etf0``. This can be used to collect data
as a sink, or as a link to propagate further along the chain::

  linaro-developer:~# ls -l /sys/bus/coresight/devices/tmc_etf0/connections
  <file details> cti_sys0 -> ../../../20020000.cti/cti_sys0
  <file details> in:0 -> ../../../20040000.funnel/funnel0
  <file details> nr_links
  <file details> out:0 -> ../../../20150000.funnel/funnel4

via ``funnel4``::

  linaro-developer:~# ls -l /sys/bus/coresight/devices/funnel4/connections
  <file details> in:0 -> ../../../20010000.etf/tmc_etf0
  <file details> in:1 -> ../../../20140000.etf/tmc_etf1
  <file details> nr_links
  <file details> out:0 -> ../../../20120000.replicator/replicator0

and a ``replicator0``::

  linaro-developer:~# ls -l /sys/bus/coresight/devices/replicator0/connections
  <file details> in:0 -> ../../../20150000.funnel/funnel4
  <file details> nr_links
  <file details> out:0 -> ../../../20030000.tpiu/tpiu0
  <file details> out:1 -> ../../../20070000.etr/tmc_etr0

Arriving at the final sink in the chain, ``tmc_etr0``::

  linaro-developer:~# ls -l /sys/bus/coresight/devices/tmc_etr0/connections
  <file details> cti_sys0 -> ../../../20020000.cti/cti_sys0
  <file details> in:0 -> ../../../20120000.replicator/replicator0
  <file details> nr_links

As described below, when using sysfs it is sufficient to enable a sink and
a source for successful trace. The framework will correctly enable all
intermediate links as required.

Note: ``cti_sys0`` appears in two of the connections lists above.
CTIs can connect to multiple devices and are arranged in a star topology
via the CTM. See (Documentation/trace/coresight/coresight-ect.rst)
[#fourth]_ for further details.
Looking at this device we see 4 connections::

  linaro-developer:~# ls -l /sys/bus/coresight/devices/cti_sys0/connections
  <file details> nr_links
  <file details> stm0 -> ../../../20100000.stm/stm0
  <file details> tmc_etf0 -> ../../../20010000.etf/tmc_etf0
  <file details> tmc_etr0 -> ../../../20070000.etr/tmc_etr0
  <file details> tpiu0 -> ../../../20030000.tpiu/tpiu0


How to use the tracer modules
-----------------------------

There are two ways to use the Coresight framework:

1. using the perf cmd line tools.
2. interacting directly with the Coresight devices using the sysFS interface.

Preference is given to the former as using the sysFS interface
requires a deep understanding of the Coresight HW.  The following sections
provide details on using both methods.

Using the sysFS interface
~~~~~~~~~~~~~~~~~~~~~~~~~

Before trace collection can start, a coresight sink needs to be identified.
There is no limit on the amount of sinks (nor sources) that can be enabled at
any given moment.  As a generic operation, all device pertaining to the sink
class will have an "active" entry in sysfs::

    root:/sys/bus/coresight/devices# ls
    replicator  20030000.tpiu    2201c000.ptm  2203c000.etm  2203e000.etm
    20010000.etb         20040000.funnel  2201d000.ptm  2203d000.etm
    root:/sys/bus/coresight/devices# ls 20010000.etb
    enable_sink  status  trigger_cntr
    root:/sys/bus/coresight/devices# echo 1 > 20010000.etb/enable_sink
    root:/sys/bus/coresight/devices# cat 20010000.etb/enable_sink
    1
    root:/sys/bus/coresight/devices#

At boot time the current etm3x driver will configure the first address
comparator with "_stext" and "_etext", essentially tracing any instruction
that falls within that range.  As such "enabling" a source will immediately
trigger a trace capture::

    root:/sys/bus/coresight/devices# echo 1 > 2201c000.ptm/enable_source
    root:/sys/bus/coresight/devices# cat 2201c000.ptm/enable_source
    1
    root:/sys/bus/coresight/devices# cat 20010000.etb/status
    Depth:          0x2000
    Status:         0x1
    RAM read ptr:   0x0
    RAM wrt ptr:    0x19d3   <----- The write pointer is moving
    Trigger cnt:    0x0
    Control:        0x1
    Flush status:   0x0
    Flush ctrl:     0x2001
    root:/sys/bus/coresight/devices#

Trace collection is stopped the same way::

    root:/sys/bus/coresight/devices# echo 0 > 2201c000.ptm/enable_source
    root:/sys/bus/coresight/devices#

The content of the ETB buffer can be harvested directly from /dev::

    root:/sys/bus/coresight/devices# dd if=/dev/20010000.etb \
    of=~/cstrace.bin
    64+0 records in
    64+0 records out
    32768 bytes (33 kB) copied, 0.00125258 s, 26.2 MB/s
    root:/sys/bus/coresight/devices#

The file cstrace.bin can be decompressed using "ptm2human", DS-5 or Trace32.

Following is a DS-5 output of an experimental loop that increments a variable up
to a certain value.  The example is simple and yet provides a glimpse of the
wealth of possibilities that coresight provides.
::

    Info                                    Tracing enabled
    Instruction     106378866       0x8026B53C      E52DE004        false   PUSH     {lr}
    Instruction     0       0x8026B540      E24DD00C        false   SUB      sp,sp,#0xc
    Instruction     0       0x8026B544      E3A03000        false   MOV      r3,#0
    Instruction     0       0x8026B548      E58D3004        false   STR      r3,[sp,#4]
    Instruction     0       0x8026B54C      E59D3004        false   LDR      r3,[sp,#4]
    Instruction     0       0x8026B550      E3530004        false   CMP      r3,#4
    Instruction     0       0x8026B554      E2833001        false   ADD      r3,r3,#1
    Instruction     0       0x8026B558      E58D3004        false   STR      r3,[sp,#4]
    Instruction     0       0x8026B55C      DAFFFFFA        true    BLE      {pc}-0x10 ; 0x8026b54c
    Timestamp                                       Timestamp: 17106715833
    Instruction     319     0x8026B54C      E59D3004        false   LDR      r3,[sp,#4]
    Instruction     0       0x8026B550      E3530004        false   CMP      r3,#4
    Instruction     0       0x8026B554      E2833001        false   ADD      r3,r3,#1
    Instruction     0       0x8026B558      E58D3004        false   STR      r3,[sp,#4]
    Instruction     0       0x8026B55C      DAFFFFFA        true    BLE      {pc}-0x10 ; 0x8026b54c
    Instruction     9       0x8026B54C      E59D3004        false   LDR      r3,[sp,#4]
    Instruction     0       0x8026B550      E3530004        false   CMP      r3,#4
    Instruction     0       0x8026B554      E2833001        false   ADD      r3,r3,#1
    Instruction     0       0x8026B558      E58D3004        false   STR      r3,[sp,#4]
    Instruction     0       0x8026B55C      DAFFFFFA        true    BLE      {pc}-0x10 ; 0x8026b54c
    Instruction     7       0x8026B54C      E59D3004        false   LDR      r3,[sp,#4]
    Instruction     0       0x8026B550      E3530004        false   CMP      r3,#4
    Instruction     0       0x8026B554      E2833001        false   ADD      r3,r3,#1
    Instruction     0       0x8026B558      E58D3004        false   STR      r3,[sp,#4]
    Instruction     0       0x8026B55C      DAFFFFFA        true    BLE      {pc}-0x10 ; 0x8026b54c
    Instruction     7       0x8026B54C      E59D3004        false   LDR      r3,[sp,#4]
    Instruction     0       0x8026B550      E3530004        false   CMP      r3,#4
    Instruction     0       0x8026B554      E2833001        false   ADD      r3,r3,#1
    Instruction     0       0x8026B558      E58D3004        false   STR      r3,[sp,#4]
    Instruction     0       0x8026B55C      DAFFFFFA        true    BLE      {pc}-0x10 ; 0x8026b54c
    Instruction     10      0x8026B54C      E59D3004        false   LDR      r3,[sp,#4]
    Instruction     0       0x8026B550      E3530004        false   CMP      r3,#4
    Instruction     0       0x8026B554      E2833001        false   ADD      r3,r3,#1
    Instruction     0       0x8026B558      E58D3004        false   STR      r3,[sp,#4]
    Instruction     0       0x8026B55C      DAFFFFFA        true    BLE      {pc}-0x10 ; 0x8026b54c
    Instruction     6       0x8026B560      EE1D3F30        false   MRC      p15,#0x0,r3,c13,c0,#1
    Instruction     0       0x8026B564      E1A0100D        false   MOV      r1,sp
    Instruction     0       0x8026B568      E3C12D7F        false   BIC      r2,r1,#0x1fc0
    Instruction     0       0x8026B56C      E3C2203F        false   BIC      r2,r2,#0x3f
    Instruction     0       0x8026B570      E59D1004        false   LDR      r1,[sp,#4]
    Instruction     0       0x8026B574      E59F0010        false   LDR      r0,[pc,#16] ; [0x8026B58C] = 0x80550368
    Instruction     0       0x8026B578      E592200C        false   LDR      r2,[r2,#0xc]
    Instruction     0       0x8026B57C      E59221D0        false   LDR      r2,[r2,#0x1d0]
    Instruction     0       0x8026B580      EB07A4CF        true    BL       {pc}+0x1e9344 ; 0x804548c4
    Info                                    Tracing enabled
    Instruction     13570831        0x8026B584      E28DD00C        false   ADD      sp,sp,#0xc
    Instruction     0       0x8026B588      E8BD8000        true    LDM      sp!,{pc}
    Timestamp                                       Timestamp: 17107041535

Using perf framework
~~~~~~~~~~~~~~~~~~~~

Coresight tracers are represented using the Perf framework's Performance
Monitoring Unit (PMU) abstraction.  As such the perf framework takes charge of
controlling when tracing gets enabled based on when the process of interest is
scheduled.  When configured in a system, Coresight PMUs will be listed when
queried by the perf command line tool:

	linaro@linaro-nano:~$ ./perf list pmu

		List of pre-defined events (to be used in -e):

		cs_etm//                                    [Kernel PMU event]

	linaro@linaro-nano:~$

Regardless of the number of tracers available in a system (usually equal to the
amount of processor cores), the "cs_etm" PMU will be listed only once.

A Coresight PMU works the same way as any other PMU, i.e the name of the PMU is
listed along with configuration options within forward slashes '/'.  Since a
Coresight system will typically have more than one sink, the name of the sink to
work with needs to be specified as an event option.
On newer kernels the available sinks are listed in sysFS under
($SYSFS)/bus/event_source/devices/cs_etm/sinks/::

	root@localhost:/sys/bus/event_source/devices/cs_etm/sinks# ls
	tmc_etf0  tmc_etr0  tpiu0

On older kernels, this may need to be found from the list of coresight devices,
available under ($SYSFS)/bus/coresight/devices/::

	root:~# ls /sys/bus/coresight/devices/
	 etm0     etm1     etm2         etm3  etm4      etm5      funnel0
	 funnel1  funnel2  replicator0  stm0  tmc_etf0  tmc_etr0  tpiu0
	root@linaro-nano:~# perf record -e cs_etm/@tmc_etr0/u --per-thread program

As mentioned above in section "Device Naming scheme", the names of the devices could
look different from what is used in the example above. One must use the device names
as it appears under the sysFS.

The syntax within the forward slashes '/' is important.  The '@' character
tells the parser that a sink is about to be specified and that this is the sink
to use for the trace session.

More information on the above and other example on how to use Coresight with
the perf tools can be found in the "HOWTO.md" file of the openCSD gitHub
repository [#third]_.

Advanced perf framework usage
-----------------------------

AutoFDO analysis using the perf tools
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

perf can be used to record and analyze trace of programs.

Execution can be recorded using 'perf record' with the cs_etm event,
specifying the name of the sink to record to, e.g::

    perf record -e cs_etm/@tmc_etr0/u --per-thread

The 'perf report' and 'perf script' commands can be used to analyze execution,
synthesizing instruction and branch events from the instruction trace.
'perf inject' can be used to replace the trace data with the synthesized events.
The --itrace option controls the type and frequency of synthesized events
(see perf documentation).

Note that only 64-bit programs are currently supported - further work is
required to support instruction decode of 32-bit Arm programs.

Tracing PID
~~~~~~~~~~~

The kernel can be built to write the PID value into the PE ContextID registers.
For a kernel running at EL1, the PID is stored in CONTEXTIDR_EL1.  A PE may
implement Arm Virtualization Host Extensions (VHE), which the kernel can
run at EL2 as a virtualisation host; in this case, the PID value is stored in
CONTEXTIDR_EL2.

perf provides PMU formats that program the ETM to insert these values into the
trace data; the PMU formats are defined as below:

  "contextid1": Available on both EL1 kernel and EL2 kernel.  When the
                kernel is running at EL1, "contextid1" enables the PID
                tracing; when the kernel is running at EL2, this enables
                tracing the PID of guest applications.

  "contextid2": Only usable when the kernel is running at EL2.  When
                selected, enables PID tracing on EL2 kernel.

  "contextid":  Will be an alias for the option that enables PID
                tracing.  I.e,
                contextid == contextid1, on EL1 kernel.
                contextid == contextid2, on EL2 kernel.

perf will always enable PID tracing at the relevant EL, this is accomplished by
automatically enable the "contextid" config - but for EL2 it is possible to make
specific adjustments using configs "contextid1" and "contextid2", E.g. if a user
wants to trace PIDs for both host and guest, the two configs "contextid1" and
"contextid2" can be set at the same time:

  perf record -e cs_etm/contextid1,contextid2/u -- vm


Generating coverage files for Feedback Directed Optimization: AutoFDO
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

'perf inject' accepts the --itrace option in which case tracing data is
removed and replaced with the synthesized events. e.g.
::

	perf inject --itrace --strip -i perf.data -o perf.data.new

Below is an example of using ARM ETM for autoFDO.  It requires autofdo
(https://github.com/google/autofdo) and gcc version 5.  The bubble
sort example is from the AutoFDO tutorial (https://gcc.gnu.org/wiki/AutoFDO/Tutorial).
::

	$ gcc-5 -O3 sort.c -o sort
	$ taskset -c 2 ./sort
	Bubble sorting array of 30000 elements
	5910 ms

	$ perf record -e cs_etm/@tmc_etr0/u --per-thread taskset -c 2 ./sort
	Bubble sorting array of 30000 elements
	12543 ms
	[ perf record: Woken up 35 times to write data ]
	[ perf record: Captured and wrote 69.640 MB perf.data ]

	$ perf inject -i perf.data -o inj.data --itrace=il64 --strip
	$ create_gcov --binary=./sort --profile=inj.data --gcov=sort.gcov -gcov_version=1
	$ gcc-5 -O3 -fauto-profile=sort.gcov sort.c -o sort_autofdo
	$ taskset -c 2 ./sort_autofdo
	Bubble sorting array of 30000 elements
	5806 ms

Config option formats
~~~~~~~~~~~~~~~~~~~~~

The following strings can be provided between // on the perf command line to enable various options.
They are also listed in the folder /sys/bus/event_source/devices/cs_etm/format/

.. list-table::
   :header-rows: 1

   * - Option
     - Description
   * - branch_broadcast
     - Session local version of the system wide setting:
       :ref:`ETM_MODE_BB <coresight-branch-broadcast>`
   * - contextid
     - See `Tracing PID`_
   * - contextid1
     - See `Tracing PID`_
   * - contextid2
     - See `Tracing PID`_
   * - configid
     - Selection for a custom configuration. This is an implementation detail and not used directly,
       see :ref:`trace/coresight/coresight-config:Using Configurations in perf`
   * - preset
     - Override for parameters in a custom configuration, see
       :ref:`trace/coresight/coresight-config:Using Configurations in perf`
   * - sinkid
     - Hashed version of the string to select a sink, automatically set when using the @ notation.
       This is an internal implementation detail and is not used directly, see `Using perf
       framework`_.
   * - cycacc
     - Session local version of the system wide setting: :ref:`ETMv4_MODE_CYCACC
       <coresight-cycle-accurate>`
   * - retstack
     - Session local version of the system wide setting: :ref:`ETM_MODE_RETURNSTACK
       <coresight-return-stack>`
   * - timestamp
     - Session local version of the system wide setting: :ref:`ETMv4_MODE_TIMESTAMP
       <coresight-timestamp>`

How to use the STM module
-------------------------

Using the System Trace Macrocell module is the same as the tracers - the only
difference is that clients are driving the trace capture rather
than the program flow through the code.

As with any other CoreSight component, specifics about the STM tracer can be
found in sysfs with more information on each entry being found in [#first]_::

    root@genericarmv8:~# ls /sys/bus/coresight/devices/stm0
    enable_source   hwevent_select  port_enable     subsystem       uevent
    hwevent_enable  mgmt            port_select     traceid
    root@genericarmv8:~#

Like any other source a sink needs to be identified and the STM enabled before
being used::

    root@genericarmv8:~# echo 1 > /sys/bus/coresight/devices/tmc_etf0/enable_sink
    root@genericarmv8:~# echo 1 > /sys/bus/coresight/devices/stm0/enable_source

From there user space applications can request and use channels using the devfs
interface provided for that purpose by the generic STM API::

    root@genericarmv8:~# ls -l /dev/stm0
    crw-------    1 root     root       10,  61 Jan  3 18:11 /dev/stm0
    root@genericarmv8:~#

Details on how to use the generic STM API can be found here:
- Documentation/trace/stm.rst [#second]_.

The CTI & CTM Modules
---------------------

The CTI (Cross Trigger Interface) provides a set of trigger signals between
individual CTIs and components, and can propagate these between all CTIs via
channels on the CTM (Cross Trigger Matrix).

A separate documentation file is provided to explain the use of these devices.
(Documentation/trace/coresight/coresight-ect.rst) [#fourth]_.

CoreSight System Configuration
------------------------------

CoreSight components can be complex devices with many programming options.
Furthermore, components can be programmed to interact with each other across the
complete system.

A CoreSight System Configuration manager is provided to allow these complex programming
configurations to be selected and used easily from perf and sysfs.

See the separate document for further information.
(Documentation/trace/coresight/coresight-config.rst) [#fifth]_.


.. [#first] Documentation/ABI/testing/sysfs-bus-coresight-devices-stm

.. [#second] Documentation/trace/stm.rst

.. [#third] https://github.com/Linaro/perf-opencsd

.. [#fourth] Documentation/trace/coresight/coresight-ect.rst

.. [#fifth] Documentation/trace/coresight/coresight-config.rst